1
|
Kupczyk EK, Jakubietz RG, Paul MM, Schäfer S, Hölscher-Doht S. [A child's severe injury of the palm hand - challenges and opportunities]. HANDCHIR MIKROCHIR P 2024; 56:388-391. [PMID: 38857620 DOI: 10.1055/a-2234-0049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024] Open
Abstract
Die Versorgung kindlicher traumatischer Hand- und Fingerverletzungen stellt in der
Handchirurgie eine besondere Herausforderung dar. Da solch komplexe Verletzungen
vergleichsweise selten sind 1, gibt es im
Gegensatz zu vergleichbaren Verletzungsmustern beim Erwachsenen kein genauso
etabliertes und allgemeingültiges Nachbehandlungskonzept 2
3.
Zusätzlich muss das Kind als Individuum immer gemeinsam mit den Eltern auf die
nächsten Schritte vorbereitet werden 1
3
4.
Die klinische Untersuchung ist zudem aufgrund der altersabhängig eingeschränkten
Mitarbeit der jungen Patienten erschwert 1
3. Um bestmögliche Resultate zu
erreichen, sind besondere Fähigkeiten in der Kommunikation Voraussetzung 4. Speziell die kleine Anatomie stellt
zusätzlich hohe Anforderungen an die Fertigkeiten des Operateurs.
Collapse
Affiliation(s)
- Eva K Kupczyk
- Klinik und Poliklinik für Unfall-, Hand-, Plastische und Wiederherstellungschirurgie, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Rafael G Jakubietz
- Klinik und Poliklinik für Unfall-, Hand-, Plastische und Wiederherstellungschirurgie, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Mila M Paul
- Klinik und Poliklinik für Unfall-, Hand-, Plastische und Wiederherstellungschirurgie, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Susanne Schäfer
- Klinik und Poliklinik für Unfall-, Hand-, Plastische und Wiederherstellungschirurgie, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Stefanie Hölscher-Doht
- Klinik und Poliklinik für Unfall-, Hand-, Plastische und Wiederherstellungschirurgie, Universitätsklinikum Würzburg, Würzburg, Germany
| |
Collapse
|
2
|
Wong GC, Chung KC. Bioengineered Nerve Conduits and Wraps. Hand Clin 2024; 40:379-387. [PMID: 38972682 DOI: 10.1016/j.hcl.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
Peripheral nerve injuries are prevalent and their treatments present significant challenges. Among the various reconstructive options, nerve conduits and wraps are popular choices. Advances in bioengineering and regenerative medicine have led to the development of new biocompatible materials and implant designs that offer the potential for enhanced neural recovery. Cost, nerve injury type, and implant size must be considered when deciding on the ideal reconstructive option.
Collapse
Affiliation(s)
- Gordon C Wong
- University of Michigan Comprehensive Hand Center, Michigan Medicine, 1500 East Medical Center Drive, 2130 Taubman Center, SPC 5340, Ann Arbor, MI 48109, USA
| | - Kevin C Chung
- University of Michigan Comprehensive Hand Center, Michigan Medicine, 1500 East Medical Center Drive, 2130 Taubman Center, SPC 5340, Ann Arbor, MI 48109, USA.
| |
Collapse
|
3
|
McMorrow LA, Czarnecki P, Reid AJ, Tos P. Current perspectives on peripheral nerve repair and management of the nerve gap. J Hand Surg Eur Vol 2024; 49:698-711. [PMID: 38603601 DOI: 10.1177/17531934241242002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
From the first surgical repair of a nerve in the 6th century, progress in the field of peripheral nerve surgery has marched on; at first slowly but today at great pace. Whether performing primary neurorrhaphy or managing multiple large nerve defects, the modern nerve surgeon has an extensive range of tools, techniques and choices available to them. Continuous innovation in surgical equipment and technique has enabled the maturation of autografting as a gold standard for reconstruction and welcomed the era of nerve transfer techniques all while bioengineers have continued to add to our armamentarium with implantable devices, such as conduits and acellular allografts. We provide the reader a concise and up-to-date summary of the techniques available to them, and the evidence base for their use when managing nerve transection including current use and applicability of nerve transfer procedures.
Collapse
Affiliation(s)
- Liam A McMorrow
- Blond McIndoe Laboratories, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
- Department of Plastic Surgery & Burns, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Piotr Czarnecki
- Department of Traumatology, Orthopaedics and Hand Surgery, Poznań University of Medical Sciences, Poznań, Poland
| | - Adam J Reid
- Blond McIndoe Laboratories, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
- Department of Plastic Surgery & Burns, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Pierluigi Tos
- Azienda Socio Sanitaria Territoriale Gaetano Pini, Milan, Italy
| |
Collapse
|
4
|
Zhang Y, Hou N, Zhang J, Xie B, Liang J, Chang X, Wang K, Tang X. Treatment options for digital nerve injury: a systematic review and meta-analysis. J Orthop Surg Res 2023; 18:675. [PMID: 37700356 PMCID: PMC10496177 DOI: 10.1186/s13018-023-04076-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 08/04/2023] [Indexed: 09/14/2023] Open
Abstract
BACKGROUND Surgical treatment of finger nerve injury is common for hand trauma. However, there are various surgical options with different functional outcomes. The aims of this study are to compare the outcomes of various finger nerve surgeries and to identify factors associated with the postsurgical outcomes via a systematic review and meta-analysis. METHODS The literature related to digital nerve repairs were retrieved comprehensively by searching the online databases of PubMed from January 1, 1965, to August 31, 2021. Data extraction, assessment of bias risk and the quality evaluation were then performed. Meta-analysis was performed using the postoperative static 2-point discrimination (S2PD) value, moving 2-point discrimination (M2PD) value, and Semmes-Weinstein monofilament testing (SWMF) good rate, modified Highet classification of nerve recovery good rate. Statistical analysis was performed using the R (V.3.6.3) software. The random effects model was used for the analysis. A systematic review was also performed on the other influencing factors especially the type of injury and postoperative complications of digital nerve repair. RESULTS Sixty-six studies with 2446 cases were included in this study. The polyglycolic acid conduit group has the best S2PD value (6.71 mm), while the neurorrhaphy group has the best M2PD value (4.91 mm). End-to-side coaptation has the highest modified Highet's scoring (98%), and autologous nerve graft has the highest SWMF (91%). Age, the size of the gap, and the type of injury were factors that may affect recovery. The type of injury has an impact on the postoperative outcome of neurorrhaphy. Complications reported in the studies were mainly neuroma, cold sensitivity, paresthesia, postoperative infection, and pain. CONCLUSION Our study demonstrated that the results of surgical treatment of digital nerve injury are generally satisfactory; however, no nerve repair method has absolute advantages. When choosing a surgical approach to repair finger nerve injury, we must comprehensively consider various factors, especially the gap size of the nerve defect, and postoperative complications. Type of study/level of evidence Therapeutic IV.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, 116011 Liaoning China
- Department of Hand and Foot Surgery, Zibo Central Hospital, No. 54 Gongqingtuan West Road, Zibo, Shandong China
| | - Nianzong Hou
- Department of Hand and Foot Surgery, Zibo Central Hospital, No. 54 Gongqingtuan West Road, Zibo, Shandong China
- Center of Gallbladder Disease, Shanghai East Hospital, Institute of Gallstone Disease, School of Medicine, Tongji University, Shanghai, China
| | - Jian Zhang
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, 116011 Liaoning China
| | - Bing Xie
- Department of Hand and Foot Surgery, Zibo Central Hospital, No. 54 Gongqingtuan West Road, Zibo, Shandong China
| | - Jiahui Liang
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, 116011 Liaoning China
| | - Xiaohu Chang
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, 116011 Liaoning China
| | - Kai Wang
- Department of Critical Care Medicine, Zibo Central Hospital, No. 54 Gongqingtuan West Road, Zibo, Shandong China
| | - Xin Tang
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, 116011 Liaoning China
| |
Collapse
|
5
|
Isaacs J, Nydick JA, Means KR, Merrell GA, Ilyas A, Levin LS. A Multicenter Prospective Randomized Comparison of Conduits Versus Decellularized Nerve Allograft for Digital Nerve Repairs. J Hand Surg Am 2023; 48:904-913. [PMID: 37530686 DOI: 10.1016/j.jhsa.2023.05.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 05/06/2023] [Accepted: 05/24/2023] [Indexed: 08/03/2023]
Abstract
PURPOSE While there are advantages and disadvantages to both processed nerve allografts (PNA) and conduits, a large, well-controlled prospective study is needed to compare the efficacy and to delineate how each of these repair tools can be best applied to digital nerve injuries. We hypothesized that PNA digital nerve repairs would achieve superior functional recovery for longer length gaps compared with conduit-based repairs. METHODS Patients (aged 18-69 years) presenting with suspected acute or subacute (less than 24 weeks old) digital nerve injuries were recruited to prticipate at 20 medical centers across the United States. After stratification to short (5-14 mm) and long (15-25 mm) gap subgroups, the patients were randomized (1:1) to repair with either a commercially available PNA or collagen conduit. Baseline and outcomes assessments were obtained either before or immediately after surgery and planned at 3-, 6-, 9-, and 12-months after surgery. All assessors and patients were blinded to the treatment arm. RESULTS In total, 220 patients were enrolled, and 183 patients completed an acceptable last evaluable visit (at least 6 months and not more than 15 months postrepair). At last follow-up, for the short gap repair groups, average static two-point discrimination was 7.3 ± 2.8 mm for PNA and 7.5 ± 3.1 mm for conduit repairs. For the long gap group, average static two-point discrimination was significantly lower at 6.1 ± 3.3 mm for PNA compared with 7.5 ± 2.4 mm for conduit repairs. Normal sensation (American Society for Surgery of the Hand scale) was achieved in 40% of PNA long gap repairs, which was significantly more than the 18% observed in long conduit patients. Long gap conduits had more clinical failures (lack of protective sensation) than short gap conduits. CONCLUSIONS Although supporting similar levels of nerve regeneration for short gap length digital nerve repairs, PNA was clinically superior to conduits for long gap reconstructions. TYPE OF STUDY/LEVEL OF EVIDENCE Therapeutic I.
Collapse
Affiliation(s)
- Jonathan Isaacs
- Virginia Commonwealth University Medical Center, Richmond, VA.
| | | | | | | | | | - L Scott Levin
- University of Pennsylvania, Penn Medicine, Philadelphia, PA
| |
Collapse
|
6
|
Lin JS, Jain SA. Challenges in Nerve Repair and Reconstruction. Hand Clin 2023; 39:403-415. [PMID: 37453767 DOI: 10.1016/j.hcl.2023.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Peripheral nerve injuries may substantially impair a patient's function and quality of life. Despite appropriate treatment, outcomes often remain poor. Direct repair remains the standard of care when repair is possible without excessive tension. For larger nerve defects, nerve autografting is the gold standard. However, a considerable challenge is donor site morbidity. Processed nerve allografts and conduits are other options, but evidence supporting their use is limited to smaller nerves and shorter gaps. Nerve transfer is another technique that has seen increasing popularity. The future of care may include novel biologics and pharmacologic therapy to enhance regeneration.
Collapse
Affiliation(s)
- James S Lin
- Department of Orthopaedics, The Ohio State University Wexner Medical Center, 241 West 11th Avenue, Suite 6081, Columbus, OH 43201, USA
| | - Sonu A Jain
- Department of Plastic and Reconstructive Surgery, The Ohio State University Wexner Medical Center, 915 Olentangy River Road, 3rd Floor, Suite 3200, Columbus, OH 43212, USA.
| |
Collapse
|
7
|
Weber MB, Isaacs JE. Digital Nerve Injury: Assessment and Treatment. J Am Acad Orthop Surg 2023; Publish Ahead of Print:00124635-990000000-00703. [PMID: 37205873 DOI: 10.5435/jaaos-d-23-00255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 04/17/2023] [Indexed: 05/21/2023] Open
Abstract
Undertreated digital nerve injuries may result in sensory deficits and pain. Early recognition and treatment will optimize outcomes, and providers should maintain a high index of suspicion when assessing patients with open wounds. Acute, sharp lacerations may be amenable to direct repair while avulsion injuries or delayed repairs require adequate resection and bridging with nerve autograft, processed nerve allograft, or conduits. Conduits are most appropriate for gaps less than 15 mm, and processed nerve allografts have demonstrated reliable outcomes across longer gaps.
Collapse
Affiliation(s)
- Matthew B Weber
- From the Virginia Commonwealth University Medical Center, Richmond, VA
| | | |
Collapse
|
8
|
Huang WJ, Wang J. Development of 3D-Printed, Biodegradable, Conductive PGSA Composites for Nerve Tissue Regeneration. Macromol Biosci 2023; 23:e2200470. [PMID: 36525352 DOI: 10.1002/mabi.202200470] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/07/2022] [Indexed: 12/23/2022]
Abstract
Nerve conduits are used to reconnect broken nerve bundles and provide protection to facilitate nerve regeneration. However, the low degradation rate and regeneration rate, as well as the requirement for secondary surgery are some of the most criticized drawbacks of existing nerve conduits. With high processing flexibility from the photo-curability, poly (glycerol sebacate) acrylate (PGSA) is a promising material with tunable mechanical properties and biocompatibility for the development of medical devices. Here, polyvinylpyrrolidone (PVP), silver nanoparticles (AgNPs), and graphene are embedded in biodegradable PGSA matrix. The polymer composites are then assessed for their electrical conductivity, biodegradability, three-dimensional-printability (3D-printability), and promotion of cell proliferation. Through the four-probe technique, it is shown that the PGSA composites are identified as highly conductive in swollen state. Furthermore, biodegradability is evaluated through enzymatic degradation and facilitated hydrolysis. Cell proliferation and guidance are significantly promoted by three-dimensional-printed microstructures and electrical stimulation on PGSA composites, especially on PGSA-PVP. Hence, microstructured nerve conduits are 3D-printed with PGSA-PVP. Guided cell growth and promoted proliferation are subsequently demonstrated by Schwann cell culture combined with electrical stimulation. Consequently, 3D-printed nerve conduits fabricated with PGSA composites hold great potential in nerve tissue regeneration through electrical stimulation.
Collapse
Affiliation(s)
- Wei-Jia Huang
- Department of Chemical Engineering, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu, ROC 30013, Taiwan
| | - Jane Wang
- Department of Chemical Engineering, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu, ROC 30013, Taiwan
| |
Collapse
|
9
|
Crowe CS, Shin AY, Pulos N. Iatrogenic Nerve Injuries of the Upper Extremity: A Critical Analysis Review. JBJS Rev 2023; 11:01874474-202301000-00003. [PMID: 36722824 DOI: 10.2106/jbjs.rvw.22.00161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
» Iatrogenic nerve injuries may occur after any intervention of the upper extremity. » Causes of iatrogenic nerve lesions include direct sharp or thermal injury, retraction, compression from implants or compartment syndrome, injection, patient positioning, radiation, and cast/splint application, among others. » Optimal treatment of iatrogenic peripheral nerve lesions relies on early and accurate diagnosis. » Advanced imaging modalities (e.g., ultrasound and magnetic resonance imaging) and electrodiagnostic studies aid and assist in preoperative planning. » Optimal treatment of iatrogenic injuries is situation-dependent and depends on the feasibility of direct repair, grafting, and functional transfers.
Collapse
Affiliation(s)
- Christopher S Crowe
- Division of Plastic Surgery, Department of Surgery, University of Washington, Seattle, Washington
| | - Alexander Y Shin
- Division of Hand and Upper Extremity Surgery, Department of Orthopaedics, Mayo Clinic, Rochester, Minnesota
| | - Nicholas Pulos
- Division of Hand and Upper Extremity Surgery, Department of Orthopaedics, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
10
|
Ardouin L, Lecoq FA, Verstreken F, Vanmierlo B, Erhard L, Locquet V, Barnouin L, Bosc J, Obert L. Nerve regeneration conduit from inverted human umbilical cord vessel in the treatment of proper palmar digital nerve sections. HAND SURGERY & REHABILITATION 2022; 41:675-680. [PMID: 36210047 DOI: 10.1016/j.hansur.2022.09.239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/22/2022] [Accepted: 09/26/2022] [Indexed: 11/29/2022]
Abstract
Treatment of digital nerve injuries, particularly in case of a gap, is challenging. Recovery of finger sensitivity is often incomplete and can impair personal and occupational activity. The need for better nerve regeneration has given rise to alternative treatments such as nerve conduits. This study aimed to evaluate the safety and efficacy of a conduit of freeze-dried inverted human umbilical cord vessel for regeneration in digital nerve section. Twenty-three patients with a mean nerve gap of 6.11 mm (range 2-30 mm and static 2-point discrimination (s2PD) > 15 mm underwent surgical repair of digital nerve section using a nerve regeneration conduit. The primary endpoint was recovery of sensitivity after conduit implantation. Secondary endpoints comprised progression of pain, functional symptoms, pressure threshold, hand-specific symptoms and disabilities, and restored innervation. Mean follow-up was 10.1 ± 4.1 months (range 1-14 months). Sensitivity recovered progressively in the months following implantation. There was a mean decrease of 8.54 mm in s2PD between baseline and last follow-up (p < 0.001). Complete innervation recovered in 83.3% of cases at last follow-up. Pressure threshold and hand-related quality of life improved significantly and symptoms due to nerve sectioning (pain, cold intolerance, hypoesthesia, hyperesthesia) resolved almost completely. There were no safety issues related to the nerve conduit. These results indicate that freeze-dried inverted human umbilical vessels can be a safe and effective option as conduit for digital nerve regeneration.
Collapse
Affiliation(s)
- L Ardouin
- Institut de la Main Nantes-Atlantique, Elsan Santé Atlantique, AV Claude Bernard, 44800 Saint Herblain, France
| | - F-A Lecoq
- Institut de la Main Nantes-Atlantique, Elsan Santé Atlantique, AV Claude Bernard, 44800 Saint Herblain, France
| | - F Verstreken
- AZ Monica, Florent Pauwelslei 1, 2100 Antwerp, Belgium
| | - B Vanmierlo
- AZ Delta, Deltalaan 1, 8800 Roeselare, Belgium
| | - L Erhard
- Institut Chirurgical de la Main et du Membre Supérieur, 17 Av. Condorcet, 69100 Villeurbanne, France
| | - V Locquet
- Institut Chirurgical de la Main et du Membre Supérieur, 17 Av. Condorcet, 69100 Villeurbanne, France
| | - L Barnouin
- Tissue Bank of France (TBF), 6 rue d'Italie, 69780 Mions, France.
| | - J Bosc
- Tissue Bank of France (TBF), 6 rue d'Italie, 69780 Mions, France
| | - L Obert
- CHU de Besançon Hôpital Jean Minjoz, 3 Bd. Alexandre Fleming, 25000 Besançon, France
| |
Collapse
|
11
|
Sun S, Lu D, Zhong H, Li C, Yang N, Huang B, Ni S, Li X. Donors for nerve transplantation in craniofacial soft tissue injuries. Front Bioeng Biotechnol 2022; 10:978980. [PMID: 36159691 PMCID: PMC9490317 DOI: 10.3389/fbioe.2022.978980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/16/2022] [Indexed: 11/13/2022] Open
Abstract
Neural tissue is an important soft tissue; for instance, craniofacial nerves govern several aspects of human behavior, including the expression of speech, emotion transmission, sensation, and motor function. Therefore, nerve repair to promote functional recovery after craniofacial soft tissue injuries is indispensable. However, the repair and regeneration of craniofacial nerves are challenging due to their intricate anatomical and physiological characteristics. Currently, nerve transplantation is an irreplaceable treatment for segmental nerve defects. With the development of emerging technologies, transplantation donors have become more diverse. The present article reviews the traditional and emerging alternative materials aimed at advancing cutting-edge research on craniofacial nerve repair and facilitating the transition from the laboratory to the clinic. It also provides a reference for donor selection for nerve repair after clinical craniofacial soft tissue injuries. We found that autografts are still widely accepted as the first options for segmental nerve defects. However, allogeneic composite functional units have a strong advantage for nerve transplantation for nerve defects accompanied by several tissue damages or loss. As an alternative to autografts, decellularized tissue has attracted increasing attention because of its low immunogenicity. Nerve conduits have been developed from traditional autologous tissue to composite conduits based on various synthetic materials, with developments in tissue engineering technology. Nerve conduits have great potential to replace traditional donors because their structures are more consistent with the physiological microenvironment and show self-regulation performance with improvements in 3D technology. New materials, such as hydrogels and nanomaterials, have attracted increasing attention in the biomedical field. Their biocompatibility and stimuli-responsiveness have been gradually explored by researchers in the regeneration and regulation of neural networks.
Collapse
Affiliation(s)
- Sishuai Sun
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Di Lu
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Hanlin Zhong
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Chao Li
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Ning Yang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Bin Huang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Shilei Ni
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
- *Correspondence: Shilei Ni, ; Xingang Li,
| | - Xingang Li
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
- *Correspondence: Shilei Ni, ; Xingang Li,
| |
Collapse
|
12
|
Closing the Gap: Bridging Peripheral Sensory Nerve Defects with a Chitosan-Based Conduit a Randomized Prospective Clinical Trial. J Pers Med 2022; 12:jpm12060900. [PMID: 35743685 PMCID: PMC9224872 DOI: 10.3390/jpm12060900] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/20/2022] [Accepted: 05/24/2022] [Indexed: 11/17/2022] Open
Abstract
Introduction: If tensionless nerve coaptation is not possible, bridging the resulting peripheral nerve defect with an autologous nerve graft is still the current gold standard. The concept of conduits as an alternative with different materials and architectures, such as autologous vein conduits or bioartificial nerve conduits, could not replace the nerve graft until today. Chitosan, as a relatively new biomaterial, has recently demonstrated exceptional biocompatibility and material stability with neural lineage cells. The purpose of this prospective randomized clinical experiment was to determine the efficacy of chitosan-based nerve conduits in regenerating sensory nerves in the hand. Materials and methods: Forty-seven patients with peripheral nerve defects up to 26 mm distal to the carpal tunnel were randomized to receive either a chitosan conduit or an autologous nerve graft with the latter serving as the control group. Fifteen patients from the conduit group and seven patients from the control group were available for a 12-month follow-up examination. The primary outcome parameter was tactile gnosis measured with two-point discrimination. The secondary outcome parameters were Semmens Weinstein Monofilament Testing, self-assessed pain, and patient satisfaction. Results: Significant improvement (in static two-point discrimination) was observed six months after trauma (10.7 ± 1.2 mm; p < 0.05) for chitosan-based nerve conduits, but no further improvement was observed after 12 months of regeneration (10.9 ± 1.3 mm). After six months and twelve months, the autologous nerve graft demonstrated comparable results to the nerve conduit, with a static two-point discrimination of 11.0 ± 2.0 mm and 7.9 ± 1.1 mm. Semmes Weinstein Filament Testing in the nerve conduit group showed a continuous improvement over the regeneration period by reaching from 3.1 ± 0.3 after three months up to 3.7 ± 0.4 after twelve months. Autologous nerve grafts presented similar results: 3.3 ± 0.4 after three months and 3.7 ± 0.5 after twelve months. Patient satisfaction and self-reported pain levels were similar between the chitosan nerve conduit and nerve graft groups. One patient required revision surgery due to complications associated with the chitosan nerve tube. Conclusion: Chitosan-based nerve conduits are safe and suitable for bridging nerve lesions up to 26 mm in the hand. Tactile gnosis improved significantly during the early regeneration period, and functional outcomes were similar to those obtained with an autologous nerve graft. Thus, chitosan appears to be a sufficient substitute for autologous nerve grafts in the treatment of small nerve defects in the hand.
Collapse
|
13
|
Iwao A, Yagi M, Imamura Y, Higashi A, Moriuchi Y, Kashiyama K, Tanaka K. Intraoperative obturator nerve injury reconstructed using a PGA-collagen tube: Three case reports. Gynecol Oncol Rep 2022; 41:100977. [PMID: 35496739 PMCID: PMC9048140 DOI: 10.1016/j.gore.2022.100977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/30/2022] [Accepted: 04/04/2022] [Indexed: 11/25/2022] Open
Abstract
There have only been a few case reports of iatrogenic obturator nerve injury during gynecological surgery. Obturator nerve injury occurs when the nerve is amputated widely by the surgical energy device. A PGA-collagen tube (Nerbridge; Toyobo) may interpose a peripheral nerve defect without an autologous nerve graft. The use of a PGA-collagen tube is a good option for reconstructing an obturator nerve defect.
We herein report three cases of obturator nerve injury, which is rare in gynecological surgery. In all cases, it was difficult to suture both nerve ends without tension. Therefore, we used a PGA-collagen tube to interpose the nerve defect. After follow-ups of at least seven months, all three patients were able to adduct the hip joint and medial thigh sensations also improved. These results suggest the potential of a PGA-collagen tube in the treatment of obturator nerve injury.
Collapse
|
14
|
Acott TR. Digital Nerve Reconstruction. Orthop Clin North Am 2022; 53:187-195. [PMID: 35365263 DOI: 10.1016/j.ocl.2021.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Tension-free primary digital nerve repair may be unachievable in the presence of a nerve defect and require digital nerve reconstruction. Multiple techniques are available for reconstruction of a digital nerve defect using conduits, autograft, and allograft. Multiple comparison studies exist in the literature, suggesting similar results with autograft and allograft reconstruction, with several comparison studies suggesting inferior outcomes with conduit repair.
Collapse
Affiliation(s)
- Thomas R Acott
- The CORE Institute, 18444 North 25th Avenue, Suite. 210, Phoenix, AZ 85023, USA.
| |
Collapse
|
15
|
Methodologic and Reporting Quality of Economic Evaluations in Hand and Wrist Surgery: A Systematic Review. Plast Reconstr Surg 2022; 149:453e-464e. [PMID: 35196683 DOI: 10.1097/prs.0000000000008845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Economic evaluations can inform decision-making; however, previous publications have identified poor quality of economic evaluations in surgical specialties. METHODS Study periods were from January 1, 2006, to April 20, 2020 (methodologic quality) and January 1, 2014, to April 20, 2020 (reporting quality). Primary outcomes were methodologic quality [Guidelines for Authors and Peer Reviewers of Economic Submissions to The BMJ (Drummond's checklist), 33 points; Quality of Health Economic Studies (QHES), 100 points; Consensus on Health Economic Criteria (CHEC), 19 points] and reporting quality (Consolidated Health Economic Evaluation Standards (CHEERS) statement, 24 points). RESULTS Forty-seven hand economic evaluations were included. Partial economic analyses (i.e., cost analysis) were the most common (n = 34; 72 percent). Average scores of full economic evaluations (i.e., cost-utility analysis and cost-effectiveness analysis) were: Drummond's checklist, 27.08 of 33 (82.05 percent); QHES, 79.76 of 100 (79.76 percent); CHEC, 15.54 of 19 (81.78 percent); and CHEERS, 20.25 of 24 (84.38 percent). Cost utility analyses had the highest methodologic and reporting quality scores: Drummond's checklist, 28.89 of 35 (82.54 percent); QHES, 86.56 of 100 (86.56 percent); CHEC, 16.78 of 19 (88.30 percent); and CHEERS, 20.8 of 24 (86.67 percent). The association (multiple R) between CHEC and CHEERS was strongest: CHEC, 0.953; Drummond's checklist, 0.907; and QHES, 0.909. CONCLUSIONS Partial economic evaluations in hand surgery are prevalent but not very useful. The Consensus on Health Economic Criteria and Consolidated Health Economic Evaluation Standards should be used in tandem when undertaking and evaluating economic evaluation in hand surgery.
Collapse
|
16
|
MacKay BJ, Cox CT, Valerio IL, Greenberg JA, Buncke GM, Evans PJ, Mercer DM, McKee DM, Ducic I. Evidence-Based Approach to Timing of Nerve Surgery: A Review. Ann Plast Surg 2021; 87:e1-e21. [PMID: 33833177 PMCID: PMC8560160 DOI: 10.1097/sap.0000000000002767] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 12/30/2020] [Accepted: 12/30/2020] [Indexed: 01/08/2023]
Abstract
ABSTRACT Events causing acute stress to the health care system, such as the COVID-19 pandemic, place clinical decisions under increased scrutiny. The priority and timing of surgical procedures are critically evaluated under these conditions, yet the optimal timing of procedures is a key consideration in any clinical setting. There is currently no single article consolidating a large body of current evidence on timing of nerve surgery. MEDLINE and EMBASE databases were systematically reviewed for clinical data on nerve repair and reconstruction to define the current understanding of timing and other factors affecting outcomes. Special attention was given to sensory, mixed/motor, nerve compression syndromes, and nerve pain. The data presented in this review may assist surgeons in making sound, evidence-based clinical decisions regarding timing of nerve surgery.
Collapse
Affiliation(s)
- Brendan J. MacKay
- From the Texas Tech University Health Sciences Center
- University Medical Center, Lubbock, TX
| | | | - Ian L. Valerio
- Plastic and Reconstructive Surgery, Massachusetts General Hospital, Boston, MA
| | | | | | - Peter J. Evans
- Orthopaedic Surgery, Cleveland Clinic of Florida, Weston, FL
| | - Deana M. Mercer
- Department of Orthopaedics and Rehabilitation, The University of New Mexico, Albuquerque, NM
| | - Desirae M. McKee
- From the Texas Tech University Health Sciences Center
- University Medical Center, Lubbock, TX
| | | |
Collapse
|
17
|
Braga Silva J, Leal BLM, Magnus GA, de Souza Stanham V, Mattiello R, Wolff CG. Comparison of nerve conduits and nerve graft in digital nerve regeneration: A systematic review and meta-analysis. HAND SURGERY & REHABILITATION 2021; 40:715-721. [PMID: 34425267 DOI: 10.1016/j.hansur.2021.08.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 07/28/2021] [Accepted: 08/06/2021] [Indexed: 11/16/2022]
Abstract
The goal of this systematic review and meta-analysis was to compare nerve conduits and nerve graft for peripheral nerve regeneration. This type of lesion frequently causes disability due to pain, paresthesia and motor deficit. On the PICO process, "P" corresponded to patients with peripheral digital nerve lesions of any age, gender or ethnicity, "I" to interventions with nerve conduits or nerve graft, "C" to the control group with no treatment, placebo or receiving other treatment, and "O" to outcome assessment of nerve regeneration. Initial search found in 3859 studies, including 2001 duplicates. The remaining 1858 studies were selected by title and/or abstract; 1798 articles were excluded, leaving 60 articles for full-text review. Thirty-nine of these 60 reports were excluded as not meeting our inclusion criteria, and 21 articles were ultimately included in the systematic review. For patients older than 40 years, there was a greater mean improvement on S2PD and M2PD tests with grafting, which seemed to be the better surgical technique, positively impacting prognosis. On the M2PD test, there was significantly greater improvement in 11-17.99 mm defects with grafting (P < 0.001); this finding should guide surgical strategy in peripheral nerve regeneration, to ensure better outcomes.
Collapse
Affiliation(s)
- J Braga Silva
- Service of Hand Surgery and Reconstructive Microsurgery, São Lucas Hospital, Centro Clinico PUCRS, Av. Ipiranga, 6690, Suite 216, Porto Alegre, RS 90610-000, Brazil; School of Medicine, Pontifical Catholic University of Rio Grande do Sul, Av. Ipiranga, 6681 - Partenon, Porto Alegre, RS 90619-900, Brazil.
| | - B L M Leal
- School of Medicine, Pontifical Catholic University of Rio Grande do Sul, Av. Ipiranga, 6681 - Partenon, Porto Alegre, RS 90619-900, Brazil
| | - G A Magnus
- School of Medicine, Pontifical Catholic University of Rio Grande do Sul, Av. Ipiranga, 6681 - Partenon, Porto Alegre, RS 90619-900, Brazil
| | - V de Souza Stanham
- School of Medicine, Pontifical Catholic University of Rio Grande do Sul, Av. Ipiranga, 6681 - Partenon, Porto Alegre, RS 90619-900, Brazil
| | - R Mattiello
- School of Medicine, Pontifical Catholic University of Rio Grande do Sul, Av. Ipiranga, 6681 - Partenon, Porto Alegre, RS 90619-900, Brazil
| | - C G Wolff
- School of Medicine, Pontifical Catholic University of Rio Grande do Sul, Av. Ipiranga, 6681 - Partenon, Porto Alegre, RS 90619-900, Brazil
| |
Collapse
|
18
|
Abstract
PURPOSE OF REVIEW This article reviews recent literature on repair of peripheral nerve injuries in the head and neck with a focus on autografts, allografts, nerve conduits, and technical considerations. RECENT FINDINGS Contemporary nerve grafting techniques offer the potential to improve peripheral nerve outcomes and reduce donor site morbidity. A variety of donor nerves autografts have been described that offer favorable outcomes for segmental reconstruction of facial nerve defects. Recent studies have demonstrated promising results in repair of inferior alveolar nerve injuries with human allografts. Animal models describe successful reinnervation of small defects with neural conduits. The latest data do not favor protocolled nerve graft polarity or use of a motor versus sensory donor nerves. SUMMARY Interposition nerve grafting is the gold standard for repair of peripheral nerve injuries when a tension-free primary neurorrhaphy is not possible. Autografts are the work-horse for the majority of head and neck neural defects, however, can result in some degree of donor site morbidity. Recent developments in allografting and neural conduits have the potential to further diversify the head and neck reconstructive surgeon's armamentarium. It is unclear if nerve graft makeup or polarity affect functional outcome.
Collapse
|
19
|
Long-term sensibility outcomes of secondary digital nerve reconstruction with sural nerve autografts: a retrospective study. Eur J Trauma Emerg Surg 2021; 48:2341-2347. [PMID: 34279668 PMCID: PMC9192371 DOI: 10.1007/s00068-021-01747-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 07/07/2021] [Indexed: 11/24/2022]
Abstract
Background Recovery of sensibility after digital nerve injury is crucial for restoring normal hand function. We evaluated long-term outcomes of digital nerve reconstruction with autografts. Methods This retrospective study included patients who underwent secondary reconstruction of digital nerves with nerve autografting. Recovery of sensibility was evaluated based on the following: patient self-assessment, two-point discrimination (2PD), and a total sensation score (sum of proprioception, temperature sensation, and sharp/dull discrimination). Mixed models regression was used to study predictors of sensibility outcomes. The predictors analyzed were age, sex, smoking status, number of fingers involved in a patient (as a measure of injury severity), time to reconstruction, and time to follow-up. Results In 61 patients, 174 digital nerves in 126 fingers were reconstructed after an average of 33.1 weeks from injury. The mean follow-up was 6.4 years from reconstruction. The mean graft length was 3.6 cm. Self-rated sensibility in the affected area was very good in 13% of patients, good in 33%, satisfactory in 40%, and poor in 24%. 2PD at 6 mm was present in 17% of patients, at 10 mm in 12%, and at 15 mm in 18% (mean 2PD was 10.8). Proprioception was preserved in 107 (85%) fingers, sensation of temperature was preserved in 99 (75%) of fingers, and sharp/dull discrimination in 88 (70%) fingers. Time from injury to reconstruction was the only significant predictor of the total sensation score. Conclusion Our data indicate that earlier reconstruction is associated with a favorable outcome.
Collapse
|
20
|
Evidence-Based Approach to Nerve Gap Repair in the Upper Extremity: A Review of the Literature and Current Algorithm for Surgical Management. Ann Plast Surg 2021; 84:S369-S374. [PMID: 32039999 DOI: 10.1097/sap.0000000000002278] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The upper extremity is the most common site for nerve injuries. In most cases, direct repair can be performed, but when a critical gap occurs, special techniques must be used to enhance nerve regeneration and allow recovery of sensory and motor functions. These techniques include the use of autografts, processed nerve allografts, and conduits. However, surprisingly few studies have compared outcomes from the different methods of nerve gap repair in a rigorous fashion. There is a lack of evidence-based guidelines for the management of digital and motor and mixed nerve injuries with a nerve gap. The purpose of this study is to perform a comprehensive literature review and propose a rational algorithm for management of nerve injuries with a critical gap.
Collapse
|
21
|
Dunn JC, Tadlock J, Klahs KJ, Narimissaei D, McKay P, Nesti LJ. Nerve Reconstruction Using Processed Nerve Allograft in the U.S. Military. Mil Med 2021; 186:e543-e548. [PMID: 33449099 DOI: 10.1093/milmed/usaa494] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/14/2020] [Accepted: 01/13/2021] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Processed nerve allograft (PNA) is an alternative to autograft for the reconstruction of peripheral nerves. We hypothesize that peripheral nerve repair with PNA in a military population will have a low rate of meaningful recovery (M ≥ 3) because of the frequency of blasting mechanisms and large zones of injury. METHODS A retrospective review of the military Registry of Avance Nerve Graft Evaluating Utilization and Outcomes for the Reconstruction of Peripheral Nerve Discontinuities database was conducted at the Walter Reed Peripheral Nerve Consortium. All adult active duty military patients who underwent any peripheral nerve repair with PNA for complete nerve injuries augmented with PNA visit were included. Motor strength and sensory function were reported as a consensus from the multidisciplinary Peripheral Nerve Consortium. Motor and sensory testing was conducted in accordance with the British Medical Research Council. RESULTS A total of 23 service members with 25 nerve injuries (3 sensory and 22 mixed motor/sensory) underwent reconstruction with PNA. The average age was 30 years and the majority were male (96%). The most common injury was to the sciatic nerve (28%) from a complex mechanism (gunshot, blast, compression, and avulsion). The average defect was 77 mm. Twenty-four percent of patients achieved a meaningful motor recovery. Longer follow-up was correlated with improved postoperative motor function (r = 0.49 and P = .03). CONCLUSIONS The military population had complex injuries with large nerve gaps. Despite the low rate of meaningful recovery (27.3%), large gaps in motor and mixed motor/sensory nerves are difficult to treat, and further research is needed to determine if autograft would achieve superior results. TYPE OF STUDY/LEVEL OF EVIDENCE Therapeutic, Level III.
Collapse
Affiliation(s)
- John C Dunn
- Department of Orthopaedic Surgery, William Beaumont Army Medical Center, El Paso, TX 79920, USA.,Department of Surgery, Clinical and Experimental Orthopaedics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Joshua Tadlock
- Department of Orthopaedic Surgery, William Beaumont Army Medical Center, El Paso, TX 79920, USA
| | - Kyle J Klahs
- Department of Orthopaedic Surgery, William Beaumont Army Medical Center, El Paso, TX 79920, USA
| | | | - Patricia McKay
- Department of Surgery, Clinical and Experimental Orthopaedics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA.,Centers for Advanced Orthopedics, Southern Maryland Orthopedics and Sports Medicine, White Plains, MD 20695, USA
| | - Leon J Nesti
- Department of Surgery, Clinical and Experimental Orthopaedics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| |
Collapse
|
22
|
Li T, Javed R, Ao Q. Xenogeneic Decellularized Extracellular Matrix-based Biomaterials For Peripheral Nerve Repair and Regeneration. Curr Neuropharmacol 2021; 19:2152-2163. [PMID: 33176651 PMCID: PMC9185777 DOI: 10.2174/1570159x18666201111103815] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/18/2021] [Accepted: 04/03/2021] [Indexed: 12/04/2022] Open
Abstract
Peripheral nerve injury could lead to either impairment or a complete loss of function for affected patients, and a variety of nerve repair materials have been developed for surgical approaches to repair it. Although autologous or autologous tissue-derived biomaterials remain preferred treatment for peripheral nerve injury, the lack of donor sources has led biomedical researchers to explore more other biomaterials. As a reliable alternative, xenogeneic decellularized extracellular matrix (dECM)-based biomaterials have been widely employed for surgical nerve repair. The dECM derived from animal donors is an attractive and unlimited source for xenotransplantation. Meanwhile, as an increasingly popular technique, decellularization could retain a variety of bioactive components in native ECM, such as polysaccharides, proteins, and growth factors. The resulting dECM-based biomaterials preserve a tissue's native microenvironment, promote Schwann cells proliferation and differentiation, and provide cues for nerve regeneration. Although the potential of dECM-based biomaterials as a therapeutic agent is rising, there are many limitations of this material restricting its use. Herein, this review discusses the decellularization techniques that have been applied to create dECM-based biomaterials, the main components of nerve ECM, and the recent progress in the utilization of xenogeneic dECM-based biomaterials through applications as a hydrogel, wrap, and guidance conduit in nerve tissue engineering. In the end, the existing bottlenecks of xenogeneic dECM-based biomaterials and developing technologies that could be eliminated to be helpful for utilization in the future have been elaborated.
Collapse
Affiliation(s)
- Ting Li
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, China
- Department of Developmental Cell Biology, China Medical University, Shenyang, China
| | - Rabia Javed
- Department of Developmental Cell Biology, China Medical University, Shenyang, China
| | - Qiang Ao
- Department of Developmental Cell Biology, China Medical University, Shenyang, China
- Institute of Regulatory Science for Med-ical Devices, Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| |
Collapse
|
23
|
Samadian H, Maleki H, Fathollahi A, Salehi M, Gholizadeh S, Derakhshankhah H, Allahyari Z, Jaymand M. Naturally occurring biological macromolecules-based hydrogels: Potential biomaterials for peripheral nerve regeneration. Int J Biol Macromol 2020; 154:795-817. [DOI: 10.1016/j.ijbiomac.2020.03.155] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 03/15/2020] [Accepted: 03/16/2020] [Indexed: 12/18/2022]
|
24
|
Abstract
Normal sensitivity of the face is very important for preserving its integrity and function as an efferent source of information for the brain. The trigeminal nerve, which is the largest cranial nerve, conducts most of facial sensory function through its 3 branches: the ophthalmic nerve (V1), the maxillary nerve (V2), and the mandibular nerve (V3). The trigeminal nerve may be damaged by a variety of etiologies including inflammatory disorders, brain tumor resection, trauma, iatrogenic injury, or congenital anomalies. Temporary or permanent damage can lead to numbness, lip-biting injury, corneal anesthesia, and, in the worst scenario, even blindness. Different age groups, mechanisms of the injury, and the time between injury and repair can affect the final result of the nerve repair. Unlike the well-understood facial nerve palsy, so far there is no universal approach to restore the facial sensory function. This article serves to thoroughly review the basic anatomy of trigeminal nerve, diagnosis of sensory nerve dysfunction, and attempts to establish a protocol for treatment and rehabilitation of affected patients.
Collapse
|
25
|
Raza C, Riaz HA, Anjum R, Shakeel NUA. Repair strategies for injured peripheral nerve: Review. Life Sci 2020; 243:117308. [PMID: 31954163 DOI: 10.1016/j.lfs.2020.117308] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 01/09/2020] [Accepted: 01/13/2020] [Indexed: 12/27/2022]
Abstract
Compromised functional regains in about half of the patients following surgical nerve repair pose a serious socioeconomic burden to the society. Although surgical strategies such as end-to-end neurorrhaphy, nerve grafting and nerve transfer are widely applied in distal injuries leading to optimal recovery; however in proximal nerve defects functional outcomes remain unsatisfactory. Biomedical engineering approaches unite the efforts of the surgeons, engineers and biologists to develop regeneration facilitating structures such as extracellular matrix based supportive polymers and tubular nerve guidance channels. Such polymeric structures provide neurotrophic support from injured nerve stumps, retard the fibrous tissue infiltration and guide regenerating axons to appropriate targets. The development and application of nerve guidance conduits (NGCs) to treat nerve gap injuries offer clinically relevant and feasible solutions. Enhanced understanding of the nerve regeneration processes and advances in NGCs design, polymers and fabrication strategies have led to developing modern NGCs with superior regeneration-conducive capacities. Current review focuses on the advances in surgical and engineering approaches to treat peripheral nerve injuries. We suggest the incorporation of endothelial cell growth promoting cues and factors into the NGC interior for its possible enhancement effects on the axonal regeneration process that may result in substantial functional outcomes.
Collapse
Affiliation(s)
- Chand Raza
- Department of Zoology, Government College University, Lahore 54000, Pakistan.
| | - Hasib Aamir Riaz
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA
| | - Rabia Anjum
- Department of Zoology, Government College University, Lahore 54000, Pakistan
| | - Noor Ul Ain Shakeel
- Department of Zoology, Government College University, Lahore 54000, Pakistan
| |
Collapse
|
26
|
Philips C, Cornelissen M, Carriel V. Evaluation methods as quality control in the generation of decellularized peripheral nerve allografts. J Neural Eng 2019; 15:021003. [PMID: 29244032 DOI: 10.1088/1741-2552/aaa21a] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Nowadays, the high incidence of peripheral nerve injuries and the low success ratio of surgical treatments are driving research to the generation of novel alternatives to repair critical nerve defects. In this sense, tissue engineering has emerged as a possible alternative with special attention to decellularization techniques. Tissue decellularization offers the possibility to obtain a cell-free, natural extracellular matrix (ECM), characterized by an adequate 3D organization and proper molecular composition to repair different tissues or organs, including peripheral nerves. One major problem, however, is that there are no standard quality control methods to evaluate decellularized tissues. Therefore, in this review, a brief description of current strategies for peripheral nerve repair is given, followed by an overview of different decellularization methods used for peripheral nerves. Furthermore, we extensively discuss the available and currently used methods to demonstrate the success of tissue decellularization in terms of the cell removal, preservation of essential ECM molecules and maintenance or modification of biomechanical properties. Finally, orientative guidelines for the evaluation of decellularized peripheral nerve allografts are proposed.
Collapse
Affiliation(s)
- Charlot Philips
- Tissue Engineering and Biomaterials Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, De Pintelaan 185, B-9000 Ghent, Belgium
| | | | | |
Collapse
|
27
|
Saltzman EB, Villa JC, Doty SB, Feinberg JH, Lee SK, Wolfe SW. A Comparison Between Two Collagen Nerve Conduits and Nerve Autograft: A Rat Model of Motor Nerve Regeneration. J Hand Surg Am 2019; 44:700.e1-700.e9. [PMID: 30502013 DOI: 10.1016/j.jhsa.2018.10.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 08/27/2018] [Accepted: 10/15/2018] [Indexed: 02/02/2023]
Abstract
PURPOSE To compare recovery in a rat model of sciatic nerve injury using a novel polyglycolic acid (PGA) conduit, which contains collagen fibers within the tube, as compared with both a hollow collagen conduit and nerve autograft. We hypothesize that a conduit with a scaffold will provide improved nerve regeneration over hollow conduits and demonstrate no significant differences when compared with autograft. METHODS A total of 72 Sprague-Dawley rats were randomized into 3 experimental groups, in which a unilateral 10-mm sciatic defect was repaired using either nerve autograft, a hollow collagen conduit, or a PGA collagen-filled conduit. Outcomes were measured at 12 and 16 weeks after surgery, and included bilateral tibialis anterior muscle weight, voltage and force maximal contractility, assessment of ankle contracture, and nerve histology. RESULTS In all groups, outcomes improved between 12 and 16 weeks. On average, the autograft group outperformed both conduit groups, and the hollow conduit demonstrated improved outcomes when compared with the PGA collagen-filled conduit. Differences in contractile force, however, were significant only at 12 weeks (autograft > hollow collagen conduit > PGA collagen-filled conduit). At 16 weeks, contractile force demonstrated no significant difference but corroborated the same absolute results (autograft > hollow collagen conduit > PGA collagen-filled conduit). CONCLUSIONS Nerve repair using autograft provided superior motor nerve recovery over the 2 conduits for a 10-mm nerve gap in a murine acute transection injury model. The hollow collagen conduit demonstrated superior results when compared with the PGA collagen-filled conduit. CLINICAL RELEVANCE The use of a hollow collagen conduit provides superior motor nerve recovery as compared with a PGA collagen-filled conduit.
Collapse
Affiliation(s)
- Eliana B Saltzman
- Center for Brachial Plexus and Traumatic Nerve Injury, Hospital for Special Surgery, New York, NY
| | - Jordan C Villa
- Center for Brachial Plexus and Traumatic Nerve Injury, Hospital for Special Surgery, New York, NY
| | - Stephen B Doty
- Hospital for Special Surgery, Mineralized Tissue Laboratory, New York, NY
| | - Joseph H Feinberg
- Center for Brachial Plexus and Traumatic Nerve Injury, Hospital for Special Surgery, New York, NY
| | - Steve K Lee
- Center for Brachial Plexus and Traumatic Nerve Injury, Hospital for Special Surgery, New York, NY; Weill Medical College of Cornell University, New York, NY
| | - Scott W Wolfe
- Center for Brachial Plexus and Traumatic Nerve Injury, Hospital for Special Surgery, New York, NY; Weill Medical College of Cornell University, New York, NY.
| |
Collapse
|
28
|
Bassilios Habre S, Bond G, Jing XL, Kostopoulos E, Wallace RD, Konofaos P. The Surgical Management of Nerve Gaps: Present and Future. Ann Plast Surg 2019; 80:252-261. [PMID: 29166306 DOI: 10.1097/sap.0000000000001252] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Peripheral nerve injuries can result in significant morbidity, including motor and/or sensory loss, which can affect significantly the life of the patient. Nowadays, the gold standard for the treatment of nerve section is end-to-end neurorrhaphy. Unfortunately, in some cases, there is segmental loss of the nerve trunk. Nerve mobilization allows primary repair of the sectioned nerve by end-to-end neurorrhaphy if the gap is less than 1 cm. When the nerve gap exceeds 1 cm, autologous nerve grafting is the gold standard of treatment. To overcome the limited availability and the donor site morbidity, other techniques have been used: vascularized nerve grafts, cellular and acellular allografts, nerve conduits, nerve transfers, and end-to-side neurorrhaphy. The purpose of this review is to present an overview of the literature on the applications of these techniques in peripheral nerve repair. Furthermore, preoperative evaluation, timing of repair, and future perspectives are also discussed.
Collapse
|
29
|
Sung J, Sikora-Klak J, Adachi SY, Orozco E, Shah SB. Decoupled epineurial and axonal deformation in mouse median and ulnar nerves. Muscle Nerve 2019; 59:619-628. [PMID: 30697763 DOI: 10.1002/mus.26437] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 01/18/2019] [Accepted: 01/27/2019] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Peripheral nerves accommodate mechanical loads during joint movement. Hypothesized protective features include increased nerve compliance near joints and axonal undulation. How axons perceive nerve deformation is poorly understood. We tested whether nerves increase local axonal undulation in regions of high epineurial strain to protect nerve fibers from strain-induced damage. METHODS Regional epineurial strain was measured near the elbow in median and ulnar nerves of mice expressing axonal fluorescence before and after decompression. Regional axonal tortuosity was quantified under confocal microscopy. RESULTS Nerves showed higher epineurial strain just distal to the medial epicondyle; these differences were eliminated after decompression. Axonal tortuosity also varied regionally; however, unlike in the epineurium, it was greater in proximal regions. DISCUSSION In this study we have proposed a neuromechanical model whereby axons can unravel along their entire length due to looser mechanical coupling to the peri/epineurium. Our findings have major implications for understanding nerve biomechanics and dysfunction. Muscle Nerve 59:619-619, 2019.
Collapse
Affiliation(s)
- Jaemyoung Sung
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, USA
- Department of Orthopaedic Surgery, University of California, San Diego, 9500 Gilman Drive, MC 0863, La Jolla, California 92093, USA
| | - Jakub Sikora-Klak
- Department of Orthopaedic Surgery, University of California, San Diego, 9500 Gilman Drive, MC 0863, La Jolla, California 92093, USA
| | - Stephanie Y Adachi
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, USA
- Department of Orthopaedic Surgery, University of California, San Diego, 9500 Gilman Drive, MC 0863, La Jolla, California 92093, USA
| | - Elisabeth Orozco
- Department of Orthopaedic Surgery, University of California, San Diego, 9500 Gilman Drive, MC 0863, La Jolla, California 92093, USA
- Research Division, Veterans Affairs San Diego Healthcare System, San Diego, California, USA
| | - Sameer B Shah
- Department of Orthopaedic Surgery, University of California, San Diego, 9500 Gilman Drive, MC 0863, La Jolla, California 92093, USA
- Research Division, Veterans Affairs San Diego Healthcare System, San Diego, California, USA
- Department of Bioengineering, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
30
|
Recovery of Motor Function after Mixed and Motor Nerve Repair with Processed Nerve Allograft. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2019; 7:e2163. [PMID: 31044125 PMCID: PMC6467606 DOI: 10.1097/gox.0000000000002163] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 01/04/2019] [Indexed: 01/02/2023]
Abstract
Supplemental Digital Content is available in the text. Background: Severe trauma often results in the transection of major peripheral nerves. The RANGER Registry is an ongoing observational study on the use and outcomes of processed nerve allografts (PNAs; Avance Nerve Graft, AxoGen, Inc., Alachua, Fla.). Here, we report on motor recovery outcomes for nerve injuries repaired acutely or in a delayed fashion with PNA and comparisons to historical controls in the literature. Methods: The RANGER database was queried for mixed and motor nerve injuries in the upper extremities, head, and neck area having completed greater than 1 year of follow-up. All subjects with sufficient assessments to evaluate functional outcomes were included. Meaningful recovery was defined as ≥M3 on the Medical Research Council scale. Demographics, outcomes, and covariate analysis were performed to further characterize this subgroup. Results: The subgroup included 20 subjects with 22 nerve repairs. The mean ± SD (minimum–maximum) age was 38 ± 19 (16–77) years. The median repair time was 9 (0–133) days. The mean graft length was 33 ± 17 (10–70) mm with a mean follow-up of 779 ± 480 (371–2,423) days. Meaningful motor recovery was observed in 73%. Subgroup analysis showed no differences between gap lengths or mechanism of injury. There were no related adverse events. Conclusions: PNAs were safe and provided functional motor recovery in mixed and motor nerve repairs. Outcomes compare favorably to historical controls for nerve autograft and exceed those for hollow tube conduit. PNA may be considered as an option when reconstructing major peripheral nerve injuries.
Collapse
|
31
|
Han GH, Peng J, Liu P, Ding X, Wei S, Lu S, Wang Y. Therapeutic strategies for peripheral nerve injury: decellularized nerve conduits and Schwann cell transplantation. Neural Regen Res 2019; 14:1343-1351. [PMID: 30964052 PMCID: PMC6524503 DOI: 10.4103/1673-5374.253511] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
In recent years, the use of Schwann cell transplantation to repair peripheral nerve injury has attracted much attention. Animal-based studies show that the transplantation of Schwann cells in combination with nerve scaffolds promotes the repair of injured peripheral nerves. Autologous Schwann cell transplantation in humans has been reported recently. This article reviews current methods for removing the extracellular matrix and analyzes its composition and function. The development and secretory products of Schwann cells are also reviewed. The methods for the repair of peripheral nerve injuries that use myelin and Schwann cell transplantation are assessed. This survey of the literature data shows that using a decellularized nerve conduit combined with Schwann cells represents an effective strategy for the treatment of peripheral nerve injury. This analysis provides a comprehensive basis on which to make clinical decisions for the repair of peripheral nerve injury.
Collapse
Affiliation(s)
- Gong-Hai Han
- Kunming Medical University, Kunming, Yunnan Province; Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Jiang Peng
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Ping Liu
- Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Xiao Ding
- Shihezi University Medical College, Shihezi, Xinjiang Uygur Autonomous Region, China
| | - Shuai Wei
- Shihezi University Medical College, Shihezi, Xinjiang Uygur Autonomous Region, China
| | - Sheng Lu
- 920th Hospital of Joint Service Support Force, Kunming, Yunnan Province, China
| | - Yu Wang
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
32
|
Outcome of human peripheral nerve repair interventions using conduits: a systematic review. J Neurol Sci 2019; 396:18-24. [DOI: 10.1016/j.jns.2018.10.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 10/04/2018] [Accepted: 10/08/2018] [Indexed: 01/02/2023]
|
33
|
Weller WJ. Emerging Technologies in Upper Extremity Surgery: Polyvinyl Alcohol Hydrogel Implant for Thumb Carpometacarpal Arthroplasty and Processed Nerve Allograft and Nerve Conduit for Digital Nerve Repairs. Orthop Clin North Am 2019; 50:87-93. [PMID: 30477709 DOI: 10.1016/j.ocl.2018.08.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In the field of upper extremity surgery there are myriad new and developing technologies. The purpose of this article is to highlight a few of the most compelling new technologies and review their background, indications for use, and most recently reported outcomes in clinical practice.
Collapse
Affiliation(s)
- William J Weller
- Department of Orthopaedic Surgery and Biomedical Engineering, University of Tennessee-Campbell Clinic, 1211 Union Avenue, Suite 510, Memphis, TN 38104, USA.
| |
Collapse
|
34
|
A clinical multi‐center registry study on digital nerve repair using a biodegradable nerve conduit of PGA with external and internal collagen scaffolding. Microsurgery 2018; 39:395-399. [DOI: 10.1002/micr.30417] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 11/20/2018] [Accepted: 11/27/2018] [Indexed: 01/23/2023]
|
35
|
Fukuda T, Kusuhara H, Nakagoshi T, Isogai N, Sueyoshi Y. A basic fibroblast growth factor slow-release system combined to a biodegradable nerve conduit improves endothelial cell and Schwann cell proliferation: A preliminary study in a rat model. Microsurgery 2018; 38:899-906. [PMID: 30380172 DOI: 10.1002/micr.30387] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 09/17/2018] [Accepted: 09/21/2018] [Indexed: 01/19/2023]
Abstract
BACKGROUND A basic fibroblast growth factor (bFGF) slow-release system was combined to a biodegradable nerve conduit with the hypothesis this slow-release system would increase the capacity to promote nerve vascularization and Schwann cell proliferation in a rat model. MATERIALS AND METHODS Slow-release of bFGF was determined using Enzyme-Linked ImmunoSorbent Assay (ELISA). A total of 60 rats were used to create a 10 mm gap in the sciatic nerve. A polyglycolic acid-based nerve conduit was used to bridge the gap, either without or with a bFGF slow-release incorporated around the conduit (n = 30 in each group). At 2 (n = 6), 4 (n = 6), 8 (n = 6), and 20 (n = 12) weeks after surgery, samples were resected and subjected to histological, immunohistochemical, and transmission electron microscopic evaluation for nerve regeneration. RESULTS Continuous release of bFGF was found during the observation period of 2 weeks. After in vivo implantation of the nerve conduit, greater endothelial cell migration and vascularization resulted at 2 weeks (proximal: 20.0 ± 2.0 vs. 12.7 ± 2.1, P = .01, middle: 17.3 ± 3.5 vs. 8.7 ± 3.2, P = .03). Schwann cells showed a trend toward greater proliferation and axonal growth had significant elongation (4.9 ± 1.1 mm vs. 2.8 ± 1.5 mm, P = .04) at 4 weeks after implantation. The number of myelinated nerve fibers, indicating nerve maturation, were increased 20 weeks after implantation (proximal: 83.3 ± 7.5 vs. 53.3 ± 5.5, P = .06, distal: 71.0 ± 12.5 vs. 44.0 ± 11.1, P = .04). CONCLUSIONS These findings suggest that the bFGF slow-release system improves nerve vascularization and Schwann cell proliferation through the biodegradable nerve conduit.
Collapse
Affiliation(s)
- Tomokazu Fukuda
- Department of Plastic Reconstructive Surgery, Kindai University Faculty of Medicine, Osaka, Japan
| | - Hirohisa Kusuhara
- Department of Plastic Reconstructive Surgery, Kindai University Faculty of Medicine, Osaka, Japan
| | - Takuya Nakagoshi
- Department of Plastic Reconstructive Surgery, Kindai University Faculty of Medicine, Osaka, Japan
| | - Noritaka Isogai
- Department of Plastic Reconstructive Surgery, Kindai University Faculty of Medicine, Osaka, Japan
| | - Yu Sueyoshi
- Department of Plastic Reconstructive Surgery, Kindai University Faculty of Medicine, Osaka, Japan
| |
Collapse
|
36
|
Chrząszcz P, Derbisz K, Suszyński K, Miodoński J, Trybulski R, Lewin-Kowalik J, Marcol W. Application of peripheral nerve conduits in clinical practice: A literature review. Neurol Neurochir Pol 2018; 52:427-435. [PMID: 30025722 DOI: 10.1016/j.pjnns.2018.06.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 04/03/2018] [Accepted: 06/19/2018] [Indexed: 12/01/2022]
Abstract
Understanding the pathomechanisms behind peripheral nerve damage and learning the course of regeneration seem to be crucial for selecting the appropriate methods of treatment. Autografts are currently the gold standard procedure in nerve reconstruction. However, due to the frequency of complications resulting from autografting and a desire to create a better environment for the regeneration of the damaged nerve, artificial conduits have become an approved alternative treatment method. The aim of this mini-review is to present the nerve scaffolds that have been applied in clinical practice to date, and the potential directions of developments in nerve conduit bioengineering. Articles regarding construction and characterization of nerve conduits were used as the theoretical background. All papers, available in PubMed database since 2000, presenting results of application of artificial nerve conduits in clinical trials were included into this mini-review. Fourteen studies including ≤10 patients and 10 trials conducted on >10 patients were analyzed as well as 24 papers focused on artificial nerve conduits per se. Taking into consideration the experiences of the authors investigating nerve conduits in clinical trials, it is essential to point out the emergence of bioresorbable scaffolds, which in the future may significantly change the treatment of peripheral nerve injuries. Also worth mentioning among the advanced conduits are hybrid conduits, which combine several modifications of a synthetic material to provide the optimal regeneration of a damaged nerve.
Collapse
Affiliation(s)
- Patrycja Chrząszcz
- Department of Physiology, School of Medicine in Katowice, Medical University of Silesia, ul. Medyków 4, 40752 Katowice, Poland
| | - Kamil Derbisz
- Department of Physiology, School of Medicine in Katowice, Medical University of Silesia, ul. Medyków 4, 40752 Katowice, Poland
| | - Krzysztof Suszyński
- Department of Physiology, School of Medicine in Katowice, Medical University of Silesia, ul. Medyków 4, 40752 Katowice, Poland
| | - Jan Miodoński
- Department of Neurosurgery, Provincial Specialist Hospital No. 2 in Jastrzębie - Zdrój, al. Jana Pawła II 7, 44300 Jastrzębie - Zdrój, Poland
| | - Robert Trybulski
- Department of Physiology, School of Medicine in Katowice, Medical University of Silesia, ul. Medyków 4, 40752 Katowice, Poland
| | - Joanna Lewin-Kowalik
- Department of Physiology, School of Medicine in Katowice, Medical University of Silesia, ul. Medyków 4, 40752 Katowice, Poland
| | - Wiesław Marcol
- Department of Physiology, School of Medicine in Katowice, Medical University of Silesia, ul. Medyków 4, 40752 Katowice, Poland; Department of Neurosurgery, Provincial Specialist Hospital No. 2 in Jastrzębie - Zdrój, al. Jana Pawła II 7, 44300 Jastrzębie - Zdrój, Poland.
| |
Collapse
|
37
|
Kim JS, Bonsu NY, Leland HA, Carey JN, Patel KM, Seruya M. A Systematic Review of Prognostic Factors for Sensory Recovery After Digital Nerve Reconstruction. Ann Plast Surg 2018; 80:S311-S316. [PMID: 29596088 DOI: 10.1097/sap.0000000000001440] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Successful digital nerve repair is crucial in preventing painful neuroma formation and restoring sensory function after traumatic hand injury. The purpose of this study is to identify prognostic factors affecting sensory recovery following digital nerve reconstruction. METHODS A systematic review was conducted according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines including studies reporting patients 18 years and older, greater than 10 reconstructed digital nerves, and greater than or equal to 3 months follow-up. Studies with proximal nerve injuries in the same distribution or inadequate sensory data were excluded. Included studies were evaluated by methodological index for nonrandomized studies score. Possible predictors were examined using the t test and 1-way analysis of variance with α ≤ 0.05. RESULTS Twenty-five studies met the inclusion criteria, consisting of 818 surgically reconstructed digital nerves (mean age, 38 years; 78% male) with a mean ± SD defect length of 1.5 ± 0.5 cm. Mean follow-up time was 22 months. Fifty-six percent of patients presented with concomitant injuries to tendons (31%) and the digital artery (13%). Mean ± SD time to surgical repair was 36 ± 73.8 days. Reconstructive techniques included 35% end-to-end primary neurorrhaphy, 31% nerve grafts, and 11% synthetic conduits. Postoperatively, 81% of the patients demonstrated sensory recovery of S3+/S4, with 45% complaining of hyperesthesia. Nerve reconstructions performed within 15 days of injury had significantly better static 2-point discrimination than delayed procedures (P = 0.02). Static 2-point discrimination measurements were also significantly better for shorter defect lengths (<1.3 cm, P = 0.05). No significant functional differences were found across age, follow-up time, injured digit or side, nor reconstructive technique. CONCLUSIONS Digital nerve reconstruction has good to excellent sensory recovery in up to 81% of patients with improved results in nerve gaps less than 1.3 cm. Performing the reconstruction within 15 days of injury is also correlated with improved sensory recovery.
Collapse
Affiliation(s)
- Jennifer S Kim
- From the Division of Plastic and Reconstructive Surgery, Keck School of Medicine of the University of Southern California, Los Angeles, CA
| | | | | | | | | | | |
Collapse
|
38
|
Use of Processed Nerve Allografts to Repair Nerve Injuries Greater Than 25 mm in the Hand. Ann Plast Surg 2018; 78:S292-S295. [PMID: 28328632 DOI: 10.1097/sap.0000000000001037] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Processed nerve allografts (PNAs) have been demonstrated to have improved clinical results compared with hollow conduits for reconstruction of digital nerve gaps less than 25 mm; however, the use of PNAs for longer gaps warrants further clinical investigation. Long nerve gaps have been traditionally hard to study because of low incidence. The advent of the RANGER registry, a large, institutional review board-approved, active database for PNA (Avance Nerve Graft; AxoGen, Inc, Alachua, FL) has allowed evaluation of lower incidence subsets. The RANGER database was queried for digital nerve repairs of 25 mm or greater. Demographics, injury, treatment, and functional outcomes were recorded on standardized forms. Patients younger than 18 and those lacking quantitative follow-up data were excluded. Recovery was graded according to the Medical Research Council Classification for sensory function, with meaningful recovery defined as S3 or greater level. Fifty digital nerve injuries in 28 subjects were included. There were 22 male and 6 female subjects, and the mean age was 45. Three patients gave a previous history of diabetes, and there were 6 active smokers. The most commonly reported mechanisms of injury were saw injuries (n = 13), crushing injuries (n = 9), resection of neuroma (n = 9), amputation/avulsions (n = 8), sharp lacerations (n = 7), and blast/gunshots (n = 4). The average gap length was 35 ± 8 mm (range, 25-50 mm). Recovery to the S3 or greater level was reported in 86% of repairs. Static 2-point discrimination (s2PD) and Semmes-Weinstein monofilament (SWF) were the most common completed assessments. Mean s2PD in 24 repairs reporting 2PD data was 9 ± 4 mm. For the 38 repairs with SWF data, protective sensation was reported in 33 repairs, deep pressure in 2, and no recovery in 3. These data compared favorably with historical data for nerve autograft repairs, with reported levels of meaningful recovery of 60% to 88%. There were no reported adverse effects. Processed nerve allograft can be used to reconstruct long gap nerve defects in the hand with consistently high rates of meaningful recovery. Results for PNA repairs of digital nerve injuries with gaps longer than 25 mm compare favorably with historical reports for nerve autograft repair but without donor site morbidity.
Collapse
|
39
|
Rebowe R, Rogers A, Yang X, Kundu SC, Smith TL, Li Z. Nerve Repair with Nerve Conduits: Problems, Solutions, and Future Directions. J Hand Microsurg 2018; 10:61-65. [PMID: 30154617 DOI: 10.1055/s-0038-1626687] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 01/02/2018] [Indexed: 01/09/2023] Open
Abstract
Nerve conduits are becoming increasingly popular for the repair of peripheral nerve injuries. Their ease of application and lack of donor site morbidity make them an attractive option for nerve repair in many situations. Today, there are many different conduits to choose in different sizes and materials, giving the reconstructive surgeon many options for any given clinical problem. However, to properly utilize these unique reconstructive tools, the peripheral nerve surgeon must be familiar not only with their standard indications but also with their functional limitations. In this review, the authors identify the common applications of nerve conduits, expected results, and shortcomings of current techniques. Furthermore, future directions for nerve conduit use are identified.
Collapse
Affiliation(s)
- Ryan Rebowe
- Department of Orthopaedics, Wake Forest Baptist Medical Center, Winston Salem, North Carolina, United States
| | - Ashley Rogers
- Department of Orthopaedics, Wake Forest Baptist Medical Center, Winston Salem, North Carolina, United States
| | - Xuebin Yang
- Department of Oral Biology, University of Leeds, Leeds, United Kingdom
| | - S C Kundu
- Department of Biotechnology, Indian Institute of Technology, Kharagpur, West Bengal, India
| | - Thomas L Smith
- Department of Orthopaedics, Wake Forest Baptist Medical Center, Winston Salem, North Carolina, United States
| | - Zhongyu Li
- Department of Orthopaedics, Wake Forest Baptist Medical Center, Winston Salem, North Carolina, United States
| |
Collapse
|
40
|
Pyatin VF, Kolsanov AV, Shirolapov IV. Recent medical techniques for peripheral nerve repair: Clinico-physiological advantages of artificial nerve guidance conduits. ADVANCES IN GERONTOLOGY 2017. [DOI: 10.1134/s2079057017020126] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
41
|
Hsu SH, Chang WC, Yen CT. Novel flexible nerve conduits made of water-based biodegradable polyurethane
for peripheral nerve regeneration. J Biomed Mater Res A 2017; 105:1383-1392. [DOI: 10.1002/jbm.a.36022] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 01/20/2017] [Accepted: 01/26/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Shan-hui Hsu
- Institute of Polymer Science and Engineering; National Taiwan University; Taipei Taiwan
| | - Wen-Chi Chang
- Institute of Polymer Science and Engineering; National Taiwan University; Taipei Taiwan
| | - Chen-Tung Yen
- Department of Life Science and Institute of Zoology; National Taiwan University; Taipei Taiwan
| |
Collapse
|
42
|
Braga Silva J, Marchese GM, Cauduro CG, Debiasi M. Nerve conduits for treating peripheral nerve injuries: A systematic literature review. HAND SURGERY & REHABILITATION 2017; 36:71-85. [PMID: 28325431 DOI: 10.1016/j.hansur.2016.10.212] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 09/22/2016] [Accepted: 10/26/2016] [Indexed: 01/16/2023]
Abstract
Peripheral nerve injuries are a major public health problem. Nerve conduits have been developed in the recent years, although it is still not clear if they should replace nerve grafting and neurorrhaphy. This systematic review aims to gather evidence regarding the use of nerve conduits for peripheral nerve repair. The following electronic databases were searched: MEDLINE, Cochrane Library (CENTRAL) and Embase. Study selection and data extraction followed the PRISMA guidelines. The systematic review of the literature retrieved 6767 articles. Only 27 studies were retained accounting for 1022 patients: 10 randomized controlled trials, 15 case series and 2 cohort studies. Ten different types of tubes were described and a variety of evaluation methods were used to assess outcomes in terms of efficacy (motor and sensory recovery) and complications. The Semmes-Weinstein monofilament test and the static and moving 2-point discrimination test were the most commonly applied tests to evaluate nerve recovery. In general, outcomes showed no significant difference between groups. Synthetic conduits had more complications. Despite major methodological limitations in the studies, we can conclude that use of nerve conduits is preferable over suture repair and nerve grafting, as the functional recovery rates are above 80%. The choice of conduit is based on the surgeon's expertise, but use of synthetic conduits is discouraged due to their higher complication rates.
Collapse
Affiliation(s)
- J Braga Silva
- PUCRS School of Medicine, Ipiranga Avenue, 6681 Partenon - Building 60, 90610-000 Porto Alegre, RS, Brazil.
| | - G M Marchese
- PUCRS School of Medicine, Ipiranga Avenue, 6681 Partenon - Building 60, 90610-000 Porto Alegre, RS, Brazil
| | - C G Cauduro
- PUCRS School of Medicine, Ipiranga Avenue, 6681 Partenon - Building 60, 90610-000 Porto Alegre, RS, Brazil
| | - M Debiasi
- Latin American Cooperative Oncology Group (LACOG), Ipiranga Avenue, 6681 Partenon - Building 99A/office 806, 90610-000 Porto Alegre, RS, Brazil
| |
Collapse
|
43
|
Advances in peripheral nervous system regenerative therapeutic strategies: A biomaterials approach. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 65:425-32. [DOI: 10.1016/j.msec.2016.04.048] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 02/20/2016] [Accepted: 04/14/2016] [Indexed: 01/02/2023]
|
44
|
Abstract
Manufactured conduits and allografts are viable alternatives to direct suture repair and nerve autograft. Manufactured tubes should have gaps less than 10 mm, and ideally should be considered as an aid to the coaptation. Processed nerve allograft has utility as a substitute for either conduit or autograft in sensory nerve repairs. There is also a growing body of evidence supporting their utility in major peripheral nerve repairs, gap repairs up to 70 mm in length, as an alternative source of tissue to bolster the diameter of a cable graft, and for the management of neuromas in non-reconstructable injuries.
Collapse
Affiliation(s)
- Bauback Safa
- The Buncke Clinic, 45 Castro Street #121, San Francisco, CA 94114, USA.
| | - Gregory Buncke
- The Buncke Clinic, 45 Castro Street #121, San Francisco, CA 94114, USA
| |
Collapse
|
45
|
Past, Present, and Future of Nerve Conduits in the Treatment of Peripheral Nerve Injury. BIOMED RESEARCH INTERNATIONAL 2015; 2015:237507. [PMID: 26491662 PMCID: PMC4600484 DOI: 10.1155/2015/237507] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 05/12/2015] [Accepted: 05/19/2015] [Indexed: 01/03/2023]
Abstract
With significant advances in the research and application of nerve conduits, they have been used to repair peripheral nerve injury for several decades. Nerve conduits range from biological tubes to synthetic tubes, and from nondegradable tubes to biodegradable tubes. Researchers have explored hollow tubes, tubes filled with scaffolds containing neurotrophic factors, and those seeded with Schwann cells or stem cells. The therapeutic effect of nerve conduits is improving with increasing choice of conduit material, new construction of conduits, and the inclusion of neurotrophic factors and support cells in the conduits. Improvements in functional outcomes are expected when these are optimized for use in clinical practice.
Collapse
|
46
|
Sabongi RG, Fernandes M, Dos Santos JBG. Peripheral nerve regeneration with conduits: use of vein tubes. Neural Regen Res 2015; 10:529-33. [PMID: 26170802 PMCID: PMC4424734 DOI: 10.4103/1673-5374.155428] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2015] [Indexed: 12/17/2022] Open
Abstract
Treatment of peripheral nerve injuries remains a challenge to modern medicine due to the complexity of the neurobiological nerve regenerating process. There is a greater challenge when the transected nerve ends are not amenable to primary end-to-end tensionless neurorraphy. When facing a segmental nerve defect, great effort has been made to develop an alternative to the autologous nerve graft in order to circumvent morbidity at donor site, such as neuroma formation, scarring and permanent loss of function. Tubolization techniques have been developed to bridge nerve gaps and have been extensively studied in numerous experimental and clinical trials. The use of a conduit intends to act as a vehicle for moderation and modulation of the cellular and molecular ambience for nerve regeneration. Among several conduits, vein tubes were validated for clinical application with improving outcomes over the years. This article aims to address the investigation and treatment of segmental nerve injury and draw the current panorama on the use of vein tubes as an autogenous nerve conduit.
Collapse
Affiliation(s)
- Rodrigo Guerra Sabongi
- Department of Orthopedics and Traumatology, Escola Paulista de Medicina, Federal University of São Paulo, São Paulo, Brazil
| | - Marcela Fernandes
- Division of Hand Surgery, Department of Orthopedics and Traumatology, Escola Paulista de Medicina, Federal University of São Paulo, Brazil
| | - João Baptista Gomes Dos Santos
- Division of Hand Surgery, Department of Orthopedics and Traumatology, Escola Paulista de Medicina, Federal University of São Paulo, Brazil
| |
Collapse
|
47
|
Thomas PR, Saunders RJ, Means KR. Comparison of digital nerve sensory recovery after repair using loupe or operating microscope magnification. J Hand Surg Eur Vol 2015; 40:608-13. [PMID: 25355793 DOI: 10.1177/1753193414556006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 09/25/2014] [Indexed: 02/03/2023]
Abstract
UNLABELLED Our purpose was to determine whether there was a significant difference in sensory recovery after digital nerve repair using loupe magnification or an operating microscope. We identified patients aged 21-75 who had primary proper digital nerve repairs at least 24 months before our study. A total of 12 patients with 13 digital nerve injuries repaired with loupe magnification and nine patients with 12 digital nerve injuries repaired using the operating microscope, agreed to return for assessment by a therapist blinded to treatment. We found no significant difference in sensory recovery between the two groups as measured by static two-point discrimination, moving two-point discrimination, and Semmes-Weinstein monofilament. There were also no significant differences in average Disabilities of the Arm Shoulder and Hand or visual analogue pain scores. LEVEL OF EVIDENCE IV.
Collapse
Affiliation(s)
- P R Thomas
- The Curtis National Hand Center, MedStar Union Memorial Hospital, Baltimore, MD, USA
| | - R J Saunders
- The Curtis National Hand Center, MedStar Union Memorial Hospital, Baltimore, MD, USA
| | - K R Means
- The Curtis National Hand Center, MedStar Union Memorial Hospital, Baltimore, MD, USA
| |
Collapse
|
48
|
Comparison of nerve, vessel, and cartilage grafts in promoting peripheral nerve regeneration. Ann Plast Surg 2015; 73:54-61. [PMID: 23917545 DOI: 10.1097/sap.0b013e31829fd2be] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Peripheral nerve injury primarily occurs due to trauma as well as factors such as tumors, inflammatory diseases, congenital deformities, infections, and surgical interventions. The surgical procedure to be performed as treatment depends on the etiology, type of injury, and the anatomic region. The goal of treatment is to minimize loss of function due to motor and sensory nerve loss at the distal part of the injury. Regardless of the cause of the injury, the abnormal nerve regeneration due to incomplete nerve regeneration, optimal treatment of peripheral nerve injuries should provide adequate coaptation of proximal and distal sides without tension, preserving the neurotrophic factors within the repair line. The gold standard for the treatment of nerve defects is the autograft; however, due to denervation of the donor site, scarring, and neuroma formation, many studies have aimed to develop simpler methods, better functional results, and less morbidity. In this study, a defect 1 cm in length was created on the sciatic nerve of rats. The rats were treated with the following procedures: group 1, autograft; group 2, allogeneic aorta graft; group 3, diced cartilage graft in allogeneic aorta graft; and group 4, tubularized cartilage graft in allogeneic aorta graft. Group 5 was the control group. The effects of cartilage tissue in nerve regeneration were evaluated by functional and histomorphological methods.Group 1, for which the repair was performed with an autograft, was evaluated to be the most similar to the control group. There was not a statistically significant difference in myelination and Schwann cell rates between group 2, in which an allogeneic aorta graft was used, and group 3, in which diced cartilage in an allogeneic aorta graft was used. In group 4, myelination and Schwann cell formation were observed; however, they were scattered and irregular, likely due to increased fibrosis.In all of the groups, nerve regeneration at various rates was observed both functionally and histomorphologically. This study demonstrates that cartilage tissue has promoting effects in nerve regeneration.
Collapse
|
49
|
Zack-Williams SDL, Butler PE, Kalaskar DM. Current progress in use of adipose derived stem cells in peripheral nerve regeneration. World J Stem Cells 2015; 7:51-64. [PMID: 25621105 PMCID: PMC4300936 DOI: 10.4252/wjsc.v7.i1.51] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 09/25/2014] [Accepted: 10/29/2014] [Indexed: 02/06/2023] Open
Abstract
Unlike central nervous system neurons; those in the peripheral nervous system have the potential for full regeneration after injury. Following injury, recovery is controlled by schwann cells which replicate and modulate the subsequent immune response. The level of nerve recovery is strongly linked to the severity of the initial injury despite the significant advancements in imaging and surgical techniques. Multiple experimental models have been used with varying successes to augment the natural regenerative processes which occur following nerve injury. Stem cell therapy in peripheral nerve injury may be an important future intervention to improve the best attainable clinical results. In particular adipose derived stem cells (ADSCs) are multipotent mesenchymal stem cells similar to bone marrow derived stem cells, which are thought to have neurotrophic properties and the ability to differentiate into multiple lineages. They are ubiquitous within adipose tissue; they can form many structures resembling the mature adult peripheral nervous system. Following early in vitro work; multiple small and large animal in vivo models have been used in conjunction with conduits, autografts and allografts to successfully bridge the peripheral nerve gap. Some of the ADSC related neuroprotective and regenerative properties have been elucidated however much work remains before a model can be used successfully in human peripheral nerve injury (PNI). This review aims to provide a detailed overview of progress made in the use of ADSC in PNI, with discussion on the role of a tissue engineered approach for PNI repair.
Collapse
|
50
|
Kaushik AP, Hammert WC. Options for digital nerve gap. J Hand Surg Am 2015; 40:141-4. [PMID: 25446411 DOI: 10.1016/j.jhsa.2014.09.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Accepted: 09/25/2014] [Indexed: 02/02/2023]
Affiliation(s)
- Anjan P Kaushik
- Department of Orthopaedics and Rehabilitation, Strong Memorial Hospital, University of Rochester, Rochester, NY
| | - Warren C Hammert
- Department of Orthopaedics and Rehabilitation, Strong Memorial Hospital, University of Rochester, Rochester, NY.
| |
Collapse
|