Lee SC, Pan CY, Chen JY. The antimicrobial peptide, epinecidin-1, mediates secretion of cytokines in the immune response to bacterial infection in mice.
Peptides 2012;
36:100-8. [PMID:
22521197 DOI:
10.1016/j.peptides.2012.04.002]
[Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 04/03/2012] [Accepted: 04/03/2012] [Indexed: 11/16/2022]
Abstract
Epinecidin-1, an antimicrobial peptide which encodes 21 amino acids, was isolated from a marine grouper (Epinephelus coioides). In this study, we investigated its immunomodulatory functions in mice co-injected with Pseudomonas aeruginosa. In vivo results showed that the synthetic epinecidin-1 peptide induced significant secretion of immunoglobulin G1 (IgG1) in mice co-injected with P. aeruginosa. Moreover, after injection of 40, 100, 200, or 500 μg epinecidin-1/mouse, we detected IgM, IgG, IgG1, and IgG2a in mice treated for 1, 2, 3, 7, 14, 21, and 28 days. Results showed that there were no significant differences in IgM, IgG, or IgG2a between mice injected with epinecidin-1 alone. IgG1 increased to a peak at 24 h, 7 days, and 28 days after an epinecidin-1 (40 μg/mouse) injection. Injection of 500 μg epinecidin-1/mouse increased IgG1 to peaks at 2 and 3 days; injection of 100 μg epinecidin-1/mouse increased IgG1 to a peak at 21 days. This supports epinecidin-1 being able to activate the Th2 cell response (enhance IgG1 production) against P. aeruginosa infection. Treatment with different concentrations of epinecidin-1 in mice elevated plasma interleukin (IL)-10 to initial peaks at 24 and 48 h, and it showed a second peak at 16 days. In RAW264.7 cells, treatment with epinecidin-1 alone did not produce significant changes in tumor necrosis factor (TNF)-α protein secretion at 1, 6, or 24h after treatment with 3.75, 7.5, or 15 μg/ml epinecidin-1 compared to the lipopolysaccharide group.
Collapse