1
|
Maghsoudian S, Yektakasmaei MP, Shaabani A, Perseh S, Fatahi Y, Nouri Z, Gholami M, Sayyari N, Hoseinzadeh HA, Motasadizadeh H, Dinarvand R. Synergistic effects of doxorubicin loaded silk fibroin nanoparticles and Cu-TiO 2 nanoparticles for local chemo-sonodynamic therapy against breast cancer. Int J Biol Macromol 2025; 289:138910. [PMID: 39701260 DOI: 10.1016/j.ijbiomac.2024.138910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 12/15/2024] [Accepted: 12/16/2024] [Indexed: 12/21/2024]
Abstract
A promising new approach to mitigate the adverse effects of chemotherapeutic drugs on healthy tissues involves combining sonodynamic therapy with topical chemotherapy to enhance the therapeutic efficacy of anticancer drugs. In this study, we introduce a multi-functional in situ chitosan hydrogel (CS) containing silk fibroin nanoparticles (SFNPs) loaded with doxorubicin (DOXSFNPs) and CuO/TiO2 nanoparticles (CTNPs) for combination therapy. The developed DOXSFNPs exhibited a size of 257 ± 6 nm, a zeta potential of -14.3 ± 1.8 mV, and a high loading capacity of 12.38 ± 1.73 %. The pH-dependent controlled release of DOX from DOXSF2/CS2 was observed to be more pronounced than that from DOX/CS2. MTT results indicated dose-dependent toxicity of CT/CS2 in response to ultrasaound radiation (US). Our findings revealed a 1.83-fold increase in reactive oxygen species (ROS) production with therapy, with the IC50 of CT3-DOXSF2/CS2-US showing a 58 % reduction compared to CT3/DOXSF2/CS2. In vivo outcomes and histopathological staining demonstrated that the CT3/DOXSF2/CS2-US treatment group exhibited the highest tumor growth inhibition rate, reaching approximately 83.65 %. These findings underscore the potential of this approach in minimizing the adverse effects of chemotherapy while maximizing therapeutic outcomes, offering a valuable contribution to the field of cancer therapy.
Collapse
Affiliation(s)
- Samane Maghsoudian
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Alireza Shaabani
- Department of Polymer and Materials Chemistry, Faculty of Chemistry and Petroleum Sciences, Shahid Beheshti University, Iran
| | - Sahra Perseh
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Yousef Fatahi
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Zeinab Nouri
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdi Gholami
- Faculty of Pharmacy and Pharmaceutical Science Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nastaran Sayyari
- School of Medicine, Qom University of Medical Sciences, Qom, Iran
| | - Hesam Aldin Hoseinzadeh
- Department of Clinical Science, Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | - Rassoul Dinarvand
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Leicester School of Pharmacy, De Montfort University, Leicester, UK.
| |
Collapse
|
2
|
Sericultural By-Products: The Potential for Alternative Therapy in Cancer Drug Design. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020850. [PMID: 36677907 PMCID: PMC9861160 DOI: 10.3390/molecules28020850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023]
Abstract
Major progress has been made in cancer research; however, cancer remains one of the most important health-related burdens. Sericulture importance is no longer limited to the textile industry, but its by-products, such as silk fibroin or mulberry, exhibit great impact in the cancer research area. Fibroin, the pivotal compound that is found in silk, owns superior biocompatibility and biodegradability, representing one of the most important biomaterials. Numerous studies have reported its successful use as a drug delivery system, and it is currently used to develop three-dimensional tumor models that lead to a better understanding of cancer biology and play a great role in the development of novel antitumoral strategies. Moreover, sericin's cytotoxic effect on various tumoral cell lines has been reported, but also, it has been used as a nanocarrier for target therapeutic agents. On the other hand, mulberry compounds include various bioactive elements that are well known for their antitumoral activities, such as polyphenols or anthocyanins. In this review, the latest progress of using sericultural by-products in cancer therapy is discussed by highlighting their notable impact in developing novel effective drug strategies.
Collapse
|
3
|
Xu H, Ling J, Zhao H, Xu X, Ouyang XK, Song X. In vitro Antitumor Properties of Fucoidan-Coated, Doxorubicin-Loaded, Mesoporous Polydopamine Nanoparticles. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238455. [PMID: 36500550 PMCID: PMC9736244 DOI: 10.3390/molecules27238455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/19/2022] [Accepted: 11/23/2022] [Indexed: 12/12/2022]
Abstract
Chemotherapy is a common method for tumor treatment. However, the non-specific distribution of chemotherapeutic drugs causes the death of normal cells. Nanocarriers, particularly mesoporous carriers, can be modified to achieve targeted and controlled drug release. In this study, mesoporous polydopamine (MPDA) was used as a carrier for the antitumor drug doxorubicin (DOX). To enhance the release efficiency of DOX in the tumor microenvironment, which contains high concentrations of glutathione (GSH), we used N,N-bis(acryloyl)cysteamine as a cross-linking agent to encapsulate the surface of MPDA with fucoidan (FU), producing MPDA-DOX@FU-SS. MPDA-DOX@FU-SS was characterized via transmission electron microscopy, thermogravimetric analysis, and X-ray photoelectron spectroscopy (XPS), and its antitumor efficacy in vitro was investigated. The optimal conditions for the preparation of MPDA were identified as pH 12 and 20 °C, and the optimal MPDA-to-FU ratio was 2:1. The DOX release rate reached 47.77% in an in vitro solution containing 10 mM GSH at pH 5.2. When combined with photothermal therapy, MPDA-DOX@FU-SS significantly inhibited the growth of HCT-116 cells. In conclusion, MPDA-DOX@FU-SS may serve as a novel, highly effective tumor suppressor that can achieve targeted drug release in the tumor microenvironment.
Collapse
Affiliation(s)
- Hongping Xu
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Junhong Ling
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Han Zhao
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Xinyi Xu
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Xiao-kun Ouyang
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
- Correspondence: (X.O.); (X.S.)
| | - Xiaoyong Song
- Department of Pharmacy, Zhoushan Hospital of Traditional Chinese Medicine, 355 Xinqiao Road, Zhoushan 316000, China
- Correspondence: (X.O.); (X.S.)
| |
Collapse
|
4
|
Investigating the Antimicrobial Activity of Vancomycin-Loaded Soy Protein Nanoparticles. Interdiscip Perspect Infect Dis 2022; 2022:5709999. [PMID: 35813446 PMCID: PMC9259352 DOI: 10.1155/2022/5709999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/30/2022] [Accepted: 06/14/2022] [Indexed: 11/18/2022] Open
Abstract
Developing targeted and slow-release antibiotic delivery systems can effectively reduce drug overdose and side effects. This study aimed to investigate the antimicrobial activity of vancomycin-loaded soy protein nanoparticles (vancomycin-SPNs). For the preparation of SPNs, the desolvation method was applied in different concentrations of vancomycin and soy protein (15:5, 10:15, 6:20, 8:25, and 10:30 of vancomycin:soy protein). Scanning electron microscope (SEM), transmission electron microscopy (TEM), dynamic light scattering (DLS), and FTIR were used for nanoparticle characterization. Antibacterial activity was evaluated by the radial diffusion assay (RDA) and absorbance methods. Proper synthesis was demonstrated by characterization. The best drug loading (% entrapment efficiency = 90.2%), the fastest release rate (% release = 88.2%), and the best antibacterial activity were observed in ratio 10:30 of vancomycin:SPNs. Results showed that SPNs are a potent delivery system for antibiotic loading and slow release to control antibiotic use.
Collapse
|