1
|
Ota Y, Prah I, Mahazu S, Gu Y, Nukui Y, Koike R, Saito R. Novel insights into genetic characteristics of blaGES-encoding plasmids from hospital sewage. Front Microbiol 2023; 14:1209195. [PMID: 37664110 PMCID: PMC10469963 DOI: 10.3389/fmicb.2023.1209195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 08/01/2023] [Indexed: 09/05/2023] Open
Abstract
Introduction The prevalence of Guiana extended-spectrum (GES)-type carbapenemase producers is increasing worldwide, and hospital water environments are considered as potential reservoirs. However, the genetic features underlying this resistance are not yet fully understood. This study aimed to characterize blaGES-encoding plasmids from a single-hospital sewage sample in Japan. Methods Carbapenemase producers were screened using carbapenemase-selective agar and polymerase chain reaction. Whole-genome sequencing analyzes were performed on the carbapenemase-producing isolates. Results Eleven gram-negative bacteria (four Enterobacter spp., three Klebsiella spp., three Aeromonas spp., and one Serratia spp.) with blaGES-24 (n = 6), blaGES-6 (n = 4), and blaGES-5 (n = 1) were isolated from the sewage sample. Five blaGES-24 and a blaGES-5 were localized in IncP-6 plasmids, whereas three blaGES-6 plasmids were localized in IncC plasmids with IncF-like regions. The remaining blaGES-6 and blaGES-24 were, respectively, localized on IncFIB-containing plasmids with IncF-like regions and a plasmid with an IncW-like replication protein. The IncP-6 and IncW-like plasmids had a close genetic relationship with plasmids from Japan, whereas the IncC/IncF-like and IncFIB/IncF-like plasmids were closely related to those from the United States and Europe. All blaGES genes were located on the class 1 integron cassette of the Tn3 transposon-related region, and the IncC/IncF-like plasmid carried two copies of the integron cassette. Eight of the eleven blaGES-encoding plasmids contained toxin-antitoxin system genes. Discussion The findings on the plasmids and the novel genetic content from a single wastewater sample extend our understanding regarding the diversity of resistance and the associated spread of blaGES, suggesting their high adaptability to hospital effluents. These findings highlight the need for the continuous monitoring of environmental GES-type carbapenemase producers to control their dissemination.
Collapse
Affiliation(s)
- Yusuke Ota
- Department of Molecular Microbiology and Immunology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Isaac Prah
- Department of Molecular Microbiology and Immunology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Samiratu Mahazu
- Department of Molecular Microbiology and Immunology, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Parasitology and Tropical Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yoshiaki Gu
- Department of Infectious Diseases, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yoko Nukui
- Department of Infection Control and Laboratory Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Ryuji Koike
- Clinical Research Center, Tokyo Medical and Dental University Hospital, Tokyo, Japan
| | - Ryoichi Saito
- Department of Molecular Microbiology and Immunology, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
2
|
Moriyama Y, Doi A, Shinkai N, Nasu S, Mesaki K, Horii K, Ohmagari N, Hayakawa K. Clinical characteristics and risk factors for multidrug-resistant bacterial isolation in patients with international travel history. Am J Infect Control 2022; 51:660-667. [PMID: 36031036 DOI: 10.1016/j.ajic.2022.08.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 08/18/2022] [Accepted: 08/18/2022] [Indexed: 11/18/2022]
Abstract
BACKGROUND International travelers are at risk of carrying resistant bacteria. It is critical to identify risk factors associated with multidrug-resistant organism (MDRO) colonization in travelers. METHODS A retrospective chart review observational study was conducted at two tertiary centers in Japan for inpatients who had been hospitalized or visited an outpatient clinic overseas within the previous 12 months. These patients underwent MDRO screening upon admission. To identify independent predictors for the isolation of MDROs, multivariable analyses were performed using logistic regression. RESULTS In total, 76 (35%) of the 216 patients were positive for MDROs at admission. The majority of bacteria detected in stool samples were extended-spectrum beta-lactamase-producing Escherichia coli (ESBLEC) (n = 67 [89%]). ESBLEC was detected in nearly 40% of patients who traveled to Asia. Travel to Asia was an independent risk factor for any MDRO and ESBLEC isolation. For non-ESBLEC MDRO isolation, a history of surgery abroad was an independent risk factor for detection. DISCUSSION AND CONCLUSIONS A history of hospitalization abroad has previously been found to be associated with MDRO colonization in travelers, which was not identified as a risk factor in this study. The risk factors for MDRO colonization were different between ESBLEC and non-ESBL MDROs.
Collapse
Affiliation(s)
- Yuki Moriyama
- Disease Control and Prevention Center, National Center for Global Health and Medicine, Tokyo, Japan; AMR Clinical Reference Center, National Center for Global Health and Medicine, Tokyo, Japan
| | - Asako Doi
- Department of Infectious Diseases, Kobe City Medical Center General Hospital, Hyogo, Japan
| | - Noriko Shinkai
- Department of Infection Control, Kobe City Medical Center General Hospital, Hyogo, Japan
| | - Seiko Nasu
- Department of Clinical Laboratory, Kobe City Medical Center General Hospital, Hyogo, Japan
| | - Kazuhisa Mesaki
- Department of Clinical Laboratory, National Center for Global Health and Medicine, Tokyo, Japan
| | - Kumi Horii
- Infection Control and Prevention, National Center for Global Health and Medicine, Tokyo, Japan
| | - Norio Ohmagari
- Disease Control and Prevention Center, National Center for Global Health and Medicine, Tokyo, Japan; AMR Clinical Reference Center, National Center for Global Health and Medicine, Tokyo, Japan
| | - Kayoko Hayakawa
- Disease Control and Prevention Center, National Center for Global Health and Medicine, Tokyo, Japan; AMR Clinical Reference Center, National Center for Global Health and Medicine, Tokyo, Japan.
| |
Collapse
|
3
|
Ayoub Moubareck C, Hammoudi Halat D. The Collateral Effects of COVID-19 Pandemic on the Status of Carbapenemase-Producing Pathogens. Front Cell Infect Microbiol 2022; 12:823626. [PMID: 35372126 PMCID: PMC8968076 DOI: 10.3389/fcimb.2022.823626] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 01/27/2022] [Indexed: 12/28/2022] Open
Abstract
The serious challenge of antimicrobial resistance continues to threaten public health and lingers in the era of the coronavirus disease 2019 (COVID-19), declared pandemic by the World Health Organization. While the pandemic has triggered the importance of infection control practices and preventive measures such as physical distancing, hand hygiene, travel reduction and quarantine, the ongoing alarm of antimicrobial resistance seems to accompany the pandemic too. Antimicrobial resistance has been fostered during COVID-19, possibly due to high rate of empirical antibiotic utilization in COVID-19 patients, increased use of biocides, and the disruption of proper healthcare for other conditions. Specifically, carbapenemase-producing Gram-negative bacteria have shown to cause secondary bacterial infections in patients hospitalized for COVID-19. Clinical and microbiological evidence of such infections is accumulating in different parts of the world. With the resilient nature of carbapenemases, their association with mortality, and the limited treatment options available, concerns regarding this group of antibiotic-hydrolyzing enzymes during the pandemic are expected to upsurge. While the additional burden carbapenemases exert on healthcare is worrisome, it remains hidden or abandoned among the various health consequences of the pandemic. The purpose of this minireview is to shed a light on carbapenemase-associated infections during such unprecedented time of COVID-19. A focused insight shall be made into carbapenemases, their implications for COVID-19 patients, and the features and consequences of co-infection, with a review of available evidence from pertinent literature. The importance of increased surveillance for carbapenemase-producers and optimizing their management in relation to the pandemic, shall be addressed as well.
Collapse
Affiliation(s)
| | - Dalal Hammoudi Halat
- Department of Pharmaceutical Sciences, School of Pharmacy, Lebanese International University, Bekaa, Lebanon
| |
Collapse
|
4
|
Nakamura A, Nakamura T, Niki M, Kuchibiro T, Nishi I, Komatsu M. Genomic Characterization of ESBL- and Carbapenemase-Positive Enterobacteriaceae Co-harboring mcr-9 in Japan. Front Microbiol 2021; 12:665432. [PMID: 34504474 PMCID: PMC8421803 DOI: 10.3389/fmicb.2021.665432] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 07/16/2021] [Indexed: 12/30/2022] Open
Abstract
Worldwide spread of Enterobacteriaceae resistant to colistin, a polypeptide antibacterial drug for last-resort treatment of carbapenemase-producing Enterobacteriaceae (CPE) infections, is concerning. This study aimed to elucidate colistin MICs and molecular characteristics of mcr-1 to mcr-9 of ESBL-producing Escherichia coli (ESBL-Ec) and CPE in Japan and clarify the genomic structure of strains harboring mcr genes (especially mcr-9). This study included 168 ESBL-Ec and 126 CPE strains isolated at Japanese medical facilities. Colistin susceptibility testing and multiplex PCR targeting mcr-1 to mcr-9 were performed for all strains with S1-nuclease pulsed-field gel electrophoresis, Southern blot hybridization, and whole-genome sequencing (WGS) with hybrid assembly performed for mcr gene-carrying strains. Two CPE strains showed a MIC ≥ 4 μg/ml in colistin susceptibility testing, with no known resistance mechanism detected. However, PCR conducted on all target strains detected three mcr-9-carrying strains showing colistin susceptibility. The blaCTX–M–62-positive E. coli THUN648 strain simultaneously carried blaCTX–M–62 and mcr-9 on a 275-kbp plasmid. Besides, blaIMP–6 + blaCTX–M–2-positive Klebsiella pneumoniae THUN262 and blaGES–24-positive Enterobacter kobei THUN627 had mcr-9 encoded on the chromosome. Only THUN627 encoded qseB/C, which is suggested to be a regulatory gene for mcr-9, downstream of mcr-9. However, this strain showed no increased expression of these genes in mRNA quantitative analysis under colistin exposure. Colistin MICs of ESBL-Ec and CPE in Japan were all below 2 μg/ml, which is below the epidemiological cutoff (ECOFF) value (https://eucast.org/) or clinical breakpoint (CB) (CLSI M100-S30) reported for colistin, indicating neither “microbiological” nor “clinical” resistance. Several colistin-susceptible Enterobacteriaceae carrying silent mcr-9 encoded on plasmids and chromosomes have already spread worldwide along with other antimicrobial resistance genes. However, the mechanism of colistin resistance by mcr-9 remains unclear.
Collapse
Affiliation(s)
- Akihiro Nakamura
- Department of Clinical Laboratory Science, Faculty of Health Care, Tenri Health Care University, Tenri, Japan
| | - Tatsuya Nakamura
- Faculty of Health Sciences, Kyoto Tachibana University, Kyoto, Japan
| | - Makoto Niki
- Department of Infection Control and Prevention, Osaka City University Hospital, Osaka, Japan
| | - Tomokazu Kuchibiro
- Department of Clinical Laboratory, Naga Municipal Hospital, Wakayama, Japan
| | - Isao Nishi
- Laboratory for Clinical Investigation, Osaka University Hospital, Osaka, Japan
| | - Masaru Komatsu
- Department of Clinical Laboratory Science, Faculty of Health Care, Tenri Health Care University, Tenri, Japan
| |
Collapse
|
5
|
Beltrão EMB, Oliveira ÉMD, Lopes ACDS. First report of bla GES-1 in Proteus mirabilis clinical isolates. Rev Soc Bras Med Trop 2021; 54:e0864-2020. [PMID: 33759932 PMCID: PMC8008897 DOI: 10.1590/0037-8682-0864-2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 02/05/2021] [Indexed: 11/29/2022] Open
Abstract
Proteus mirabilis is one of the main pathogens causing urinary tract infections and sepsis. To our knowledge, this is the first report of a P. mirabilis hosting blaGES. The presence of these genes was determined using PCR and sequencing. We identified the presence of blaGES-1 in all three isolates. In addition, we identified the blaKPC-2 and blaNDM-1 genes in the two strains. These data emphasize the importance of monitoring and surveillance of all enterobacteria. The circulation of P. mirabilis strains carrying blaGES-1 constitutes a new scenario of resistance in this species and should be an epidemiological alert for global health.
Collapse
|
6
|
Takano C, Seki M, Kim DW, Gardner H, McLaughlin RE, Kilgore PE, Kumasaka K, Hayakawa S. Development of a Novel Loop-Mediated Isothermal Amplification Method to Detect Guiana Extended-Spectrum (GES) β-Lactamase Genes in Pseudomonas aeruginosa. Front Microbiol 2019; 10:25. [PMID: 30778337 PMCID: PMC6369207 DOI: 10.3389/fmicb.2019.00025] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Accepted: 01/09/2019] [Indexed: 11/13/2022] Open
Abstract
Infections caused by multidrug-resistant Pseudomonas aeruginosa in hospitalized patients are often fatal, and nosocomial infections caused by Guiana extended-spectrum (GES) β-lactamase-producing strains are of growing concern. Several genotypes of the GES β-lactamase gene (blaGES) include a single missense mutation, a change from G to A at nucleotide position 493 (G493A) that changes glycine to serine; the mutant enzyme exhibits carbapenemase activity. Rapid and reliable identification of drug-resistance is important in clinical settings; however, culture methods remain the gold standard. Conventional and real-time PCR cannot identify carbapenemase-producing genotypes, and direct DNA sequencing is essential. We established a novel loop-mediated isothermal amplification (LAMP) method to detect various genotypes of blaGES and another LAMP method to discriminate carbapenemase genotypes of blaGES. We evaluated the two assays using clinical P. aeruginosa strains. Two primer sets targeting blaGES (GES-LAMP) and the point mutation (Carba-GES-LAMP) were designed and evaluated for specificity and sensitivity. The detection limit of the GES-LAMP method was assessed using purified DNA and DNA-spiked clinical samples (urine, sputum, and blood). To determine the clinical usefulness of the methods, we used different (genotypically and phenotypically) P. aeruginosa clinical isolates, collected from diverse geographical locations between 2003 and 2012. The novel LAMP assay targeting blaGES was highly specific. The detection limit was 10 DNA copies per reaction; the assay was 10-fold more sensitive than conventional PCR. The LAMP assay detected blaGES with high sensitivity in all DNA-spiked samples; PCR did not detect blaGES in blood samples. The GES-LAMP method correctly detected the 5 isolates containing blaGES among the 14 isolates tested. Using these isolates, we confirmed that our Carba-GES-LAMP method of detecting point mutations correctly identified the two blaGES positive organisms with carbapenemase activity. To the best of our knowledge, this is the first report of the GES β-lactamase gene detection assay using the LAMP method. Our new assays effectively detect blaGES and critical unique mutations.
Collapse
Affiliation(s)
- Chika Takano
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
| | - Mitsuko Seki
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan.,Division of Pediatric Dentistry, Meikai University School of Dentistry, Sakado, Japan
| | - Dong Wook Kim
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan, South Korea.,Institute of Pharmacological Research, Hanyang University, Ansan, South Korea
| | | | | | - Paul E Kilgore
- Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, United States
| | - Kazunari Kumasaka
- Department of Laboratory Medicine, Ageo Central General Hospital, Ageo, Japan
| | - Satoshi Hayakawa
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
| |
Collapse
|
7
|
Kuchibiro T, Komatsu M, Yamasaki K, Nakamura T, Nishio H, Nishi I, Kimura K, Niki M, Ono T, Sueyoshi N, Kita M, Kida K, Ohama M, Satoh K, Toda H, Mizutani T, Fukuda N, Sawa K, Nakai I, Kofuku T, Orita T, Watari H, Shimura S, Fukuda S, Nakamura A, Wada Y. Evaluation of the modified carbapenem inactivation method for the detection of carbapenemase-producing Enterobacteriaceae. J Infect Chemother 2018; 24:262-266. [DOI: 10.1016/j.jiac.2017.11.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 11/12/2017] [Accepted: 11/19/2017] [Indexed: 11/24/2022]
|
8
|
Kayama S, Yano R, Yamasaki K, Fukuda C, Nishimura K, Miyamoto H, Ohge H, Sugai M. Rapid identification of carbapenemase-type bla GES and ESBL-type bla GES using multiplex PCR. J Microbiol Methods 2018; 148:117-119. [PMID: 29605523 DOI: 10.1016/j.mimet.2018.03.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 03/22/2018] [Accepted: 03/27/2018] [Indexed: 11/17/2022]
Abstract
Guiana extended-spectrum (GES) β-lactamases are emerging in Japan. The GES family can be classified into 2 groups, one with extended-spectrum β-lactamase (ESBL)-like activity, which hydrolyzes penicillins and cephalosporins, and the other with carbapenemase-like activity with an extended spectrum toward carbapenems. This difference is mediated by variations in a specific amino acid in the GES protein: G170 N or G170S substitutions. We developed an amplification refractory mutation system (ARMS) PCR assay that enabled rapid identification of these variant genes without sequencing.
Collapse
Affiliation(s)
- Shizuo Kayama
- Project Research Center for Nosocomial Infectious Diseases, Hiroshima University, Hiroshima University Graduate School of Biomedical Sciences, 1-2-3 Kasumi Minami-ku, Hiroshima 734-8553, Japan; Department of Bacteriology, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima University Graduate School of Biomedical Sciences, 1-2-3 Kasumi Minami-ku, Hiroshima 734-8553, Japan
| | - Raita Yano
- Project Research Center for Nosocomial Infectious Diseases, Hiroshima University, Hiroshima University Graduate School of Biomedical Sciences, 1-2-3 Kasumi Minami-ku, Hiroshima 734-8553, Japan; Department of Bacteriology, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima University Graduate School of Biomedical Sciences, 1-2-3 Kasumi Minami-ku, Hiroshima 734-8553, Japan; Department of Surgery I, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima University Graduate School of Biomedical Sciences, 1-2-3 Kasumi Minami-ku, Hiroshima 734-8553, Japan
| | - Katsutoshi Yamasaki
- Department of Medical Life Science, Kurashiki University of Science and the Arts, Okayama, Japan
| | - Chiemi Fukuda
- Kagawa Prefectural Research Institute for Environmental Sciences and Public Health, Kagawa, Japan
| | - Keiko Nishimura
- Department of Clinical Laboratory, Shikoku Medical Center for Children and Adults, Kagawa, Japan
| | - Hitoshi Miyamoto
- Department of Clinical Laboratory, Ehime University Hospital, Ehime, Japan
| | - Hiroki Ohge
- Project Research Center for Nosocomial Infectious Diseases, Hiroshima University, Hiroshima University Graduate School of Biomedical Sciences, 1-2-3 Kasumi Minami-ku, Hiroshima 734-8553, Japan; Department of Infectious Diseases, Hiroshima University Hospital, Hiroshima, Japan
| | - Motoyuki Sugai
- Project Research Center for Nosocomial Infectious Diseases, Hiroshima University, Hiroshima University Graduate School of Biomedical Sciences, 1-2-3 Kasumi Minami-ku, Hiroshima 734-8553, Japan; Department of Bacteriology, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima University Graduate School of Biomedical Sciences, 1-2-3 Kasumi Minami-ku, Hiroshima 734-8553, Japan.
| |
Collapse
|