1
|
Domegan L, Brehony C, Fitzpatrick F, O'Connell K, Dinesh B, Cafferkey J, Burns K. Social network and genomic analysis of an OXA-48 carbapenemase-producing Enterobacterales hospital ward outbreak in Ireland, 2018-2019. Infect Prev Pract 2023; 5:100282. [PMID: 37168234 PMCID: PMC10164899 DOI: 10.1016/j.infpip.2023.100282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 03/28/2023] [Indexed: 05/13/2023] Open
Abstract
Background Nosocomial transmission and outbreaks of carbapenemase-producing Enterobacterales (CPE) represent a challenge to healthcare systems. In July 2018, a CPE hospital ward outbreak was declared. Our aim was to investigate transmission patterns, using social network analysis and genomics in a nosocomial CPE outbreak. Methods A retrospective descriptive analysis of all patients (cases and contacts) admitted to a ward experiencing a CPE outbreak (2018-2019) was undertaken. A case had a negative CPE admission screen, and subsequent positive test. A contact shared a multi-bed area and/or facility with a case (>4 hours). Social networks, including genomics data and ward locations, were constructed. Network metrics were analysed. Findings Forty-five cases and 844 contacts were analysed. The median age of cases was 78 years (IQR 67-83), 58% (n=26) were male and 100% had co-morbidities. The median outbreak ward length-of-stay (LOS) was 17 days (IQR 10-34). OXA-48 CPE was confirmed in all cases and from 26 environmental samples. Social networks identified clusters by time, gender and species/sequence type/plasmid. Network metrics indicated potential superspreading involving a subset of patients with behavioural issues. Conclusion Social networks elucidated high resolution transmission patterns involving two related OXA-48 plasmids, multiple species/genotypes and potential super-spreading. Interventions prevented intra-hospital spread. An older patient cohort, extended hospital LOS and frequent intra-ward bed transfers, coupled with suboptimal ward infrastructure, likely prolonged this outbreak. We recommend social network analysis contemporaneously with genomics (on case and environmental samples) for complex nosocomial outbreaks and bespoke care plans for patients with behavioural issues on outbreak wards.
Collapse
Affiliation(s)
- Lisa Domegan
- Health Service Executive, Health Protection Surveillance Centre, Dublin, Ireland
- European Programme for Intervention Epidemiology Training (EPIET), European Centre for Disease Prevention and Control, (ECDC), Stockholm, Sweden
- Corresponding author. Address: Health Service Executive, Health Protection Surveillance Centre, Dublin, Ireland.
| | - Carina Brehony
- Health Service Executive, Health Protection Surveillance Centre, Dublin, Ireland
- European Public Health Microbiology Training (EUPHEM), European Centre for Disease Prevention and Control, (ECDC), Stockholm, Sweden
| | - Fidelma Fitzpatrick
- Department of Clinical Microbiology, Infection Prevention & Control, Beaumont Hospital, Dublin, Ireland
- Department of Clinical Microbiology, Royal College of Surgeons in Ireland
| | - Karina O'Connell
- Department of Clinical Microbiology, Infection Prevention & Control, Beaumont Hospital, Dublin, Ireland
- Department of Clinical Microbiology, Royal College of Surgeons in Ireland
| | - Binu Dinesh
- Department of Clinical Microbiology, Infection Prevention & Control, Beaumont Hospital, Dublin, Ireland
- Department of Clinical Microbiology, Royal College of Surgeons in Ireland
| | - Jacqueline Cafferkey
- Department of Clinical Microbiology, Infection Prevention & Control, Beaumont Hospital, Dublin, Ireland
| | - Karen Burns
- Department of Clinical Microbiology, Infection Prevention & Control, Beaumont Hospital, Dublin, Ireland
- Department of Clinical Microbiology, Royal College of Surgeons in Ireland
| |
Collapse
|
2
|
Downing T, Lee MJ, Archbold C, McDonnell A, Rahm A. Informing plasmid compatibility with bacterial hosts using protein-protein interaction data. Genomics 2022; 114:110509. [PMID: 36273742 DOI: 10.1016/j.ygeno.2022.110509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/23/2022] [Accepted: 10/19/2022] [Indexed: 01/15/2023]
Abstract
The compatibility of plasmids with new host cells is significant given their role in spreading antimicrobial resistance (AMR) and virulence factor genes. Evaluating this using in vitro screening is laborious and can be informed by computational analyses of plasmid-host compatibility through rates of protein-protein interactions (PPIs) between plasmid and host cell proteins. We identified large excesses of such PPIs in eight important plasmids, including pOXA-48, using most known bacteria (n = 4363). 23 species had high rates of interactions with four blaOXA-48-positive plasmids. We also identified 48 species with high interaction rates with plasmids common in Escherichia coli. We found a strong association between one plasmid and the fimbrial adhesin operon pil, which could enhance host cell adhesion in aqueous environments. An excess rate of PPIs could be a sign of host-plasmid compatibility, which is important for AMR control given that plasmids like pOXA-48 move between species with ease.
Collapse
Affiliation(s)
- Tim Downing
- School of Biotechnology, Dublin City University, Dublin, Ireland; The Pirbright Institute, UK.
| | - Min Jie Lee
- School of Biotechnology, Dublin City University, Dublin, Ireland
| | - Conor Archbold
- School of Biotechnology, Dublin City University, Dublin, Ireland
| | - Adam McDonnell
- School of Biotechnology, Dublin City University, Dublin, Ireland
| | - Alexander Rahm
- GAATI Lab, University of French Polynesia, Tahiti, French Polynesia
| |
Collapse
|
3
|
Mendes G, Ramalho JF, Bruschy-Fonseca A, Lito L, Duarte A, Melo-Cristino J, Caneiras C. First Description of Ceftazidime/Avibactam Resistance in an ST13 KPC-70-Producing Klebsiella pneumoniae Strain from Portugal. Antibiotics (Basel) 2022; 11:antibiotics11020167. [PMID: 35203770 PMCID: PMC8868070 DOI: 10.3390/antibiotics11020167] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/25/2022] [Accepted: 01/25/2022] [Indexed: 12/17/2022] Open
Abstract
The combination of ceftazidime/avibactam (CZA) is a novel β-lactam/β-lactamase inhibitor with activity against Klebsiella pneumoniae carbapenemase (KPC)-producing Enterobacterales. Emerging cases caused by CZA-resistant strains that produce variants of KPC genes have already been reported worldwide. However, to the best of our knowledge, no CZA-resistant strains were reported in Portugal. In September 2019, a K. pneumoniae CZA-resistant strain was collected from ascitic fluid at a surgery ward of a tertiary University Hospital Center in Lisboa, Portugal. The strain was resistant to ceftazidime/avibactam, as well as to ceftazidime, cefoxitin, gentamicin, amoxicillin/clavulanic acid, and ertapenem, being susceptible to imipenem and tigecycline. A hypermucoviscosity phenotype was confirmed by string test. Whole-genome sequencing (WGS) analysis revealed the presence of an ST13 KPC70-producing K. pneumoniae, a KPC-3 variant, differing in two amino-acid substitutions (D179Y and T263A). The D179Y mutation in the KPC Ω-loop region is the most common amino-acid substitution in KPC-2 and KPC-3, further leading to CZA resistance. The second mutation causes a KPC-70 variant in which threonine replaces alanine (T263A). The CZA-resistant strain showed the capsular locus KL3 and antigen locus O1v2. Other important virulence factors were identified: fimbrial adhesins type 1 and type 3, as well as the cluster of iron uptake systems aerobactin, enterobactin, salmochelin, and yersiniabactin included in integrative conjugative element 10 (ICEKp10) with the genotoxin colibactin cluster. Herein, we report the molecular characterization of the first hypervirulent CZA-resistant ST13 KPC-70-producing K. pneumoniae strain in Portugal. The emergence of CZA-resistant strains might pose a serious threat to public health and suggests an urgent need for enhanced clinical awareness and epidemiologic surveillance.
Collapse
Affiliation(s)
- Gabriel Mendes
- Microbiology Research Laboratory on Environmental Health (EnviHealthMicro Lab), Institute of Environmental Health (ISAMB), Faculty of Medicine, Universidade de Lisboa (ULisboa), 1649-028 Lisboa, Portugal; (G.M.); (J.F.R.)
| | - João F. Ramalho
- Microbiology Research Laboratory on Environmental Health (EnviHealthMicro Lab), Institute of Environmental Health (ISAMB), Faculty of Medicine, Universidade de Lisboa (ULisboa), 1649-028 Lisboa, Portugal; (G.M.); (J.F.R.)
| | - Ana Bruschy-Fonseca
- Microbiology Laboratory, Clinical Pathology Department, Centro Hospitalar Universitário Lisboa Norte, 1649-035 Lisboa, Portugal; (A.B.-F.); (L.L.); (J.M.-C.)
| | - Luís Lito
- Microbiology Laboratory, Clinical Pathology Department, Centro Hospitalar Universitário Lisboa Norte, 1649-035 Lisboa, Portugal; (A.B.-F.); (L.L.); (J.M.-C.)
| | - Aida Duarte
- Faculty of Pharmacy, Universidade de Lisboa (ULisboa), 1649-033 Lisboa, Portugal;
- Egas Moniz Interdisciplinary Research Center, Egas Moniz University Institute, 2829-511 Monte da Caparica, Portugal
| | - José Melo-Cristino
- Microbiology Laboratory, Clinical Pathology Department, Centro Hospitalar Universitário Lisboa Norte, 1649-035 Lisboa, Portugal; (A.B.-F.); (L.L.); (J.M.-C.)
- Institute of Microbiology, Faculty of Medicine, Universidade de Lisboa (ULisboa), 1649-028 Lisboa, Portugal
| | - Cátia Caneiras
- Microbiology Research Laboratory on Environmental Health (EnviHealthMicro Lab), Institute of Environmental Health (ISAMB), Faculty of Medicine, Universidade de Lisboa (ULisboa), 1649-028 Lisboa, Portugal; (G.M.); (J.F.R.)
- Faculty of Pharmacy, Universidade de Lisboa (ULisboa), 1649-033 Lisboa, Portugal;
- Institute of Preventive Medicine and Public Health, Faculty of Medicine, Universidade de Lisboa (ULisboa), 1649-028 Lisboa, Portugal
- Correspondence:
| |
Collapse
|
4
|
Arato V, Raso MM, Gasperini G, Berlanda Scorza F, Micoli F. Prophylaxis and Treatment against Klebsiella pneumoniae: Current Insights on This Emerging Anti-Microbial Resistant Global Threat. Int J Mol Sci 2021; 22:4042. [PMID: 33919847 PMCID: PMC8070759 DOI: 10.3390/ijms22084042] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/06/2021] [Accepted: 04/12/2021] [Indexed: 02/07/2023] Open
Abstract
Klebsiella pneumoniae (Kp) is an opportunistic pathogen and the leading cause of healthcare-associated infections, mostly affecting subjects with compromised immune systems or suffering from concurrent bacterial infections. However, the dramatic increase in hypervirulent strains and the emergence of new multidrug-resistant clones resulted in Kp occurrence among previously healthy people and in increased morbidity and mortality, including neonatal sepsis and death across low- and middle-income countries. As a consequence, carbapenem-resistant and extended spectrum β-lactamase-producing Kp have been prioritized as a critical anti-microbial resistance threat by the World Health Organization and this has renewed the interest of the scientific community in developing a vaccine as well as treatments alternative to the now ineffective antibiotics. Capsule polysaccharide is the most important virulence factor of Kp and plays major roles in the pathogenesis but its high variability (more than 100 different types have been reported) makes the identification of a universal treatment or prevention strategy very challenging. However, less variable virulence factors such as the O-Antigen, outer membrane proteins as fimbriae and siderophores might also be key players in the fight against Kp infections. Here, we review elements of the current status of the epidemiology and the molecular pathogenesis of Kp and explore specific bacterial antigens as potential targets for both prophylactic and therapeutic solutions.
Collapse
Affiliation(s)
| | | | | | | | - Francesca Micoli
- GSK Vaccines Institute for Global Health (GVGH) S.r.l., via Fiorentina 1, 53100 Siena, Italy; (V.A.); (M.M.R.); (G.G.); (F.B.S.)
| |
Collapse
|
5
|
Confronting Ceftolozane-Tazobactam Susceptibility in Multidrug-Resistant Enterobacterales Isolates and Whole-Genome Sequencing Results (STEP Study). Int J Antimicrob Agents 2020; 57:106259. [PMID: 33310115 DOI: 10.1016/j.ijantimicag.2020.106259] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 10/05/2020] [Accepted: 11/28/2020] [Indexed: 01/04/2023]
Abstract
Ceftolozane-tazobactam (C/T) is frequently used for infections caused by multidrug-resistant (MDR)-Enterobacterales isolates. Whole-genome sequencing (WGS, Illumina-Hiseq 4000/NovaSeq 6000, OGC, UK) was used to study the population structure, the resistome and the virulome of C/T-susceptible and -resistant MDR Escherichia spp. (n=30) and Klebsiella spp. (n=78) isolates, recovered from lower respiratory, intra-abdominal and urinary tract infections of ICU patients from 11 Portuguese Hospitals (STEP study, 2017-2018). Minimum inhibitory concentrations (MICs) were determined (ISO-broth microdilution, breakpoints EUCAST-2020). In Escherichia spp., a weak concordance between the phenotypic and the WGS method (P=0.051) was observed in the carbapenemase detection (3/30) [blaVIM-2 (2/3), blaKPC-3 (1/3)]; VIM-2-Escherichia coli isolates were C/T-susceptible and only the KPC-3-Escherichia marmotae producer showed C/T-resistance. Overall, CTX-M-15-E. coli-ST131-O25:H4-H30-Rx (11/30) was the most frequent subclone, followed by CTX-M-27-E. coli-ST131-O25:H4-H30 (4/4). Moreover, a wide resistome and virulome were detected in all E. coli isolates. Among Klebsiella spp. isolates [K. pneumoniae (67/78), K. aerogenes (7/78), K. oxytoca (2/78), K. variicola (2/78)], concordance (P<0.001) was observed between the phenotypic and the genomic carbapenemase detection (21/78) [blaKPC-3 (14/21), blaOXA-48 (3/21), blaOXA-181 (3/21)]. A high correlation between C/T-resistance and carbapenemase detection was established (P<0.05). Overall, a high clonal diversity was observed, mainly in KPC-3-producing K. pneumoniae isolates. An extensive resistome was detected in Klebsiella spp. isolates, whereas virulence determinants were mostly identified in carbapenemase producers (P<0.001). WGS is a powerful tool for typing characterization and microbiological study of MDR-Enterobacterales pathogens. Furthermore, carbapenemase genes are associated with C/T-resistance in Klebsiella spp., but other mechanisms might also be involved.
Collapse
|
6
|
Sivaramakrishnan A, Mack D, El-Mugamar H, Jacques J, Paget S, Phee L, Carter Y. Epidemiology and control measures of an OXA-48-producing Enterobacteriaceae hospital outbreak. Infect Prev Pract 2020; 2:100021. [PMID: 34368707 PMCID: PMC8336046 DOI: 10.1016/j.infpip.2019.100021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 08/29/2019] [Indexed: 11/28/2022] Open
Abstract
Carbapenemase-producing Enterobacteriaceae (CPE) are a significant challenge to healthcare and infection prevention and control teams. In the UK, OXA-48-like carbapenemases are frequently reported. We describe an outbreak of OXA-48-like producing Enterobacteriaceae and the control measures that proved effective in containing further spread. Aim To describe epidemiologic and laboratory features of outbreak and highlight key control interventions. Findings Following the introduction of an increased sensitivity CPE screening protocol, OXA-48-like CPE were identified in screening and clinical samples from 96 patients across five hospital wards between November 2017 and July 2018. Klebsiella pneumoniae and Enterobacter cloacae were the most frequently isolated organisms, although a range of OXA-48-like positive organisms were identified. The outbreak was contained utilising certain key interventions, including the modification of laboratory screening processes, engagement of hospital senior management, clear and frequent communication and a strong ‘ward presence’ by the infection prevention and control team (IPCT). Conclusion Our report describes how a change in laboratory CPE screening process unmasked a CPE outbreak. The range of bacterial species harbouring the OXA-48-like mechanism suggested plasmid-mediated transfer of resistance. The timely implementation of interventions using a clinical, ‘ward-based’ approach to infection prevention and control highlights the importance of behavioural change in infection control interventions and enabled the termination of a large outbreak without recourse to environmental sampling, major remedial construction work or extensive molecular strain or plasmid typing.
Collapse
Affiliation(s)
- Anand Sivaramakrishnan
- Department of Microbiology, Barnet and Chase Farm Hospitals Royal Free London NHS Foundation Trust Barnet Hospital, Wellhouse Lane EN5 3DJ, UK
| | - Damien Mack
- Department of Microbiology, Royal Free Hospital, Royal Free London NHS Foundation Trust, Pond Street NW3 2QG, UK
| | - Husam El-Mugamar
- Department of Microbiology, Barnet and Chase Farm Hospitals Royal Free London NHS Foundation Trust Barnet Hospital, Wellhouse Lane EN5 3DJ, UK
| | - Judy Jacques
- Infection Prevention and Control Team, Royal Free London NHS Foundation Trust, Barnet Hospital, Wellhouse Lane EN5 3DJ, UK
| | - Stephanie Paget
- Department of Microbiology, Barnet and Chase Farm Hospitals Royal Free London NHS Foundation Trust Barnet Hospital, Wellhouse Lane EN5 3DJ, UK
| | - Lynette Phee
- Department of Microbiology, Barnet and Chase Farm Hospitals Royal Free London NHS Foundation Trust Barnet Hospital, Wellhouse Lane EN5 3DJ, UK
| | - Yvonne Carter
- Infection Prevention and Control Team, Royal Free London NHS Foundation Trust, Barnet Hospital, Wellhouse Lane EN5 3DJ, UK
| |
Collapse
|
7
|
Fursova NK, Astashkin EI, Gabrielyan NI, Novikova TS, Fedyukina GN, Kubanova MK, Esenova NM, Sharapchenko SO, Volozhantsev NV. Emergence of Five Genetic Lines ST395 NDM-1, ST13 OXA-48, ST3346 OXA-48, ST39 CTX-M-14, and Novel ST3551 OXA-48 of Multidrug-Resistant Clinical Klebsiella pneumoniae in Russia. Microb Drug Resist 2020; 26:924-933. [PMID: 32155384 DOI: 10.1089/mdr.2019.0289] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Aims: The objective of this study was phenotypic and genotypic characterization of antibacterial-resistant Klebsiella pneumoniae clinical strains isolated in Moscow Transplantology Intensive Care Unit in 2017-2019. Results: Major strains among K. pneumoniae (n = 63) isolated from 30 patients were recognized as extensive drug-resistant (n = 55) pathogens, and remaining strains were recognized as multidrug-resistant (n = 8) pathogens. The beta-lactamase genes blaSHV-1,-2a,-11,-27,-67,-187 (n = 63), blaCTX-M-14,-15 (n = 61), blaTEM-1 (n = 54), blaOXA-48 (n = 52), and blaNDM-1 (n = 2), as well as class 1 integrons (n = 19) carried gene cassette arrays aacA4 (n = 2), dfrA1-orfC (n = 6), aadB-aadA1 (n = 9), dfrA15-aadA1 (n = 3), and dfrA12-orfF-aadA2 (n = 1) were identified in the strains. All strains carried four virulence genes: wabG, fimH, uge, and allS, but two strains had additionally kfu gene. Six known sequence types (STs) of K. pneumoniae ST395 (n = 44), ST377 (n = 3), ST307 (n = 4), ST13 (n = 2), ST39 (n = 2), ST3346 (n = 1), and a novel sequence-type ST3551 (n = 7) were identified. Phylogenetic analysis showed that ST3551 belonged to the cluster of clonal group CG147, and the remaining six STs to the another cluster consisting of four subgroups. The emergence of K. pneumoniae genetic lines carrying epidemiologically significant beta-lactamase genes ST395NDM-1, ST13OXA-48, ST3346OXA-48/CTX-M-14, ST3551OXA-48, and ST39CTX-M-14 was the first case of detection in Russia. Conclusion: The emergence of novel carbapenemase-producing K. pneumoniae genetic lines in Russia highlights the global negative tendency of multidrug-resistant pathogens spread in high-technological medical centers.
Collapse
Affiliation(s)
- Nadezhda K Fursova
- State Research Center for Applied Microbiology and Biotechnology, Obolensk, Russia
| | - Evgeny I Astashkin
- State Research Center for Applied Microbiology and Biotechnology, Obolensk, Russia
| | - Nina I Gabrielyan
- Academician V.I. Shumakov Federal Research Center of Transplantology and Artificial Organs, Moscow, Russia
| | - Tatiana S Novikova
- State Research Center for Applied Microbiology and Biotechnology, Obolensk, Russia
| | - Galina N Fedyukina
- State Research Center for Applied Microbiology and Biotechnology, Obolensk, Russia
| | - Madina Kh Kubanova
- Academician V.I. Shumakov Federal Research Center of Transplantology and Artificial Organs, Moscow, Russia
| | - Nadezhda M Esenova
- Academician V.I. Shumakov Federal Research Center of Transplantology and Artificial Organs, Moscow, Russia
| | - Sofia O Sharapchenko
- Academician V.I. Shumakov Federal Research Center of Transplantology and Artificial Organs, Moscow, Russia
| | | |
Collapse
|
8
|
Abstract
Surveillance studies have shown that OXA-48-like carbapenemases are the most common carbapenemases in Enterobacterales in certain regions of the world and are being introduced on a regular basis into regions of nonendemicity, where they are responsible for nosocomial outbreaks. OXA-48, OXA-181, OXA-232, OXA-204, OXA-162, and OXA-244, in that order, are the most common enzymes identified among the OXA-48-like carbapenemase group. OXA-48 is associated with different Tn1999 variants on IncL plasmids and is endemic in North Africa and the Middle East. OXA-162 and OXA-244 are derivatives of OXA-48 and are present in Europe. OXA-181 and OXA-232 are associated with ISEcp1, Tn2013 on ColE2, and IncX3 types of plasmids and are endemic in the Indian subcontinent (e.g., India, Bangladesh, Pakistan, and Sri Lanka) and certain sub-Saharan African countries. Overall, clonal dissemination plays a minor role in the spread of OXA-48-like carbapenemases, but certain high-risk clones (e.g., Klebsiella pneumoniae sequence type 147 [ST147], ST307, ST15, and ST14 and Escherichia coli ST38 and ST410) have been associated with the global dispersion of OXA-48, OXA-181, OXA-232, and OXA-204. Chromosomal integration of bla OXA-48 within Tn6237 occurred among E. coli ST38 isolates, especially in the United Kingdom. The detection of Enterobacterales with OXA-48-like enzymes using phenotypic methods has improved recently but remains challenging for clinical laboratories in regions of nonendemicity. Identification of the specific type of OXA-48-like enzyme requires sequencing of the corresponding genes. Bacteria (especially K. pneumoniae and E. coli) with bla OXA-48, bla OXA-181, and bla OXA-232 are emerging in different parts of the world and are most likely underreported due to problems with the laboratory detection of these enzymes. The medical community should be aware of the looming threat that is posed by bacteria with OXA-48-like carbapenemases.
Collapse
|
9
|
van Loon K, Voor In 't Holt AF, Vos MC. A Systematic Review and Meta-analyses of the Clinical Epidemiology of Carbapenem-Resistant Enterobacteriaceae. Antimicrob Agents Chemother 2018; 62:e01730-17. [PMID: 29038269 PMCID: PMC5740327 DOI: 10.1128/aac.01730-17] [Citation(s) in RCA: 146] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 09/29/2017] [Indexed: 01/23/2023] Open
Abstract
Carbapenem-resistant Enterobacteriaceae (CRE) are major health care-associated pathogens and responsible for hospital outbreaks worldwide. To prevent a further increase in CRE infections and to improve infection prevention strategies, it is important to summarize the current knowledge about CRE infection prevention in hospital settings. This systematic review aimed to identify risk factors for CRE acquisition among hospitalized patients. In addition, we summarized the environmental sources/reservoirs and the most successful infection prevention strategies related to CRE. A total of 3,983 potentially relevant articles were identified and screened. Finally, we included 162 studies in the systematic review, of which 69 studies regarding risk factors for CRE acquisition were included in the random-effects meta-analysis studies. The meta-analyses regarding risk factors for CRE acquisition showed that the use of medical devices generated the highest pooled estimate (odds ratio [OR] = 5.09; 95% confidence interval [CI] = 3.38 to 7.67), followed by carbapenem use (OR = 4.71; 95% CI = 3.54 to 6.26). To control hospital outbreaks, bundled interventions, including the use of barrier/contact precautions for patients colonized or infected with CRE, are needed. In addition, it is necessary to optimize the therapeutic approach, which is an important message to infectious disease specialists, who need to be actively involved in a timely manner in the treatment of patients with known CRE infections or suspected carriers of CRE.
Collapse
Affiliation(s)
- Karlijn van Loon
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Anne F Voor In 't Holt
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Margreet C Vos
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
10
|
Bachiri T, Bakour S, Lalaoui R, Belkebla N, Allouache M, Rolain JM, Touati A. Occurrence of Carbapenemase-Producing Enterobacteriaceae Isolates in the Wildlife: First Report of OXA-48 in Wild Boars in Algeria. Microb Drug Resist 2017; 24:337-345. [PMID: 28799835 DOI: 10.1089/mdr.2016.0323] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The aim of the present study was to screen for the presence of carbapenemase-producing Enterobacteriaceae (CPE) isolates from wild boars and Barbary macaques in Algeria. Fecal samples were collected from wild boars (n = 168) and Barbary macaques (n = 212), in Bejaia, Algeria, between September 2014 and April 2016. The isolates were identified and antimicrobial susceptibility was determined. Carbapenem resistance determinants were studied using PCR and sequencing, while clonal relatedness was performed using multilocus sequence typing (MLST). PCR was used to investigate certain virulence genes. Three CPE isolates from three different samples (1.8%) recovered from wild boars were identified as Escherichia coli (two isolates) and Klebsiella pneumoniae (one isolate). These isolates were resistant to amoxicillin, amoxicillin-clavulanate, tobramycin, ertapenem, and meropenem. The results of PCR and sequencing analysis showed that all three isolates produced the OXA-48 enzyme. The MLST showed that the two E. coli isolates were assigned to the same sequence type, ST635, and belonged to phylogroup A, whereas K. pneumoniae strain belonged to ST13. The K. pneumoniae strain was positive for multiple virulence factors, whereas no virulence determinants were found in E. coli isolates. This is the first report of OXA-48-producing Enterobacteriaceae in wild animals from Algeria and Africa.
Collapse
Affiliation(s)
- Taous Bachiri
- 1 Laboratoire d'Ecologie Microbienne, FSNV, Université de Bejaia , Bejaia, Algeria .,2 Unité de Recherche sur les Maladies Infectieuses et Tropicales Émergentes (URMITE), UM 63, CNRS 7278, IRD 198, INSERM 1095, IHU Méditerranée Infection, Faculté de Médecine et de Pharmacie, Aix-Marseille-Université , Marseille, France
| | - Sofiane Bakour
- 2 Unité de Recherche sur les Maladies Infectieuses et Tropicales Émergentes (URMITE), UM 63, CNRS 7278, IRD 198, INSERM 1095, IHU Méditerranée Infection, Faculté de Médecine et de Pharmacie, Aix-Marseille-Université , Marseille, France
| | - Rym Lalaoui
- 2 Unité de Recherche sur les Maladies Infectieuses et Tropicales Émergentes (URMITE), UM 63, CNRS 7278, IRD 198, INSERM 1095, IHU Méditerranée Infection, Faculté de Médecine et de Pharmacie, Aix-Marseille-Université , Marseille, France
| | - Nadia Belkebla
- 1 Laboratoire d'Ecologie Microbienne, FSNV, Université de Bejaia , Bejaia, Algeria
| | - Meriem Allouache
- 1 Laboratoire d'Ecologie Microbienne, FSNV, Université de Bejaia , Bejaia, Algeria
| | - Jean Marc Rolain
- 2 Unité de Recherche sur les Maladies Infectieuses et Tropicales Émergentes (URMITE), UM 63, CNRS 7278, IRD 198, INSERM 1095, IHU Méditerranée Infection, Faculté de Médecine et de Pharmacie, Aix-Marseille-Université , Marseille, France
| | - Abdelaziz Touati
- 1 Laboratoire d'Ecologie Microbienne, FSNV, Université de Bejaia , Bejaia, Algeria
| |
Collapse
|
11
|
Chen W, Li B, Li S, Ou YW, Ou Q. Effects of Scutellaria Baicalensis on Activity and Biofilm Formation of Klebsiella Pneumoniae. ACTA ACUST UNITED AC 2017; 31:180-184. [PMID: 27733226 DOI: 10.1016/s1001-9294(16)30048-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Objective To explore the effects of Scutellaria baicalensis on activity and biofilm formation of Klebsiella pneumonia (Kp).Methods The broth and agar dilution Methods were carried out to determine minimum inhibitory concentration and minimum bactericidal concentration of Scutellaria baicalensis for TW518. VITEK-32 system was used to assay TW518 susceptibility to antibiotics. Kp biofilms were formed in vitro and stained with BacLight Live/Dead stain. The class integron geneⅠ1 mRNA expression was analyzed with RT-PCR.Results The minimum inhibitory concentration of Scutellaria baicalensis on TW518 identified as a Kp colony was 32 mg/ml, and minimum bactericidal concentration was 64 mg/ml. Scutellaria baicalensis and broad-spectrum penicillin, cephalosporin, quinolones, or beta-lactamase had synergistic bactericidal effects. Biofilm formation activity of Kp treated with Scutellaria baicalensis was significantly lower than that of the control group. And class integron geneⅠ1 mRNA expression of TW518 was significantly inhibited by Scutellaria baicalensis.Conclusions Scutellaria baicalensis has sterilization effect on Kp, and Scutellaria baicalensis could effectively inhibit Kp biofilm formation with prolonged treatment. Scutellaria baicalensis might inhibit Kp biofilm formation through down-regulating integron geneⅠ1 expression.
Collapse
Affiliation(s)
- Wei Chen
- The First School of Clinical Medicine,Hubei University of Medicine, Shiyan City, Hubei 442000, China
| | - Bei Li
- Department of Medical Microbiology, Hubei University of Medicine, Shiyan City, Hubei 442000, China
| | - Shuai Li
- The First School of Clinical Medicine,Hubei University of Medicine, Shiyan City, Hubei 442000, China
| | - Yi-Wen Ou
- The First School of Clinical Medicine,Hubei University of Medicine, Shiyan City, Hubei 442000, China
| | - Qin Ou
- Department of Medical Microbiology, Hubei University of Medicine, Shiyan City, Hubei 442000, China
| |
Collapse
|
12
|
Kim DK, Kim HS, Pinto N, Jeon J, D'Souza R, Kim MS, Choi JY, Yong D, Jeong SH, Lee K. Xpert CARBA-R Assay for the Detection of Carbapenemase-Producing Organisms in Intensive Care Unit Patients of a Korean Tertiary Care Hospital. Ann Lab Med 2017; 36:162-5. [PMID: 26709264 PMCID: PMC4713850 DOI: 10.3343/alm.2016.36.2.162] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 09/09/2015] [Accepted: 12/01/2015] [Indexed: 02/05/2023] Open
Abstract
Carbapenemase-producing organisms (CPO) are rapidly disseminating worldwide, and their presence in tertiary care hospitals poses a significant threat to the management of nosocomial infections. There is a need to control CPO, especially in intensive care unit (ICU) patients, because these organisms are resistant to most β-lactam antibiotics and are easily transmitted. At present, the identification of CPO is time-consuming; hence, this study focused on the use of the Xpert CARBA-R assay (Cepheid, USA) to determine intestinal colonization rates of CPO in patients admitted to the ICU of a tertiary care hospital in Korea. Forty clinical stool samples were collected and inoculated both in a CARBA-R cartridge and in conventional culture plates. The CARBA-R assay required only ~one hour to screen CPO, while the time required for conventional culture was over three days. We also found that the prevalences of intestinal colonization by carbapenem-resistant organisms and Enterobacteriaceae were 17.5% (7 out of 40) and 7.5% (3 out of 40), respectively. Among the colonizing strains, three that contained carbapenemase, including Klebsiella pneumonia carbapenemase (KPC), and imipenem (IMP) and Verona integron-mediated metallo-β-lactamase (VIM) were found. With its convenience, the Xpert CARBA-R assay can be included in CPO surveillance strategies.
Collapse
Affiliation(s)
- Do-Kyun Kim
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, Korea
| | - Hyoung Sun Kim
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, Korea
| | - Naina Pinto
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, Korea
| | - Jongsoo Jeon
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, Korea
| | - Roshan D'Souza
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, Korea
| | - Myung Sook Kim
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, Korea
| | - Jun Yong Choi
- Department of Internal Medicine and AIDS Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Dongeun Yong
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, Korea.
| | - Seok Hoon Jeong
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, Korea
| | - Kyungwon Lee
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
13
|
French CE, Coope C, Conway L, Higgins JPT, McCulloch J, Okoli G, Patel BC, Oliver I. Control of carbapenemase-producing Enterobacteriaceae outbreaks in acute settings: an evidence review. J Hosp Infect 2016; 95:3-45. [PMID: 27890334 DOI: 10.1016/j.jhin.2016.10.006] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 10/08/2016] [Indexed: 12/31/2022]
Abstract
BACKGROUND In recent years, infections with carbapenemase-producing Enterobacteriaceae (CPE) have been increasing globally and present a major public health challenge. AIM To review the international literature: (i) to describe CPE outbreaks in acute hospital settings globally; and (ii) to identify the control measures used during these outbreaks and report on their effectiveness. METHODS A systematic search of MEDLINE and EMBASE databases, abstract lists for key conferences and reference lists of key reviews was undertaken, and information on unpublished outbreaks was sought for 2000-2015. Where relevant, risk of bias was assessed using the Newcastle-Ottawa scale. A narrative synthesis of the evidence was conducted. FINDINGS Ninety-eight outbreaks were eligible. These occurred worldwide, with 53 reports from Europe. The number of cases (CPE infection or colonization) involved in outbreaks varied widely, from two to 803. In the vast majority of outbreaks, multi-component infection control measures were used, commonly including: patient screening; contact precautions (e.g. gowns, gloves); handwashing interventions; staff education or monitoring; enhanced environmental cleaning/decontamination; cohorting of patients and/or staff; and patient isolation. Seven studies were identified as providing the best-available evidence on the effectiveness of control measures. These demonstrated that CPE outbreaks can be controlled successfully using a range of appropriate, commonly used, infection control measures. However, risk of bias was considered relatively high for these studies. CONCLUSION The findings indicate that CPE outbreaks can be controlled using combinations of existing measures. However, the quality of the evidence base is weak and further high-quality research is needed, particularly on the effectiveness of individual infection control measures.
Collapse
Affiliation(s)
- C E French
- University of Bristol, Bristol, UK; NIHR Health Protection Research Unit in Evaluation of Interventions at University of Bristol, Bristol, UK
| | - C Coope
- NIHR Health Protection Research Unit in Evaluation of Interventions at University of Bristol, Bristol, UK; Public Health England, Bristol, UK.
| | - L Conway
- NIHR Health Protection Research Unit in Evaluation of Interventions at University of Bristol, Bristol, UK; Public Health England, Bristol, UK
| | - J P T Higgins
- University of Bristol, Bristol, UK; NIHR Health Protection Research Unit in Evaluation of Interventions at University of Bristol, Bristol, UK
| | | | - G Okoli
- University of Bristol, Bristol, UK
| | | | - I Oliver
- NIHR Health Protection Research Unit in Evaluation of Interventions at University of Bristol, Bristol, UK; Public Health England, Bristol, UK
| |
Collapse
|
14
|
Lee CR, Lee JH, Park KS, Kim YB, Jeong BC, Lee SH. Global Dissemination of Carbapenemase-Producing Klebsiella pneumoniae: Epidemiology, Genetic Context, Treatment Options, and Detection Methods. Front Microbiol 2016; 7:895. [PMID: 27379038 PMCID: PMC4904035 DOI: 10.3389/fmicb.2016.00895] [Citation(s) in RCA: 467] [Impact Index Per Article: 51.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 05/26/2016] [Indexed: 01/08/2023] Open
Abstract
The emergence of carbapenem-resistant Gram-negative pathogens poses a serious threat to public health worldwide. In particular, the increasing prevalence of carbapenem-resistant Klebsiella pneumoniae is a major source of concern. K. pneumoniae carbapenemases (KPCs) and carbapenemases of the oxacillinase-48 (OXA-48) type have been reported worldwide. New Delhi metallo-β-lactamase (NDM) carbapenemases were originally identified in Sweden in 2008 and have spread worldwide rapidly. In this review, we summarize the epidemiology of K. pneumoniae producing three carbapenemases (KPCs, NDMs, and OXA-48-like). Although the prevalence of each resistant strain varies geographically, K. pneumoniae producing KPCs, NDMs, and OXA-48-like carbapenemases have become rapidly disseminated. In addition, we used recently published molecular and genetic studies to analyze the mechanisms by which these three carbapenemases, and major K. pneumoniae clones, such as ST258 and ST11, have become globally prevalent. Because carbapenemase-producing K. pneumoniae are often resistant to most β-lactam antibiotics and many other non-β-lactam molecules, the therapeutic options available to treat infection with these strains are limited to colistin, polymyxin B, fosfomycin, tigecycline, and selected aminoglycosides. Although, combination therapy has been recommended for the treatment of severe carbapenemase-producing K. pneumoniae infections, the clinical evidence for this strategy is currently limited, and more accurate randomized controlled trials will be required to establish the most effective treatment regimen. Moreover, because rapid and accurate identification of the carbapenemase type found in K. pneumoniae may be difficult to achieve through phenotypic antibiotic susceptibility tests, novel molecular detection techniques are currently being developed.
Collapse
Affiliation(s)
- Chang-Ro Lee
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University Yongin, South Korea
| | - Jung Hun Lee
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University Yongin, South Korea
| | - Kwang Seung Park
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University Yongin, South Korea
| | - Young Bae Kim
- Division of STEM, North Shore Community College, Danvers MA, USA
| | - Byeong Chul Jeong
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University Yongin, South Korea
| | - Sang Hee Lee
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University Yongin, South Korea
| |
Collapse
|
15
|
Boran N, Vivian B, Logan C, Grogan J. Formation of a carbapenemase resistance detection algorithm for use in the routine laboratory. Br J Biomed Sci 2016; 72:12-22. [DOI: 10.1080/09674845.2015.11666790] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
16
|
Albiger B, Glasner C, Struelens MJ, Grundmann H, Monnet DL. Carbapenemase-producing Enterobacteriaceae in Europe: assessment by national experts from 38 countries, May 2015. Euro Surveill 2015; 20:30062. [DOI: 10.2807/1560-7917.es.2015.20.45.30062] [Citation(s) in RCA: 290] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 11/06/2015] [Indexed: 01/01/2023] Open
Abstract
In 2012, the European Centre for Disease Prevention and Control (ECDC) launched the ‘European survey of carbapenemase-producing Enterobacteriaceae (EuSCAPE)’ project to gain insights into the occurrence and epidemiology of carbapenemase-producing Enterobacteriaceae (CPE), to increase the awareness of the spread of CPE, and to build and enhance the laboratory capacity for diagnosis and surveillance of CPE in Europe. Data collected through a post-EuSCAPE feedback questionnaire in May 2015 documented improvement compared with 2013 in capacity and ability to detect CPE and identify the different carbapenemases genes in the 38 participating countries, thus contributing to their awareness of and knowledge about the spread of CPE. Over the last two years, the epidemiological situation of CPE worsened, in particular with the rapid spread of carbapenem-hydrolysing oxacillinase-48 (OXA-48)- and New Delhi metallo-beta-lactamase (NDM)-producing Enterobacteriaceae. In 2015, 13/38 countries reported inter-regional spread of or an endemic situation for CPE, compared with 6/38 in 2013. Only three countries replied that they had not identified one single case of CPE. The ongoing spread of CPE represents an increasing threat to patient safety in European hospitals, and a majority of countries reacted by establishing national CPE surveillances systems and issuing guidance on control measures for health professionals. However, 14 countries still lacked specific national guidelines for prevention and control of CPE in mid-2015.
Collapse
Affiliation(s)
- Barbara Albiger
- European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden
| | - Corinna Glasner
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Current affiliation: The Centre for Genomic Pathogen Surveillance (cGPS), Wellcome Genome Campus, Hinxton, Cambridgeshire, United Kingdom
| | - Marc J. Struelens
- European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden
| | - Hajo Grundmann
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Dominique L. Monnet
- European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden
| | | |
Collapse
|
17
|
Cuzon G, Bentchouala C, Vogel A, Héry M, Lezzar A, Smati F, Dortet L, Naas T. First outbreak of OXA-48-positive carbapenem-resistant Klebsiella pneumoniae isolates in Constantine, Algeria. Int J Antimicrob Agents 2015; 46:725-7. [PMID: 26453148 DOI: 10.1016/j.ijantimicag.2015.08.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 08/26/2015] [Accepted: 08/31/2015] [Indexed: 11/18/2022]
Affiliation(s)
- Gaelle Cuzon
- Bactériologie-Hygiene Unit, AP-HP, Bicêtre Hospital, Le Kremlin-Bicêtre, France; EA7361 'Structure, dynamic, function and expression of broad-spectrum β-lactamases', Paris-Sud University, LabEx LERMIT, Faculty of Medicine, Paris, France; French National Reference Centre for Antibiotic Resistance: Carbapenemase-producing Enterobacteriaceae, Le Kremlin-Bicêtre, France
| | - Chafia Bentchouala
- Service de Microbiologie, Centre Hospitalier Universitaire, Constantine, Algeria
| | - Anais Vogel
- EA7361 'Structure, dynamic, function and expression of broad-spectrum β-lactamases', Paris-Sud University, LabEx LERMIT, Faculty of Medicine, Paris, France
| | - Mélanie Héry
- EA7361 'Structure, dynamic, function and expression of broad-spectrum β-lactamases', Paris-Sud University, LabEx LERMIT, Faculty of Medicine, Paris, France
| | - Abdesselam Lezzar
- Service de Microbiologie, Centre Hospitalier Universitaire, Constantine, Algeria
| | - Farida Smati
- Service de Microbiologie, Centre Hospitalier Universitaire, Constantine, Algeria
| | - Laurent Dortet
- Bactériologie-Hygiene Unit, AP-HP, Bicêtre Hospital, Le Kremlin-Bicêtre, France; EA7361 'Structure, dynamic, function and expression of broad-spectrum β-lactamases', Paris-Sud University, LabEx LERMIT, Faculty of Medicine, Paris, France; French National Reference Centre for Antibiotic Resistance: Carbapenemase-producing Enterobacteriaceae, Le Kremlin-Bicêtre, France
| | - Thierry Naas
- Bactériologie-Hygiene Unit, AP-HP, Bicêtre Hospital, Le Kremlin-Bicêtre, France; EA7361 'Structure, dynamic, function and expression of broad-spectrum β-lactamases', Paris-Sud University, LabEx LERMIT, Faculty of Medicine, Paris, France; French National Reference Centre for Antibiotic Resistance: Carbapenemase-producing Enterobacteriaceae, Le Kremlin-Bicêtre, France.
| |
Collapse
|
18
|
Otter JA. Journal Roundup. J Hosp Infect 2014; 87:249-50. [PMID: 25229104 PMCID: PMC7134409 DOI: 10.1016/j.jhin.2014.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|