1
|
Lane CR, Brett J, Schultz M, Gorrie CL, Stevens K, Cameron DRM, St George S, van Diemen A, Easton M, Stuart RL, Sait M, Peleg AY, Stewardson AJ, Cheng AC, Spelman DW, Waters MJ, Ballard SA, Sherry NL, Williamson DA, Romanes F, Sutton B, Kwong JC, Seemann T, Goncalves da Silva A, Stephens N, Howden BP. Search and Contain: Impact of an Integrated Genomic and Epidemiological Surveillance and Response Program for Control of Carbapenemase-producing Enterobacterales. Clin Infect Dis 2021; 73:e3912-e3920. [PMID: 32663248 PMCID: PMC8662772 DOI: 10.1093/cid/ciaa972] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 07/08/2020] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Multiresistant organisms (MROs) pose a critical threat to public health. Population-based programs for control of MROs such as carbapenemase-producing Enterobacterales (CPE) have emerged and evaluation is needed. We assessed the feasibility and impact of a statewide CPE surveillance and response program deployed across Victoria, Australia (population 6.5 million). METHODS A prospective multimodal intervention including active screening, carrier isolation, centralized case investigation, and comparative pathogen genomics was implemented. We analyzed trends in CPE incidence and clinical presentation, risk factors, and local transmission over the program's first 3 years (2016-2018). RESULTS CPE case ascertainment increased over the study period to 1.42 cases/100 000 population, linked to increased screening without a concomitant rise in active clinical infections (0.45-0.60 infections/100 000 population, P = .640). KPC-2 infection decreased from 0.29 infections/100 000 population prior to intervention to 0.03 infections/100 000 population in 2018 (P = .003). Comprehensive case investigation identified instances of overseas community acquisition. Median time between isolate referral and genomic and epidemiological assessment for local transmission was 11 days (IQR, 9-14). Prospective surveillance identified numerous small transmission networks (median, 2; range, 1-19 cases), predominantly IMP and KPC, with median pairwise distance of 8 (IQR, 4-13) single nucleotide polymorphisms; low diversity between clusters of the same sequence type suggested genomic cluster definitions alone are insufficient for targeted response. CONCLUSIONS We demonstrate the value of centralized CPE control programs to increase case ascertainment, resolve risk factors, and identify local transmission through prospective genomic and epidemiological surveillance; methodologies are transferable to low-prevalence settings and MROs globally.
Collapse
Affiliation(s)
- Courtney R Lane
- Microbiological Diagnostic Unit Public Health Laboratory, The University of Melbourne at the Peter Doherty Institute for Infection & Immunity, Melbourne, Victoria, Australia
- Department of Microbiology & Immunology, The University of Melbourne at the Peter Doherty Institute for Infection & Immunity, Melbourne, Victoria, Australia
| | - Judith Brett
- VICNISS Healthcare Associated Infection Surveillance Coordinating Centre, at the Peter Doherty Institute for Infection & Immunity, Melbourne, Victoria, Australia
| | - Mark Schultz
- Microbiological Diagnostic Unit Public Health Laboratory, The University of Melbourne at the Peter Doherty Institute for Infection & Immunity, Melbourne, Victoria, Australia
- Department of Microbiology & Immunology, The University of Melbourne at the Peter Doherty Institute for Infection & Immunity, Melbourne, Victoria, Australia
| | - Claire L Gorrie
- Microbiological Diagnostic Unit Public Health Laboratory, The University of Melbourne at the Peter Doherty Institute for Infection & Immunity, Melbourne, Victoria, Australia
- Department of Microbiology & Immunology, The University of Melbourne at the Peter Doherty Institute for Infection & Immunity, Melbourne, Victoria, Australia
| | - Kerrie Stevens
- Microbiological Diagnostic Unit Public Health Laboratory, The University of Melbourne at the Peter Doherty Institute for Infection & Immunity, Melbourne, Victoria, Australia
| | - Donna R M Cameron
- Microbiological Diagnostic Unit Public Health Laboratory, The University of Melbourne at the Peter Doherty Institute for Infection & Immunity, Melbourne, Victoria, Australia
- Department of Health and Human Services, Victorian Government, Melbourne, Victoria, Australia
| | - Siobhan St George
- Microbiological Diagnostic Unit Public Health Laboratory, The University of Melbourne at the Peter Doherty Institute for Infection & Immunity, Melbourne, Victoria, Australia
| | - Annaliese van Diemen
- Department of Health and Human Services, Victorian Government, Melbourne, Victoria, Australia
| | - Marion Easton
- Department of Health and Human Services, Victorian Government, Melbourne, Victoria, Australia
| | - Rhonda L Stuart
- Monash Infectious Diseases, Monash Health, Monash Medical Centre, Clayton, Victoria, Australia
| | - Michelle Sait
- Microbiological Diagnostic Unit Public Health Laboratory, The University of Melbourne at the Peter Doherty Institute for Infection & Immunity, Melbourne, Victoria, Australia
| | - Anton Y Peleg
- Department of Infectious Diseases, Alfred Hospital, and Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Andrew J Stewardson
- Department of Infectious Diseases, Alfred Hospital, and Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Allen C Cheng
- Department of Infectious Diseases, Alfred Hospital, and Central Clinical School, Monash University, Melbourne, Victoria, Australia
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Denis W Spelman
- Department of Infectious Diseases, Alfred Hospital, and Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Department of Microbiology, The Alfred Hospital, Melbourne, Victoria, Australia
| | - Mary Jo Waters
- Department of Microbiology, St Vincent’s Hospital Melbourne, Fitzroy, Victoria, Australia
| | - Susan A Ballard
- Microbiological Diagnostic Unit Public Health Laboratory, The University of Melbourne at the Peter Doherty Institute for Infection & Immunity, Melbourne, Victoria, Australia
| | - Norelle L Sherry
- Microbiological Diagnostic Unit Public Health Laboratory, The University of Melbourne at the Peter Doherty Institute for Infection & Immunity, Melbourne, Victoria, Australia
- Department of Microbiology & Immunology, The University of Melbourne at the Peter Doherty Institute for Infection & Immunity, Melbourne, Victoria, Australia
- Department of Infectious Diseases, Austin Health, Heidelberg, Victoria, Australia
| | - Deborah A Williamson
- Microbiological Diagnostic Unit Public Health Laboratory, The University of Melbourne at the Peter Doherty Institute for Infection & Immunity, Melbourne, Victoria, Australia
| | - Finn Romanes
- Department of Health and Human Services, Victorian Government, Melbourne, Victoria, Australia
| | - Brett Sutton
- Department of Health and Human Services, Victorian Government, Melbourne, Victoria, Australia
| | - Jason C Kwong
- Department of Microbiology & Immunology, The University of Melbourne at the Peter Doherty Institute for Infection & Immunity, Melbourne, Victoria, Australia
- Department of Infectious Diseases, Austin Health, Heidelberg, Victoria, Australia
| | - Torsten Seemann
- Department of Microbiology & Immunology, The University of Melbourne at the Peter Doherty Institute for Infection & Immunity, Melbourne, Victoria, Australia
| | - Anders Goncalves da Silva
- Microbiological Diagnostic Unit Public Health Laboratory, The University of Melbourne at the Peter Doherty Institute for Infection & Immunity, Melbourne, Victoria, Australia
- Department of Microbiology & Immunology, The University of Melbourne at the Peter Doherty Institute for Infection & Immunity, Melbourne, Victoria, Australia
| | - Nicola Stephens
- Department of Microbiology & Immunology, The University of Melbourne at the Peter Doherty Institute for Infection & Immunity, Melbourne, Victoria, Australia
- Department of Health and Human Services, Victorian Government, Melbourne, Victoria, Australia
- University of Tasmania, Hobart, Tasmania, Australia
| | - Benjamin P Howden
- Microbiological Diagnostic Unit Public Health Laboratory, The University of Melbourne at the Peter Doherty Institute for Infection & Immunity, Melbourne, Victoria, Australia
- Department of Microbiology & Immunology, The University of Melbourne at the Peter Doherty Institute for Infection & Immunity, Melbourne, Victoria, Australia
- Department of Infectious Diseases, Austin Health, Heidelberg, Victoria, Australia
| |
Collapse
|
2
|
Lee XJ, Stewardson AJ, Worth LJ, Graves N, Wozniak TM. Attributable Length of Stay, Mortality Risk, and Costs of Bacterial Health Care-Associated Infections in Australia: A Retrospective Case-cohort Study. Clin Infect Dis 2021; 72:e506-e514. [PMID: 32822465 PMCID: PMC8130032 DOI: 10.1093/cid/ciaa1228] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 08/17/2020] [Indexed: 12/17/2022] Open
Abstract
Background Unbiased estimates of the health and economic impacts of health care–associated infections (HAIs) are scarce and focus largely on patients with bloodstream infections (BSIs). We sought to estimate the hospital length of stay (LOS), mortality rate, and costs of HAIs and the differential effects on patients with an antimicrobial-resistant infection. Methods We conducted a multisite, retrospective case-cohort of all acute-care hospital admissions with a positive culture of 1 of the 5 organisms of interest (Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Staphylococcus aureus, or Enterococcus faecium) from 1 January 2012 through 30 December 2016. Data linkage was used to generate a data set of statewide hospital admissions and pathology data. Patients with bloodstream, urinary, or respiratory tract infections were included in the analysis and matched to a sample of uninfected patients. We used multistate survival models to generate LOS, and logistic regression to derive mortality estimates. Results We matched 20 390 cases to 75 635 uninfected control patients. The overall incidence of infections due to the 5 studied organisms was 116.9 cases per 100 000 patient days, with E. coli urinary tract infections (UTIs) contributing the largest proportion (51 cases per 100 000 patient days). The impact of a UTI on LOS was moderate across the 5 studied pathogens. Resistance significantly increased LOS for patients with third-generation cephalosporin-resistant K. pneumoniae BSIs (extra 4.6 days) and methicillin-resistant S. aureus BSIs (extra 2.9 days). Consequently, the health-care costs of these infections were higher, compared to corresponding drug-sensitive strains. Conclusions The health burden remains highest for BSIs; however, UTIs and respiratory tract infections contributed most to the health-care system expenditure.
Collapse
Affiliation(s)
- X J Lee
- Australian Centre for Health Services Innovation, Queensland University of Technology, Queensland, Australia
| | - A J Stewardson
- Department of Infectious Diseases, The Alfred and Central Clinical School.,Monash University, Victoria, Australia
| | - L J Worth
- Victorian Healthcare Associated Infection Surveillance System Coordinating Centre, Doherty Institute, Victoria, Australia.,National Centre for Infections in Cancer, Sir Peter MacCallum Department of Medicine, University of Melbourne, Victoria, Australia
| | - N Graves
- Duke University and the National University of Singapore Medical School, Singapore
| | - T M Wozniak
- Charles Darwin University, Menzies School of Health Research, Global & Tropical Health Division, Northern Territory, Australia
| |
Collapse
|