1
|
Snijders BM, Mathijssen G, Peters MJ, Emmelot-Vonk MH, de Jong PA, Bakker S, Crommelin HA, Ruigrok YM, Brilstra EH, Schepers VP, Spiering W, van Valen E, Koek HL. The effects of etidronate on brain calcifications in Fahr's disease or syndrome: rationale and design of the randomised, placebo-controlled, double-blind CALCIFADE trial. Orphanet J Rare Dis 2024; 19:49. [PMID: 38326858 PMCID: PMC10851566 DOI: 10.1186/s13023-024-03039-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 01/19/2024] [Indexed: 02/09/2024] Open
Abstract
BACKGROUND Fahr's disease and syndrome are rare disorders leading to calcification of the small arteries in the basal ganglia of the brain, resulting in a wide range of symptoms comprising cognitive decline, movement disorders and neuropsychiatric symptoms. No disease-modifying therapies are available. Studies have shown the potential of treatment of ectopic vascular calcifications with bisphosphonates. This paper describes the rationale and design of the CALCIFADE trial which evaluates the effects of etidronate in patients with Fahr's disease or syndrome. METHODS The CALCIFADE trial is a randomised, placebo-controlled, double-blind trial which evaluates the effects of etidronate 20 mg/kg during 12 months follow-up in patients aged ≥ 18 years with Fahr's disease or syndrome. Etidronate and placebo will be administered in capsules daily for two weeks on followed by ten weeks off. The study will be conducted at the outpatient clinic of the University Medical Center Utrecht, the Netherlands. The primary endpoint is the change in cognitive functioning after 12 months of treatment. Secondary endpoints are the change in mobility, neuropsychiatric symptoms, volume of brain calcifications, dependence in activities of daily living, and quality of life. RESULTS Patient recruitment started in April 2023. Results are expected in 2026 and will be disseminated through peer-reviewed journals as well as presentations at national and international conferences. CONCLUSIONS Fahr's disease and syndrome are slowly progressive disorders with a negative impact on a variety of health outcomes. Etidronate might be a new promising treatment for patients with Fahr's disease or syndrome. TRIAL REGISTRATION ClinicalTrials.gov, NCT05662111. Registered 22 December 2022, https://clinicaltrials.gov/ct2/show/NCT01585402 .
Collapse
Affiliation(s)
- Birgitta Mg Snijders
- Department of Geriatrics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.
| | - Gini Mathijssen
- Department of Geriatrics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Mike Jl Peters
- Department of Geriatrics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Internal Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Marielle H Emmelot-Vonk
- Department of Geriatrics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Pim A de Jong
- Department of Radiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Susan Bakker
- Department of Geriatrics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Physiotherapy, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Heleen A Crommelin
- Department of Clinical Pharmacy, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Ynte M Ruigrok
- Department of Neurology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Eva H Brilstra
- Department of Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Vera Pm Schepers
- Department of Rehabilitation, Physical Therapy, Science & Sports, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Wilko Spiering
- Department of Internal Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Evelien van Valen
- Department of Geriatrics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Huiberdina L Koek
- Department of Geriatrics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
2
|
Tosa M, Abe Y, Egawa S, Hatakeyama T, Iwaguro C, Mitsugi R, Moriyama A, Sano T, Ogawa R, Tanaka N. The HEDGEHOG-GLI1 pathway is important for fibroproliferative properties in keloids and as a candidate therapeutic target. Commun Biol 2023; 6:1235. [PMID: 38062202 PMCID: PMC10703807 DOI: 10.1038/s42003-023-05561-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 11/09/2023] [Indexed: 12/18/2023] Open
Abstract
Keloids are benign fibroproliferative skin tumors caused by aberrant wound healing that can negatively impact patient quality of life. The lack of animal models has limited research on pathogenesis or developing effective treatments, and the etiology of keloids remains unknown. Here, we found that the characteristics of stem-like cells from keloid lesions and the surrounding dermis differ from those of normal skin. Furthermore, the HEDGEHOG (HH) signal and its downstream transcription factor GLI1 were upregulated in keloid patient-derived stem-like cells. Inhibition of the HH-GLI1 pathway reduced the expression of genes involved in keloids and fibrosis-inducing cytokines, including osteopontin. Moreover, the HH signal inhibitor vismodegib reduced keloid reconstituted tumor size and keloid-related gene expression in nude mice and the collagen bundle and expression of cytokines characteristic for keloids in ex vivo culture of keloid tissues. These results implicate the HH-GLI1 pathway in keloid pathogenesis and suggest therapeutic targets of keloids.
Collapse
Affiliation(s)
- Mamiko Tosa
- Department of Molecular Oncology, Institute for Advanced Medical Sciences, Nippon Medical School, Bunkyo-ku, Tokyo, 113-8602, Japan
- Department of Plastic, Reconstructive and Aesthetic Surgery, Nippon Medical School, Bunkyo-ku, Tokyo, 113-8602, Japan
| | - Yoshinori Abe
- Department of Molecular Oncology, Institute for Advanced Medical Sciences, Nippon Medical School, Bunkyo-ku, Tokyo, 113-8602, Japan
| | - Seiko Egawa
- Department of Molecular Oncology, Institute for Advanced Medical Sciences, Nippon Medical School, Bunkyo-ku, Tokyo, 113-8602, Japan
| | - Tomoka Hatakeyama
- Department of Molecular Oncology, Institute for Advanced Medical Sciences, Nippon Medical School, Bunkyo-ku, Tokyo, 113-8602, Japan
| | - Chihiro Iwaguro
- Department of Molecular Oncology, Institute for Advanced Medical Sciences, Nippon Medical School, Bunkyo-ku, Tokyo, 113-8602, Japan
| | - Ryotaro Mitsugi
- Department of Molecular Oncology, Institute for Advanced Medical Sciences, Nippon Medical School, Bunkyo-ku, Tokyo, 113-8602, Japan
| | - Ayaka Moriyama
- Department of Molecular Oncology, Institute for Advanced Medical Sciences, Nippon Medical School, Bunkyo-ku, Tokyo, 113-8602, Japan
| | - Takumi Sano
- Department of Molecular Oncology, Institute for Advanced Medical Sciences, Nippon Medical School, Bunkyo-ku, Tokyo, 113-8602, Japan
| | - Rei Ogawa
- Department of Plastic, Reconstructive and Aesthetic Surgery, Nippon Medical School, Bunkyo-ku, Tokyo, 113-8602, Japan
| | - Nobuyuki Tanaka
- Department of Molecular Oncology, Institute for Advanced Medical Sciences, Nippon Medical School, Bunkyo-ku, Tokyo, 113-8602, Japan.
| |
Collapse
|
3
|
Matera I, Miglionico R, Abruzzese V, Marchese G, Ventola GM, Castiglione Morelli MA, Bisaccia F, Ostuni A. A Regulator Role for the ATP-Binding Cassette Subfamily C Member 6 Transporter in HepG2 Cells: Effect on the Dynamics of Cell-Cell and Cell-Matrix Interactions. Int J Mol Sci 2023; 24:16391. [PMID: 38003580 PMCID: PMC10670978 DOI: 10.3390/ijms242216391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/12/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
There is growing evidence that various ATP-binding cassette (ABC) transporters contribute to the growth and development of tumors, but relatively little is known about how the ABC transporter family behaves in hepatocellular carcinoma (HCC), one of the most common cancers worldwide. Cellular model studies have shown that ABCC6, which belongs to the ABC subfamily C (ABCC), plays a role in the cytoskeleton rearrangement and migration of HepG2 hepatocarcinoma cells, thus highlighting its role in cancer biology. Deep knowledge on the molecular mechanisms underlying the observed results could provide therapeutic insights into the tumors in which ABCC6 is modulated. In this study, differential expression levels of mRNA transcripts between ABCC6-silenced HepG2 and control groups were measured, and subsequently, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed. Real-Time PCR and Western blot analyses confirmed bioinformatics; functional studies support the molecular mechanisms underlying the observed effects. The results provide valuable information on the dysregulation of fundamental cellular processes, such as the focal adhesion pathway, which allowed us to obtain detailed information on the active role that the down-regulation of ABCC6 could play in the biology of liver tumors, as it is involved not only in cell migration but also in cell adhesion and invasion.
Collapse
Affiliation(s)
- Ilenia Matera
- Department of Sciences, University of Basilicata, 85100 Potenza, Italy; (I.M.); (R.M.); (V.A.); (M.A.C.M.)
| | - Rocchina Miglionico
- Department of Sciences, University of Basilicata, 85100 Potenza, Italy; (I.M.); (R.M.); (V.A.); (M.A.C.M.)
| | - Vittorio Abruzzese
- Department of Sciences, University of Basilicata, 85100 Potenza, Italy; (I.M.); (R.M.); (V.A.); (M.A.C.M.)
| | - Giovanna Marchese
- Genomix4Life Srl, 84081 Baronissi, Italy; (G.M.); (G.M.V.)
- Genome Research Center for Health—CRGS, 84081 Baronissi, Italy
| | | | | | - Faustino Bisaccia
- Department of Sciences, University of Basilicata, 85100 Potenza, Italy; (I.M.); (R.M.); (V.A.); (M.A.C.M.)
| | - Angela Ostuni
- Department of Sciences, University of Basilicata, 85100 Potenza, Italy; (I.M.); (R.M.); (V.A.); (M.A.C.M.)
| |
Collapse
|
4
|
Snijders BMG, Peters MJL, Koek HL. Ectopic Calcification: What Do We Know and What Is the Way Forward? J Clin Med 2023; 12:jcm12113687. [PMID: 37297880 DOI: 10.3390/jcm12113687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 05/12/2023] [Indexed: 06/12/2023] Open
Abstract
Ectopic calcification, or ectopic mineralization, is a pathologic condition in which calcifications develop in soft tissues [...].
Collapse
Affiliation(s)
- Birgitta M G Snijders
- Department of Geriatrics, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - Mike J L Peters
- Department of Geriatrics, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
- Department of Internal Medicine, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - Huiberdina L Koek
- Department of Geriatrics, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
| |
Collapse
|
5
|
Morikane S, Ishida K, Taniguchi T, Ashizawa N, Matsubayashi M, Kurita N, Kobashi S, Iwanaga T. Identification of a DBA/2 Mouse Sub-strain as a Model for Pseudoxanthoma Elasticum-Like Tissue Calcification. Biol Pharm Bull 2023; 46:1737-1744. [PMID: 38044132 DOI: 10.1248/bpb.b23-00478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Ectopic calcification in the cardiovascular system adversely affects life prognosis. DBA/2 mice experience calcification owing to low expression of Abcc6 as observed in pseudoxanthoma elasticum (PXE) patients; however, little is known about its characteristics as a calcification model. In this study, we explore the suitability of a DBA/2 sub-strain as a PXE-like tissue calcification model, and the effect of a bisphosphonate which prevents calcification of soft tissues in hypercalcemic models was evaluated. The incidence of calcification of the heart was compared among several sub-strains and between both sexes of DBA/2 mice. mRNA expression of calcification-related genes was compared with DBA/2 sub-strains and other mouse strains. In addition, progression of calcification and calciprotein particle formation in serum were examined. Among several sub-strains of DBA/2 mice, male DBA/2CrSlc mice showed the most remarkable cardiac calcification. In DBA/2CrSlc mice, expression of the anti-calcifying genes Abcc6, Enpp1 and Spp1 was lower than that in C57BL/6J, and expression of Enpp1 and Spp1 was lower compared with other sub-strains. Calcification was accompanied by accelerated formation of calciprotein particle, which was prevented by daily treatment with bisphosphonate. A model suitable for ectopic calcification was identified by choosing a sub-strain of DBA/2 mice, in which genetic characteristics would contribute to extended calcification.
Collapse
|
6
|
Soma K, Watanabe K, Izumi M. Anticalcification effects of DS-1211 in pseudoxanthoma elasticum mouse models and the role of tissue-nonspecific alkaline phosphatase in ABCC6-deficient ectopic calcification. Sci Rep 2022; 12:19852. [PMID: 36400944 PMCID: PMC9674622 DOI: 10.1038/s41598-022-23892-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 11/07/2022] [Indexed: 11/19/2022] Open
Abstract
Pseudoxanthoma elasticum (PXE) is a multisystem, genetic, ectopic mineralization disorder with no effective treatment. Inhibition of tissue-nonspecific alkaline phosphatase (TNAP) may prevent ectopic soft tissue calcification by increasing endogenous pyrophosphate (PPi). This study evaluated the anticalcification effects of DS-1211, an orally administered, potent, and highly selective small molecule TNAP inhibitor, in mouse models of PXE. Calcium content in vibrissae was measured in KK/HlJ and ABCC6-/- mice after DS-1211 administration for 13-14 weeks. Pharmacokinetic and pharmacodynamic effects of DS-1211 were evaluated, including plasma alkaline phosphatase (ALP) activity and biomarker changes in PPi and pyridoxal-phosphate (PLP). Anticalcification effects of DS-1211 through TNAP inhibition were further evaluated in ABCC6-/- mice with genetically reduced TNAP activity, ABCC6-/-/TNAP+/+ and ABCC6-/-/TNAP+/-. In KK/HlJ and ABCC6-/- mouse models, DS-1211 inhibited plasma ALP activity in a dose-dependent manner and prevented progression of ectopic calcification compared with vehicle-treated mice. Plasma PPi and PLP increased dose-dependently with DS-1211 in ABCC6-/- mice. Mice with ABCC6-/-/TNAP+/- phenotype had significantly less calcification and higher plasma PPi and PLP than ABCC6-/-/TNAP+/+ mice. TNAP plays an active role in pathomechanistic pathways of dysregulated calcification, demonstrated by reduced ectopic calcification in mice with lower TNAP activity. DS-1211 may be a potential therapeutic drug for PXE.
Collapse
Affiliation(s)
- Kaori Soma
- grid.410844.d0000 0004 4911 4738Daiichi Sankyo Co., Ltd, 1-2-58, Hiromachi, Shinagawa-Ku, Tokyo, 140-8710 Japan
| | - Kengo Watanabe
- grid.410844.d0000 0004 4911 4738Daiichi Sankyo Co., Ltd, 1-2-58, Hiromachi, Shinagawa-Ku, Tokyo, 140-8710 Japan
| | - Masanori Izumi
- grid.410844.d0000 0004 4911 4738Daiichi Sankyo Co., Ltd, 1-2-58, Hiromachi, Shinagawa-Ku, Tokyo, 140-8710 Japan
| |
Collapse
|
7
|
Szeri F, Niaziorimi F, Donnelly S, Fariha N, Tertyshnaia M, Patel D, Lundkvist S, van de Wetering K. The Mineralization Regulator ANKH Mediates Cellular Efflux of ATP, Not Pyrophosphate. J Bone Miner Res 2022; 37:1024-1031. [PMID: 35147247 PMCID: PMC9098669 DOI: 10.1002/jbmr.4528] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/28/2022] [Accepted: 02/08/2022] [Indexed: 11/05/2022]
Abstract
The plasma membrane protein ankylosis homologue (ANKH, mouse ortholog: Ank) prevents pathological mineralization of joints by controlling extracellular levels of the mineralization inhibitor pyrophosphate (PPi). It was long thought that ANKH acts by transporting PPi into the joints. We recently showed that when overproduced in HEK293 cells, ANKH mediates release of large amounts of nucleoside triphosphates (NTPs), predominantly ATP, into the culture medium. ATP is converted extracellularly into PPi and AMP by the ectoenzyme ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1). We could not rule out, however, that cells also release PPi directly via ANKH. We now addressed the question of whether PPi leaves cells via ANKH using HEK293 cells that completely lack ENPP1. Introduction of ANKH in these ENPP1-deficient HEK293 cells resulted in robust cellular ATP release without the concomitant increase in extracellular PPi found in ENPP1-proficient cells. Ank activity was previously shown to be responsible for about 75% of the PPi found in mouse bones. However, bones of Enpp1-/- mice contained <2.5% of the PPi found in bones of wild-type mice, showing that Enpp1 activity is also a prerequisite for Ank-dependent PPi incorporation into the mineralized bone matrix in vivo. Hence, ATP release precedes ENPP1-mediated PPi formation. We find that ANKH also provides about 25% of plasma PPi, whereas we have previously shown that 60% to 70% of plasma PPi is derived from the NTPs extruded by the ABC transporter, ABCC6. Both transporters that keep plasma PPi at sufficient levels to prevent pathological calcification therefore do so by extruding NTPs rather than PPi itself. © 2022 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Flora Szeri
- Department of Dermatology and Cutaneous Biology, Jefferson Institute of Molecular Medicine and PXE International Center of Excellence in Research and Clinical Care, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA.,Research Centre for Natural Sciences, Institute of Enzymology, Budapest, Hungary.,Department of Biochemistry, Semmelweis University, Budapest, Hungary
| | - Fatemeh Niaziorimi
- Department of Dermatology and Cutaneous Biology, Jefferson Institute of Molecular Medicine and PXE International Center of Excellence in Research and Clinical Care, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Sylvia Donnelly
- Department of Dermatology and Cutaneous Biology, Jefferson Institute of Molecular Medicine and PXE International Center of Excellence in Research and Clinical Care, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Nishat Fariha
- Department of Dermatology and Cutaneous Biology, Jefferson Institute of Molecular Medicine and PXE International Center of Excellence in Research and Clinical Care, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Mariia Tertyshnaia
- Department of Dermatology and Cutaneous Biology, Jefferson Institute of Molecular Medicine and PXE International Center of Excellence in Research and Clinical Care, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Drithi Patel
- Department of Dermatology and Cutaneous Biology, Jefferson Institute of Molecular Medicine and PXE International Center of Excellence in Research and Clinical Care, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Stefan Lundkvist
- Department of Dermatology and Cutaneous Biology, Jefferson Institute of Molecular Medicine and PXE International Center of Excellence in Research and Clinical Care, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Koen van de Wetering
- Department of Dermatology and Cutaneous Biology, Jefferson Institute of Molecular Medicine and PXE International Center of Excellence in Research and Clinical Care, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
8
|
Ralph D, Nitschke Y, Levine MA, Caffet M, Wurst T, Saeidian AH, Youssefian L, Vahidnezhad H, Terry SF, Rutsch F, Uitto J, Li Q. ENPP1 variants in patients with GACI and PXE expand the clinical and genetic heterogeneity of heritable disorders of ectopic calcification. PLoS Genet 2022; 18:e1010192. [PMID: 35482848 PMCID: PMC9089899 DOI: 10.1371/journal.pgen.1010192] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 05/10/2022] [Accepted: 04/05/2022] [Indexed: 12/17/2022] Open
Abstract
Pseudoxanthoma elasticum (PXE) and generalized arterial calcification of infancy (GACI) are clinically distinct genetic entities of ectopic calcification associated with differentially reduced circulating levels of inorganic pyrophosphate (PPi), a potent endogenous inhibitor of calcification. Variants in ENPP1, the gene mutated in GACI, have not been associated with classic PXE. Here we report the clinical, laboratory, and molecular evaluations of ten GACI and two PXE patients from five and two unrelated families registered in GACI Global and PXE International databases, respectively. All patients were found to carry biallelic variants in ENPP1. Among ten ENPP1 variants, one homozygous variant demonstrated uniparental disomy inheritance. Functional assessment of five previously unreported ENPP1 variants suggested pathogenicity. The two PXE patients, currently 57 and 27 years of age, had diagnostic features of PXE and had not manifested the GACI phenotype. The similarly reduced PPi plasma concentrations in the PXE and GACI patients in our study correlate poorly with their disease severity. This study demonstrates that in addition to GACI, ENPP1 variants can cause classic PXE, expanding the clinical and genetic heterogeneity of heritable ectopic calcification disorders. Furthermore, the results challenge the current prevailing concept that plasma PPi is the only factor governing the severity of ectopic calcification. Biallelic inactivating mutations in the ENPP1 gene cause generalized arterial calcification of infancy (GACI), a frequently fatal disease characterized by infantile onset of widespread arterial calcification and/or narrowing of large and medium-sized vessels often resulting in the early demise of affected individuals. Significantly reduced, almost zero plasma levels of a potent and endogenous calcification inhibitor, inorganic pyrophosphate (PPi), is thought to be the underlying cause of vascular calcification in GACI. Mutations in ENPP1 have not been found in patients with pseudoxanthoma elasticum (PXE), another genetic multisystem ectopic calcification disorder caused by mutations in the ABCC6 gene. This study reports that ENPP1 mutations can also cause PXE with more favorable clinical outcomes. In addition, it was previously thought that plasma PPi levels correlate with vascular calcification severity. However, we here show that vascular calcification severity does not correlate with plasma PPi levels. The results suggest that in addition to PPi, the long-believed determinant of ectopic calcification, additional mechanisms may be at play in regulating ectopic calcification.
Collapse
Affiliation(s)
- Douglas Ralph
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, and Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
- Genetics, Genomics and Cancer Biology Ph.D. Program, Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
- PXE International Center of Excellence in Research and Clinical Care, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | | | - Michael A. Levine
- Division of Endocrinology and Diabetes, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Matthew Caffet
- PXE International, Inc., Damascus, Maryland, United States of America
| | - Tamara Wurst
- PXE International, Inc., Damascus, Maryland, United States of America
| | - Amir Hossein Saeidian
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, and Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
- Genetics, Genomics and Cancer Biology Ph.D. Program, Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Leila Youssefian
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, and Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Hassan Vahidnezhad
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, and Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Sharon F. Terry
- PXE International, Inc., Damascus, Maryland, United States of America
| | - Frank Rutsch
- Münster University Children’s Hospital, Münster, Germany
| | - Jouni Uitto
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, and Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
- PXE International Center of Excellence in Research and Clinical Care, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Qiaoli Li
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, and Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
- PXE International Center of Excellence in Research and Clinical Care, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
9
|
Maruyama S, Visser H, Ito T, Limsakun T, Zahir H, Ford D, Tao B, Zamora CA, Stark JG, Chou HS. Phase I studies of the safety, tolerability, pharmacokinetics, and pharmacodynamics of DS-1211, a tissue-nonspecific alkaline phosphatase inhibitor. Clin Transl Sci 2022; 15:967-980. [PMID: 35021269 PMCID: PMC9010257 DOI: 10.1111/cts.13214] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/18/2021] [Accepted: 12/02/2021] [Indexed: 01/15/2023] Open
Abstract
Tissue-nonspecific alkaline phosphatase (TNAP) hydrolyzes and inactivates inorganic pyrophosphate (PPi), a potent inhibitor of calcification; therefore, TNAP inhibition is a potential target to treat ectopic calcification. These two first-in-human studies evaluated safety, tolerability, pharmacokinetics (PKs), and pharmacodynamics (PDs) of single (SAD) and multiple-ascending doses (MAD) of DS-1211, a TNAP inhibitor. Healthy adults were randomized 6:2 to DS-1211 or placebo, eight subjects per dose cohort. SAD study subjects received one dose of DS-1211 (range, 3-3000 mg) or placebo, whereas MAD study subjects received DS-1211 (range, 10-300 mg) once daily, 150 mg twice daily (b.i.d.), or placebo for 10 days. Primary end points were safety and tolerability. PK and PD assessments included plasma concentrations of DS-1211, alkaline phosphatase (ALP) activity, and TNAP substrates (PPi, pyridoxal 5'-phosphate [PLP], and phosphoethanolamine [PEA]). A total of 56 (DS-1211: n = 42; placebo: n = 14) and 40 (DS-1211: n = 30; placebo: n = 10) subjects enrolled in the SAD and MAD studies, respectively. In both studies, adverse events were mild or moderate and did not increase with dose. PKs of DS-1211 were linear up to 100 mg administered as a single dose and 150 mg b.i.d. administered as a multiple-dose regimen. In multiple dosing, there was minimal accumulation of DS-1211. Increased DS-1211 exposure correlated with dose-dependent ALP inhibition and concomitant increases in PPi, PLP, and PEA. In two phase I studies, DS-1211 appeared safe and well-tolerated. Post-treatment PD assessments were consistent with exposure-dependent TNAP inhibition. These data support further evaluation of DS-1211 for ectopic calcification diseases.
Collapse
Affiliation(s)
| | - Hester Visser
- Daiichi Sankyo, Inc., Basking Ridge, New Jersey, USA
| | | | | | - Hamim Zahir
- Daiichi Sankyo, Inc., Basking Ridge, New Jersey, USA
| | - Daniel Ford
- Daiichi Sankyo, Inc., Basking Ridge, New Jersey, USA
| | - Ben Tao
- Daiichi Sankyo, Inc., Basking Ridge, New Jersey, USA
| | | | | | - Hubert S Chou
- Daiichi Sankyo, Inc., Basking Ridge, New Jersey, USA
| |
Collapse
|
10
|
Jaminon AMG, Akbulut AC, Rapp N, Kramann R, Biessen EAL, Temmerman L, Mees B, Brandenburg V, Dzhanaev R, Jahnen-Dechent W, Floege J, Uitto J, Reutelingsperger CP, Schurgers LJ. Development of the BioHybrid Assay: Combining Primary Human Vascular Smooth Muscle Cells and Blood to Measure Vascular Calcification Propensity. Cells 2021; 10:2097. [PMID: 34440866 PMCID: PMC8391733 DOI: 10.3390/cells10082097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/09/2021] [Accepted: 08/13/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Vascular calcification is an active process that increases cardiovascular disease (CVD) risk. There is still no consensus on an appropriate biomarker for vascular calcification. We reasoned that the biomarker for vascular calcification is the collection of all blood components that can be sensed and integrated into a calcification response by human vascular smooth muscle cells (hVSMCs). METHODS We developed a new cell-based high-content assay, the BioHybrid assay, to measure in vitro calcification. The BioHybrid assay was compared with the o-Cresolphthalein assay and the T50 assay. Serum and plasma were derived from different cohort studies including chronic kidney disease (CKD) stages III, IV, V and VD (on dialysis), pseudoxanthoma elasticum (PXE) and other cardiovascular diseases including serum from participants with mild and extensive coronary artery calcification (CAC). hVSMCs were exposed to serum and plasma samples, and in vitro calcification was measured using AlexaFluor®-546 tagged fetuin-A as calcification sensor. RESULTS The BioHybrid assay measured the kinetics of calcification in contrast to the endpoint o-Cresolphthalein assay. The BioHybrid assay was more sensitive to pick up differences in calcification propensity than the T50 assay as determined by measuring control as well as pre- and post-dialysis serum samples of CKD patients. The BioHybrid response increased with CKD severity. Further, the BioHybrid assay discriminated between calcification propensity of individuals with a high CAC index and individuals with a low CAC index. Patients with PXE had an increased calcification response in the BioHybrid assay as compared to both spouse and control plasma samples. Finally, vitamin K1 supplementation showed lower in vitro calcification, reflecting changes in delta Agatston scores. Lower progression within the BioHybrid and on Agatston scores was accompanied by lower dephosphorylated-uncarboxylated matrix Gla protein levels. CONCLUSION The BioHybrid assay is a novel approach to determine the vascular calcification propensity of an individual and thus may add to personalised risk assessment for CVD.
Collapse
Affiliation(s)
- Armand M. G. Jaminon
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, 6200 MD Maastricht, The Netherlands; (A.M.G.J.); (A.C.A.); (N.R.); (C.P.R.)
| | - Asim C. Akbulut
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, 6200 MD Maastricht, The Netherlands; (A.M.G.J.); (A.C.A.); (N.R.); (C.P.R.)
| | - Niko Rapp
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, 6200 MD Maastricht, The Netherlands; (A.M.G.J.); (A.C.A.); (N.R.); (C.P.R.)
| | - Rafael Kramann
- Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, 52074 Aachen, Germany;
- Department of Nephrology and Clinical Immunology, RWTH Aachen University Hospital, 52074 Aachen, Germany;
| | - Erik A. L. Biessen
- Department of Pathology, Cardiovascular Research Institute Maastricht, Maastricht University, 6229 HX Maastricht, The Netherlands; (E.A.L.B.); (L.T.)
- Institute for Molecular Cardiovascular Research (IMCAR), Universitätsklinikum Aachen, 52074 Aachen, Germany
| | - Lieve Temmerman
- Department of Pathology, Cardiovascular Research Institute Maastricht, Maastricht University, 6229 HX Maastricht, The Netherlands; (E.A.L.B.); (L.T.)
| | - Barend Mees
- Department of Vascular Surgery, Maastricht University Medical Centre, 6229 HX Maastricht, The Netherlands;
| | - Vincent Brandenburg
- Department of Cardiology, Rhein-Maas-Klinikum Würselen, 52146 Würselen, Germany;
| | - Robert Dzhanaev
- Helmholtz Institute for Biomedical Engineering, Biointerface Group, RWTH Aachen University, 52074 Aachen, Germany; (R.D.); (W.J.-D.)
| | - Willi Jahnen-Dechent
- Helmholtz Institute for Biomedical Engineering, Biointerface Group, RWTH Aachen University, 52074 Aachen, Germany; (R.D.); (W.J.-D.)
| | - Juergen Floege
- Department of Nephrology and Clinical Immunology, RWTH Aachen University Hospital, 52074 Aachen, Germany;
| | - Jouni Uitto
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA;
| | - Chris P. Reutelingsperger
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, 6200 MD Maastricht, The Netherlands; (A.M.G.J.); (A.C.A.); (N.R.); (C.P.R.)
| | - Leon J. Schurgers
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, 6200 MD Maastricht, The Netherlands; (A.M.G.J.); (A.C.A.); (N.R.); (C.P.R.)
- Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, 52074 Aachen, Germany;
- Institute for Molecular Cardiovascular Research (IMCAR), Universitätsklinikum Aachen, 52074 Aachen, Germany
| |
Collapse
|
11
|
Lillo E, Gutierrez-Cardo A, Murcia-Casas B, Carrillo-Linares JL, Garcia-Argüello F, Chicharo de Freitas R, Baquero-Aranda I, Valdivielso P, García-Fernández M, Sánchez-Chaparro MÁ. Cutaneous and Vascular Deposits of 18F-NaF by PET/CT in the Follow-Up of Patients with Pseudoxanthoma Elasticum. J Clin Med 2021; 10:jcm10122588. [PMID: 34208205 PMCID: PMC8230828 DOI: 10.3390/jcm10122588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/02/2021] [Accepted: 06/08/2021] [Indexed: 12/19/2022] Open
Abstract
Active microcalcification of elastic fibers is a hallmark of pseudoxanthoma elasticum and it can be measured with the assessment of deposition of 18F-NaF using a PET/CT scan at the skin and vascular levels. It is not known whether this deposition changes over time in absence of specific therapy. We repeated in two years a PET/CT scan using 18F-NaF as a radiopharmaceutical in patients with the disease and compared the deposition at skin and vessel. Furthermore, calcium score values at the vessel wall were also assessed. Main results indicate in the vessel walls that calcification progressed in each patient; by contrast, the active microcalcification, measured and target-to-background ratio showed reduced active deposition. By contrast, at skin levels (neck and axillae) the uptake of the pharmaceutical remains unchanged. In conclusion, because calcification in the arterial wall is not specific for pseudoxanthoma elasticum condition, the measurement of the deposition of 18F-NaF in the neck might be potentially used as a surrogate marker in future trials for the disease.
Collapse
Affiliation(s)
- Eugenia Lillo
- Molecular Imaging Unit, Centro de Investigaciones Médico Sanitarias (CIMES), Fundación General de la Universidad de Málaga, 29010 Málaga, Spain; (E.L.); (R.C.d.F.)
| | - Antonio Gutierrez-Cardo
- Nuclear Medicine Department, Regional Hospital, 29010 Malaga, Spain;
- Biomedical Research Institute of Malaga (IBIMA), 29010 Malaga, Spain; (J.L.C.-L.); (F.G.-A.); (M.G.-F.); (M.Á.S.-C.)
| | - Belén Murcia-Casas
- Internal Medicine Unit, Virgen de la Victoria Hospital, 29010 Malaga, Spain;
| | - Juan Luis Carrillo-Linares
- Biomedical Research Institute of Malaga (IBIMA), 29010 Malaga, Spain; (J.L.C.-L.); (F.G.-A.); (M.G.-F.); (M.Á.S.-C.)
- Internal Medicine Unit, Virgen de la Victoria Hospital, 29010 Malaga, Spain;
| | - Francisco Garcia-Argüello
- Molecular Imaging Unit, Centro de Investigaciones Médico Sanitarias (CIMES), Fundación General de la Universidad de Málaga, 29010 Málaga, Spain; (E.L.); (R.C.d.F.)
- Biomedical Research Institute of Malaga (IBIMA), 29010 Malaga, Spain; (J.L.C.-L.); (F.G.-A.); (M.G.-F.); (M.Á.S.-C.)
| | - Reinaldo Chicharo de Freitas
- Molecular Imaging Unit, Centro de Investigaciones Médico Sanitarias (CIMES), Fundación General de la Universidad de Málaga, 29010 Málaga, Spain; (E.L.); (R.C.d.F.)
| | | | - Pedro Valdivielso
- Biomedical Research Institute of Malaga (IBIMA), 29010 Malaga, Spain; (J.L.C.-L.); (F.G.-A.); (M.G.-F.); (M.Á.S.-C.)
- Internal Medicine Unit, Virgen de la Victoria Hospital, 29010 Malaga, Spain;
- Department of Medicine and Dermatology, University of Malaga, 29010 Malaga, Spain
- Correspondence: ; Tel.: +34-952131615; Fax: +34-952131511
| | - María García-Fernández
- Biomedical Research Institute of Malaga (IBIMA), 29010 Malaga, Spain; (J.L.C.-L.); (F.G.-A.); (M.G.-F.); (M.Á.S.-C.)
- Department of Human Physiology, University of Malaga, 29010 Malaga, Spain
| | - Miguel Ángel Sánchez-Chaparro
- Biomedical Research Institute of Malaga (IBIMA), 29010 Malaga, Spain; (J.L.C.-L.); (F.G.-A.); (M.G.-F.); (M.Á.S.-C.)
- Internal Medicine Unit, Virgen de la Victoria Hospital, 29010 Malaga, Spain;
- Department of Medicine and Dermatology, University of Malaga, 29010 Malaga, Spain
| |
Collapse
|
12
|
Shimada BK, Pomozi V, Zoll J, Kuo S, Martin L, Le Saux O. ABCC6, Pyrophosphate and Ectopic Calcification: Therapeutic Solutions. Int J Mol Sci 2021; 22:ijms22094555. [PMID: 33925341 PMCID: PMC8123679 DOI: 10.3390/ijms22094555] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 12/11/2022] Open
Abstract
Pathological (ectopic) mineralization of soft tissues occurs during aging, in several common conditions such as diabetes, hypercholesterolemia, and renal failure and in certain genetic disorders. Pseudoxanthoma elasticum (PXE), a multi-organ disease affecting dermal, ocular, and cardiovascular tissues, is a model for ectopic mineralization disorders. ABCC6 dysfunction is the primary cause of PXE, but also some cases of generalized arterial calcification of infancy (GACI). ABCC6 deficiency in mice underlies an inducible dystrophic cardiac calcification phenotype (DCC). These calcification diseases are part of a spectrum of mineralization disorders that also includes Calcification of Joints and Arteries (CALJA). Since the identification of ABCC6 as the “PXE gene” and the development of several animal models (mice, rat, and zebrafish), there has been significant progress in our understanding of the molecular genetics, the clinical phenotypes, and pathogenesis of these diseases, which share similarities with more common conditions with abnormal calcification. ABCC6 facilitates the cellular efflux of ATP, which is rapidly converted into inorganic pyrophosphate (PPi) and adenosine by the ectonucleotidases NPP1 and CD73 (NT5E). PPi is a potent endogenous inhibitor of calcification, whereas adenosine indirectly contributes to calcification inhibition by suppressing the synthesis of tissue non-specific alkaline phosphatase (TNAP). At present, therapies only exist to alleviate symptoms for both PXE and GACI; however, extensive studies have resulted in several novel approaches to treating PXE and GACI. This review seeks to summarize the role of ABCC6 in ectopic calcification in PXE and other calcification disorders, and discuss therapeutic strategies targeting various proteins in the pathway (ABCC6, NPP1, and TNAP) and direct inhibition of calcification via supplementation by various compounds.
Collapse
Affiliation(s)
- Briana K Shimada
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96817, USA
| | - Viola Pomozi
- Institute of Enzymology, RCNS, Hungarian Academy of Sciences, 1117 Budapest, Hungary
| | - Janna Zoll
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96817, USA
| | - Sheree Kuo
- Department of Pediatrics, Kapi'olani Medical Center for Women and Children, University of Hawaii, Honolulu, HI 96826, USA
| | - Ludovic Martin
- PXE Consultation Center, MAGEC Reference Center for Rare Skin Diseases, Angers University Hospital, 49100 Angers, France
- BNMI, CNRS 6214/INSERM 1083, University Bretagne-Loire, 49100 Angers, France
| | - Olivier Le Saux
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96817, USA
| |
Collapse
|
13
|
Jacobs IJ, Li D, Ivarsson ME, Uitto J, Li Q. A phytic acid analogue INS-3001 prevents ectopic calcification in an Abcc6 -/- mouse model of pseudoxanthoma elasticum. Exp Dermatol 2021; 30:853-858. [PMID: 33523493 DOI: 10.1111/exd.14288] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 12/07/2020] [Accepted: 01/15/2021] [Indexed: 12/17/2022]
Abstract
Pseudoxanthoma elasticum (PXE), a prototype of heritable ectopic calcification disorders, affects the skin, eyes and the cardiovascular system due to inactivating mutations in the ABCC6 gene. There is no effective treatment for the systemic manifestations of PXE. In this study, the efficacy of INS-3001, an analogue of phytic acid, was tested for inhibition of ectopic calcification in an Abcc6-/- mouse model of PXE. In prevention study, Abcc6-/- mice, at 6 weeks of age, the time of onset of ectopic calcification, were treated with INS-3001 with 0.16, 0.8, 4, 20 or 100 mg/kg/day administered by subcutaneous implantation of osmotic pumps, as well as 4 mg/kg/day by subcutaneous injection thrice weekly or 14, 4 and 0.8 mg/kg/day once weekly subcutaneous injection. Mice were necropsied at 12 weeks of age. Histologic examination and quantitative calcium assay revealed that mice receiving 6 weeks of continuous INS-3001 administration via osmotic pumps showed dose-dependent inhibition of muzzle skin calcification with complete response at 4 mg/kg/day and a minimum effective dose at 0.8 mg/kg/day. INS-3001 plasma concentrations were dose-dependent and largely consistent during treatment for each dose. thrice weekly and once weekly subcutaneous injections of INS-3001 also prevented calcification. In established disease study, 12-week-old Abcc6-/- mice with extensive calcification were continuously administered INS-3001 at 4 mg/kg/day for a follow-up of 12 weeks. INS-3001 treatment was found to stabilize existing calcification that had developed at start of treatment. These results suggest that INS-3001 may provide a promising preventive treatment strategy for PXE, a currently intractable ectopic calcification disorder.
Collapse
Affiliation(s)
- Ida Joely Jacobs
- Department of Dermatology and Cutaneous Biology, PXE International Center of Excellence in Research and Clinical Care, Jefferson Institute of Molecular Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Diana Li
- Department of Dermatology and Cutaneous Biology, PXE International Center of Excellence in Research and Clinical Care, Jefferson Institute of Molecular Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | | | - Jouni Uitto
- Department of Dermatology and Cutaneous Biology, PXE International Center of Excellence in Research and Clinical Care, Jefferson Institute of Molecular Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Qiaoli Li
- Department of Dermatology and Cutaneous Biology, PXE International Center of Excellence in Research and Clinical Care, Jefferson Institute of Molecular Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
14
|
Molecular Genetics and Modifier Genes in Pseudoxanthoma Elasticum, a Heritable Multisystem Ectopic Mineralization Disorder. J Invest Dermatol 2020; 141:1148-1156. [PMID: 33341249 DOI: 10.1016/j.jid.2020.10.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/19/2020] [Accepted: 10/23/2020] [Indexed: 01/08/2023]
Abstract
In the past two decades, there has been great progress in identifying the molecular basis and pathomechanistic details in pseudoxanthoma elasticum (PXE), a heritable multisystem ectopic mineralization disorder. Although the identification of pathogenic variants in ABCC6 has been critical for understanding the disease process, genetic modifiers have been disclosed that explain the phenotypic heterogeneity of PXE. Adding to the genetic complexity of PXE are PXE-like phenotypes caused by pathogenic variants in other ectopic mineralization-associated genes. This review summarizes the current knowledge of the genetics and candidate modifier genes in PXE, a multifactorial disease at the genome-environment interface.
Collapse
|
15
|
Terry SF. The Human Face of ABCC6. FEBS Lett 2020; 594:4151-4157. [DOI: 10.1002/1873-3468.14002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 01/08/2023]
|
16
|
Szeri F, Lundkvist S, Donnelly S, Engelke UFH, Rhee K, Williams CJ, Sundberg JP, Wevers RA, Tomlinson RE, Jansen RS, van de Wetering K. The membrane protein ANKH is crucial for bone mechanical performance by mediating cellular export of citrate and ATP. PLoS Genet 2020; 16:e1008884. [PMID: 32639996 PMCID: PMC7371198 DOI: 10.1371/journal.pgen.1008884] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 07/20/2020] [Accepted: 05/25/2020] [Indexed: 01/23/2023] Open
Abstract
The membrane protein ANKH was known to prevent pathological mineralization of joints and was thought to export pyrophosphate (PPi) from cells. This did not explain, however, the presence of ANKH in tissues, such as brain, blood vessels and muscle. We now report that in cultured cells ANKH exports ATP, rather than PPi, and, unexpectedly, also citrate as a prominent metabolite. The extracellular ATP is rapidly converted into PPi, explaining the role of ANKH in preventing ankylosis. Mice lacking functional Ank (Ankank/ank mice) had plasma citrate concentrations that were 65% lower than those detected in wild type control animals. Consequently, citrate excretion via the urine was substantially reduced in Ankank/ank mice. Citrate was even undetectable in the urine of a human patient lacking functional ANKH. The hydroxyapatite of Ankank/ank mice contained dramatically reduced levels of both, citrate and PPi and displayed diminished strength. Our results show that ANKH is a critical contributor to extracellular citrate and PPi homeostasis and profoundly affects bone matrix composition and, consequently, bone quality.
Collapse
Affiliation(s)
- Flora Szeri
- Department of Dermatology and Cutaneous Biology, Jefferson Institute of Molecular Medicine and PXE International Center of Excellence in Research and Clinical Care, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Stefan Lundkvist
- Department of Dermatology and Cutaneous Biology, Jefferson Institute of Molecular Medicine and PXE International Center of Excellence in Research and Clinical Care, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Sylvia Donnelly
- Department of Dermatology and Cutaneous Biology, Jefferson Institute of Molecular Medicine and PXE International Center of Excellence in Research and Clinical Care, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Udo F. H. Engelke
- Translational Metabolic Laboratory, Department Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Kyu Rhee
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, New York, United States of America
| | - Charlene J. Williams
- Cooper Medical School of Rowan University, Camden, New Jersey, United States of America
| | - John P. Sundberg
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Ron A. Wevers
- Translational Metabolic Laboratory, Department Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ryan E. Tomlinson
- Department of Orthopedic Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Robert S. Jansen
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, New York, United States of America
| | - Koen van de Wetering
- Department of Dermatology and Cutaneous Biology, Jefferson Institute of Molecular Medicine and PXE International Center of Excellence in Research and Clinical Care, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
17
|
Atherogenic Diet Accelerates Ectopic Mineralization in a Mouse Model of Pseudoxanthoma Elasticum. INTERNATIONAL JOURNAL OF DERMATOLOGY AND VENEROLOGY 2020; 3:91-96. [PMID: 32923017 PMCID: PMC7446280 DOI: 10.1097/jd9.0000000000000086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 01/22/2020] [Accepted: 03/08/2020] [Indexed: 12/03/2022]
Abstract
Objective: Pseudoxanthoma elasticum (PXE) is a multisystem heritable disorder caused by mutations in the Abcc6 gene. The disease is characterized by ectopic mineralization of the skin, eyes, and arterial blood vessels. Previous studies have suggested that cardiovascular complications in patients with PXE are caused in part by premature atherosclerosis. The aim of this study is to determine the effect of an atherogenic diet on ectopic mineralization. Methods: We used Abcc6tm1JfK mice (Abcc6−/− mice) as an established preclinical model of PXE. The offspring at age of 4 weeks were divided into two groups and fed the standard control laboratory diet (control group) and the atherogenic diet. Serum lipid profiles and bile acids were measured, and steatosis and tissue mineralization were evaluated by histopathologic analysis and chemical calcium quantification assay, respectively. Results: After 50–58 weeks of feeding an atherogenic diet, the concentrations of total cholesterol, low-density lipoprotein/very-low-density lipoprotein cholesterol, and bile acids were significantly higher in the Abcc6−/− mice on the atherogenic diet (180.9 ± 14.8 g/L, 145.9 ± 12.9 g/L, and 9.7 ± 1.4 μmol/L, respectively) than in Abcc6−/− mice on a control diet (85.2 ± 4.8 g/L, 25.1 ± 5.5 g/L, and 3.3 ± 0.5 μmol/L, respectively) (P < 0.001). Hypercholesterolemia was accompanied by extensive lipid accumulation in the liver and aorta, a characteristic feature of steatosis. The direct calcium assay demonstrated significantly increased mineralization of the muzzle skin containing the dermal sheath of vibrissae (57.2 ± 4.4 μmol Ca/gram tissue on the atherogenic diet and 43.9 ± 2.2 μmol Ca/gram tissue on control diet; P < 0.01), a reproducible biomarker of the ectopic mineralization process in these mice. An increased frequency of mineralization was also observed in the kidneys and eyes of mice on the atherogenic diet (P < 0.01). Conclusion: These observations suggest that the atherogenic diet caused hypercholesterolemia and accelerated ectopic mineralization in the Abcc6−/− mice. Our findings have clinical implications for patients with PXE, a currently intractable disorder with considerable morbidity and occasional mortality.
Collapse
|
18
|
Affiliation(s)
- Jouni Uitto
- Department of Dermatology and Cutaneous Biology, Jefferson Institute of Molecular Medicine, Sidney Kimmel Medical College, and PXE International Center of Excellence in Research and Clinical Care, Thomas Jefferson University, Philadelphia, Pennsylvania.
| | - Qiaoli Li
- Department of Dermatology and Cutaneous Biology, Jefferson Institute of Molecular Medicine, Sidney Kimmel Medical College, and PXE International Center of Excellence in Research and Clinical Care, Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
19
|
Quantitative Trait Locus and Integrative Genomics Revealed Candidate Modifier Genes for Ectopic Mineralization in Mouse Models of Pseudoxanthoma Elasticum. J Invest Dermatol 2019; 139:2447-2457.e7. [PMID: 31207231 DOI: 10.1016/j.jid.2019.04.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 03/28/2019] [Accepted: 04/26/2019] [Indexed: 02/06/2023]
Abstract
Pseudoxanthoma elasticum, a prototype of heritable multisystem ectopic mineralization disorders, is caused by mutations in the ABCC6 gene encoding a putative efflux transporter, ABCC6. The phenotypic spectrum of pseudoxanthoma elasticum varies, and the correlation between genotype and phenotype has not been established. To identify genetic modifiers, we performed quantitative trait locus analysis in inbred mouse strains that carry the same hypomorphic allele in Abcc6 yet with highly variable ectopic mineralization phenotypes of pseudoxanthoma elasticum. Abcc6 was confirmed as a major determinant for ectopic mineralization in multiple tissues. Integrative analysis using functional genomics tools that included GeneWeaver, String, and Mouse Genome Informatics identified a total of nine additional candidate modifier genes that could influence the organ-specific ectopic mineralization phenotypes. Integration of the candidate genes into the existing ectopic mineralization gene network expands the current knowledge on the complexity of the network that, as a whole, governs ectopic mineralization in soft connective tissues.
Collapse
|
20
|
Huang J, Snook AE, Uitto J, Li Q. Adenovirus-Mediated ABCC6 Gene Therapy for Heritable Ectopic Mineralization Disorders. J Invest Dermatol 2019; 139:1254-1263. [PMID: 30639429 DOI: 10.1016/j.jid.2018.12.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 12/13/2018] [Accepted: 12/20/2018] [Indexed: 01/27/2023]
Abstract
Loss-of-function mutations in the ABCC6 gene cause pseudoxanthoma elasticum and type 2 generalized arterial calcification of infancy, heritable ectopic mineralization disorders without effective treatment. ABCC6 encodes the putative efflux transporter ABCC6, which is predominantly expressed in the liver. Although the substrate of ABCC6 remains unknown, recent studies showed that pseudoxanthoma elasticum is a metabolic disorder caused by reduced circulating levels of pyrophosphate, a potent mineralization inhibitor. We hypothesized that reconstitution of ABCC6 might counteract ectopic mineralization in an Abcc6-/- mouse model of pseudoxanthoma elasticum. Intravenous administration of a recombinant adenovirus expressing wild-type human ABCC6 in Abcc6-/- mice showed sustained high-level expression of human ABCC6 in the liver for up to 4 weeks, increasing pyrophosphate levels in plasma. In addition, adenovirus injection every 4 weeks restored plasma pyrophosphate levels and, consequently, significantly reduced ectopic mineralization in the skin of young mice. By contrast, the same treatment in old mice with already established mineral deposits failed to reduce mineralization. These results suggest that adenovirus-mediated ABCC6 gene delivery, when initiated early, is a promising prevention therapy for pseudoxanthoma elasticum and generalized arterial calcification of infancy, diseases that currently lack preventive or therapeutic options.
Collapse
Affiliation(s)
- Jianhe Huang
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, and PXE International Center of Excellence in Research and Clinical Care, Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Adam E Snook
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Jouni Uitto
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, and PXE International Center of Excellence in Research and Clinical Care, Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Qiaoli Li
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, and PXE International Center of Excellence in Research and Clinical Care, Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
21
|
Borst P, Váradi A, van de Wetering K. PXE, a Mysterious Inborn Error Clarified. Trends Biochem Sci 2018; 44:125-140. [PMID: 30446375 DOI: 10.1016/j.tibs.2018.10.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 10/07/2018] [Accepted: 10/15/2018] [Indexed: 12/15/2022]
Abstract
Ever since Garrod deduced the existence of inborn errors in 1901, a vast array of metabolic diseases has been identified and characterized in molecular terms. In 2018 it is difficult to imagine that there is any uncharted backyard left in the metabolic disease landscape. Nevertheless, it took until 2013 to identify the cause of a relatively frequent inborn error, pseudoxanthoma elasticum (PXE), a disorder resulting in aberrant calcification. The mechanism found was not only biochemically interesting but also points to possible new treatments for PXE, a disease that has remained untreatable. In this review we sketch the tortuous road that led to the biochemical understanding of PXE and to new ideas for treatment. We also discuss some of the controversies still haunting the field.
Collapse
Affiliation(s)
- Piet Borst
- Division of Oncogenetics, The Netherlands Cancer Institute, 1066CX Amsterdam, The Netherlands.
| | - András Váradi
- Institute of Enzymology, Research Center for Natural Sciences (RCNS), Hungarian Academy of Sciences, 1117 Budapest, Hungary
| | - Koen van de Wetering
- Department of Dermatology and Cutaneous Biology and PXE International Center of Excellence in Research and Clinical Care, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
22
|
Li Q, van de Wetering K, Uitto J. Pseudoxanthoma Elasticum as a Paradigm of Heritable Ectopic Mineralization Disorders: Pathomechanisms and Treatment Development. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 189:216-225. [PMID: 30414410 DOI: 10.1016/j.ajpath.2018.09.014] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 08/17/2018] [Accepted: 09/26/2018] [Indexed: 12/24/2022]
Abstract
Ectopic mineralization is a global problem and leading cause of morbidity and mortality. The pathomechanisms of ectopic mineralization are poorly understood. Recent studies on heritable ectopic mineralization disorders with defined gene defects have been helpful in elucidation of the mechanisms of ectopic mineralization in general. The prototype of such disorders is pseudoxanthoma elasticum (PXE), a late-onset, slowly progressing disorder with multisystem clinical manifestations. Other conditions include generalized arterial calcification of infancy (GACI), characterized by severe, early-onset mineralization of the cardiovascular system, often with early postnatal demise. In addition, arterial calcification due to CD73 deficiency (ACDC) occurs late in life, mostly affecting arteries in the lower extremities in elderly individuals. These three conditions, PXE, GACI, and ACDC, caused by mutations in ABCC6, ENPP1, and NT5E, respectively, are characterized by reduced levels of inorganic pyrophosphate (PPi) in plasma. Because PPi is a powerful antimineralization factor, it has been postulated that reduced PPi is a major determinant for ectopic mineralization in these conditions. These and related observations on complementary mechanisms of ectopic mineralization have resulted in development of potential treatment modalities for PXE, including administration of bisphosphonates, stable PPi analogs with antimineralization activity. It is conceivable that efficient treatments may soon become available for heritable ectopic mineralization disorders with application to common calcification disorders.
Collapse
Affiliation(s)
- Qiaoli Li
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, the PXE International Center of Excellence in Research and Clinical Care, and the Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania.
| | - Koen van de Wetering
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, the PXE International Center of Excellence in Research and Clinical Care, and the Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Jouni Uitto
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, the PXE International Center of Excellence in Research and Clinical Care, and the Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
23
|
Zebrafish Models of Ectopic Mineralization—The Paradigm of Pseudoxanthoma Elasticum. J Invest Dermatol 2018; 138:2301-2304. [DOI: 10.1016/j.jid.2018.07.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 07/11/2018] [Accepted: 07/11/2018] [Indexed: 12/30/2022]
|
24
|
Schantl AE, Ivarsson ME, Leroux JC. Investigational Pharmacological Treatments for Vascular Calcification. ADVANCED THERAPEUTICS 2018. [DOI: 10.1002/adtp.201800094] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Antonia E. Schantl
- Institute of Pharmaceutical Sciences; ETH Zurich; Vladimir-Prelog-Weg 3 8093 Zurich Switzerland
| | | | - Jean-Christophe Leroux
- Institute of Pharmaceutical Sciences; ETH Zurich; Vladimir-Prelog-Weg 3 8093 Zurich Switzerland
| |
Collapse
|
25
|
Li Q, Huang J, Pinkerton AB, Millan JL, van Zelst BD, Levine MA, Sundberg JP, Uitto J. Inhibition of Tissue-Nonspecific Alkaline Phosphatase Attenuates Ectopic Mineralization in the Abcc6 -/- Mouse Model of PXE but Not in the Enpp1 Mutant Mouse Models of GACI. J Invest Dermatol 2018; 139:360-368. [PMID: 30130617 DOI: 10.1016/j.jid.2018.07.030] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 07/18/2018] [Accepted: 07/19/2018] [Indexed: 10/28/2022]
Abstract
Pseudoxanthoma elasticum (PXE), a prototype of heritable ectopic mineralization disorders, is caused by mutations in the ABCC6 gene encoding a putative efflux transporter ABCC6. It was recently shown that the absence of ABCC6-mediated adenosine triphosphate release from the liver and, consequently, reduced inorganic pyrophosphate levels underlie the pathogenesis of PXE. Given that tissue-nonspecific alkaline phosphatase (TNAP), encoded by ALPL, is the enzyme responsible for degrading inorganic pyrophosphate, we hypothesized that reducing TNAP levels either by genetic or pharmacological means would lead to amelioration of the ectopic mineralization phenotype in the Abcc6-/- mouse model of PXE. Thus, we bred Abcc6-/- mice to heterozygous Alpl+/- mice that display approximately 50% plasma TNAP activity. The Abcc6-/-Alpl+/- double-mutant mice showed 52% reduction of mineralization in the muzzle skin compared with the Abcc6-/-Alpl+/+ mice. Subsequently, oral administration of SBI-425, a small molecule inhibitor of TNAP, resulted in 61% reduction of plasma TNAP activity and 58% reduction of mineralization in the muzzle skin of Abcc6-/- mice. By contrast, SBI-425 treatment of Enpp1 mutant mice, another model of ectopic mineralization associated with reduced inorganic pyrophosphate, failed to reduce muzzle skin mineralization. These results suggest that inhibition of TNAP might provide a promising treatment strategy for PXE, a currently intractable disease.
Collapse
Affiliation(s)
- Qiaoli Li
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College and PXE International Center of Excellence in Research and Clinical Care, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
| | - Jianhe Huang
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College and PXE International Center of Excellence in Research and Clinical Care, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Anthony B Pinkerton
- Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Jose Luis Millan
- Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Bertrand D van Zelst
- Department of Clinical Chemistry, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Michael A Levine
- Division of Endocrinology, Children's Hospital of Philadelphia, and University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | | | - Jouni Uitto
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College and PXE International Center of Excellence in Research and Clinical Care, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
26
|
Kranenburg G, Baas AF, de Jong PA, Asselbergs FW, Visseren FLJ, Spiering W. The prevalence of pseudoxanthoma elasticum: Revised estimations based on genotyping in a high vascular risk cohort. Eur J Med Genet 2018; 62:90-92. [PMID: 29800625 DOI: 10.1016/j.ejmg.2018.05.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 03/23/2018] [Accepted: 05/21/2018] [Indexed: 11/25/2022]
Abstract
BACKGROUND Pseudoxanthoma elasticum (PXE), an autosomal recessive systemic calcification disorder, is caused by mutations in the ABCC6-gene and associated with severe visual impairment and peripheral arterial disease. Given the progress in development of a therapy for PXE, more precise estimations of its prevalence are warranted. METHODS We genotyped the four most common ABCC6 mutations (c.3421C > T, c.4182delG, c.3775delT, c.2787+1G > T), together accounting for half of all ABCC6 mutations identified in PXE patients from the Dutch population, in a Dutch high vascular risk cohort (n = 7893). The obtained allele frequencies were used to estimate the prevalence of PXE using the Hardy-Weinberg equilibrium. RESULTS The carrier frequency of ABCC6 was 0.60% for c.3421C > T, 0.17% for c.4182delG, 0.05% for c.3775delT and 0.03% for c.2787+1G > T. The prevalence of PXE based upon the allele frequencies of these four mutations was estimated as 1 per 56,000 (95%CI 1 per 35,000-97,000). CONCLUSION The prevalence of PXE is at least 1 per 56,000 meaning that there would be at least 307 affected individuals in the Netherlands that may benefit from a potential upcoming treatment. Since this estimate is based on mutations together accounting for half of all ABCC6 mutations identified among PXE patients, the actual prevalence will probably be higher.
Collapse
Affiliation(s)
- Guido Kranenburg
- Department of Vascular Medicine, University Medical Center Utrecht, Utrecht University, the Netherlands
| | - Annette F Baas
- Department of Medical Genetics, University Medical Center Utrecht, Utrecht University, the Netherlands
| | - Pim A de Jong
- Department of Radiology, University Medical Center Utrecht, Utrecht University, the Netherlands
| | - Folkert W Asselbergs
- Department of Cardiology, University Medical Center Utrecht, Utrecht University, the Netherlands
| | - Frank L J Visseren
- Department of Vascular Medicine, University Medical Center Utrecht, Utrecht University, the Netherlands
| | - Wilko Spiering
- Department of Vascular Medicine, University Medical Center Utrecht, Utrecht University, the Netherlands.
| | | |
Collapse
|
27
|
Ebran JM, Martin L, Navasiolava N, Ferre M, Milea D, Leruez S. Subretinal fibrosis is associated with fundus pulverulentus in pseudoxanthoma elasticum. Graefes Arch Clin Exp Ophthalmol 2018; 256:699-707. [PMID: 29480367 DOI: 10.1007/s00417-018-3937-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Revised: 02/09/2018] [Accepted: 02/15/2018] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Pseudoxanthoma elasticum (PXE) is a rare autosomal recessive disorder caused by mutations in the ABCC6 gene, resulting in various retinal lesions, among other systemic manifestations. Visual loss may occur in PXE, most commonly caused by choroidal neovascularization and macular atrophy, but little is known about the consequences of fundus pulverulentus (FP) in PXE. The aim of this study was to evaluate ophthalmic outcomes in patients with FP associated with PXE in a large series of PXE patients. METHODS In a retrospective observational study, ophthalmic outcomes were compared between two groups of age-matched patients with genetically and pathologically confirmed PXE: one group with FP versus one without FP. All included patients underwent thorough clinical examination. Further investigation (optical coherence tomography (OCT), Cirrhus, Zeiss Germany, and/or fluorescein/indocyanin green angiography) was performed in cases of suspected choroidal neovascularization (CNV). RESULTS The study included 13 PXE patients with FP (group 1: 8 men and 5 women, aged 45-65 years) and 47 age-matched PXE patients without FP (group 2: 19 men and 28 women). Mean patient follow-up was 63 months (range 0-132 months). Subretinal fibrosis (SRF) was more frequently associated with FP (9/26 eyes, 34.6%), compared to absence of FP (4/94, 4.2%) (p = 0.0001). Independently of SRF, FP can evolve into deep macular atrophy and/or CNV with dramatic consequences for central vision. CONCLUSIONS Fundus pulverulentus may occur in PXE and is most commonly associated with subretinal fibrosis in the posterior pole and visual loss by macular atrophy even in the absence of CNV.
Collapse
Affiliation(s)
- J M Ebran
- Ophthalmology Department, CHU Angers, Angers, France.
- PXE Referral Center, Angers University Hospital, Angers, France.
| | - L Martin
- PXE Referral Center, Angers University Hospital, Angers, France
- Dermatology Department, CHU Angers, Angers, France
- Mitovasc, Institute CNRS 6015, INSERM U 1083, University of Angers, Angers, France
| | - N Navasiolava
- PXE Referral Center, Angers University Hospital, Angers, France
| | - M Ferre
- Mitovasc, Institute CNRS 6015, INSERM U 1083, University of Angers, Angers, France
| | - D Milea
- Ophthalmology Department, CHU Angers, Angers, France
- Singapore National Eye Center, Singapore Eye Research Hospital and Duke-NUS, Singapore, Singapore
| | - S Leruez
- Ophthalmology Department, CHU Angers, Angers, France
- PXE Referral Center, Angers University Hospital, Angers, France
- Mitovasc, Institute CNRS 6015, INSERM U 1083, University of Angers, Angers, France
| |
Collapse
|
28
|
Uitto J, Udey MC. The Importance of Research Data Sharing: The Meeting Reports Section of the JID. J Invest Dermatol 2017; 137:2455-2456. [PMID: 29169457 DOI: 10.1016/j.jid.2017.10.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
29
|
Moitra K, Garcia S, Jaldin M, Etoundi C, Cooper D, Roland A, Dixon P, Reyes S, Turan S, Terry S, Dean M. ABCC6 and Pseudoxanthoma Elasticum: The Face of a Rare Disease from Genetics to Advocacy. Int J Mol Sci 2017; 18:ijms18071488. [PMID: 28696355 PMCID: PMC5535978 DOI: 10.3390/ijms18071488] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 06/12/2017] [Accepted: 06/26/2017] [Indexed: 12/20/2022] Open
Abstract
Pseudoxanthoma elasticum (PXE) is an autosomal recessive disorder characterized by the mineralization of connective tissues in the body. Primary manifestation of PXE occurs in the tissues of the skin, eyes, and cardiovascular system. PXE is primarily caused by mutations in the ABCC6 gene. The ABCC6 gene encodes the trans-membrane protein ABCC6, which is highly expressed in the kidneys and liver. PXE has high phenotypic variability, which may possibly be affected by several modifier genes. Disease advocacy organizations have had a pivotal role in bringing rare disease research to the forefront and in helping to sustain research funding for rare genetic diseases in order to help find a treatment for these diseases, pseudoxanthoma elasticum included. Because of these initiatives, individuals affected by these conditions benefit by being scientifically informed about their condition, having an effective support mechanism, and also by contributing to scientific research efforts and banking of biological samples. This rapid progress would not have been possible without the aid of disease advocacy organizations such as PXE International.
Collapse
Affiliation(s)
- Karobi Moitra
- Department of Biology, Trinity Washington University, College Of Arts and Sciences, 125 Michigan Avenue NE, Washington, DC 20017, USA.
| | - Sonia Garcia
- Department of Biology, Trinity Washington University, College Of Arts and Sciences, 125 Michigan Avenue NE, Washington, DC 20017, USA.
- PXE International, 4301 Connecticut Avenue NW, Suite 404, Washington, DC 20008, USA.
| | - Michelle Jaldin
- Department of Biology, Trinity Washington University, College Of Arts and Sciences, 125 Michigan Avenue NE, Washington, DC 20017, USA.
- PXE International, 4301 Connecticut Avenue NW, Suite 404, Washington, DC 20008, USA.
| | - Clementine Etoundi
- Department of Biology, Trinity Washington University, College Of Arts and Sciences, 125 Michigan Avenue NE, Washington, DC 20017, USA.
| | - Donna Cooper
- Department of Biology, Trinity Washington University, College Of Arts and Sciences, 125 Michigan Avenue NE, Washington, DC 20017, USA.
| | - Anna Roland
- Department of Biology, Trinity Washington University, College Of Arts and Sciences, 125 Michigan Avenue NE, Washington, DC 20017, USA.
| | - Patrice Dixon
- Department of Biology, Trinity Washington University, College Of Arts and Sciences, 125 Michigan Avenue NE, Washington, DC 20017, USA.
| | - Sandra Reyes
- Department of Biology, Trinity Washington University, College Of Arts and Sciences, 125 Michigan Avenue NE, Washington, DC 20017, USA.
| | - Sevilay Turan
- Department of Biology, Trinity Washington University, College Of Arts and Sciences, 125 Michigan Avenue NE, Washington, DC 20017, USA.
| | - Sharon Terry
- PXE International, 4301 Connecticut Avenue NW, Suite 404, Washington, DC 20008, USA.
| | - Michael Dean
- Laboratory of Translational Genomics, The Division of Cancer Epidemiology and Genetics (DCEG), National Cancer Institute, National Institutes of Health, Gaithersburg, MD 20885, USA.
| |
Collapse
|
30
|
Zhao J, Kingman J, Sundberg JP, Uitto J, Li Q. Plasma PPi Deficiency Is the Major, but Not the Exclusive, Cause of Ectopic Mineralization in an Abcc6 -/- Mouse Model of PXE. J Invest Dermatol 2017; 137:2336-2343. [PMID: 28652107 DOI: 10.1016/j.jid.2017.06.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 05/31/2017] [Accepted: 06/02/2017] [Indexed: 12/13/2022]
Abstract
Pseudoxanthoma elasticum (PXE), a prototype of heritable ectopic mineralization disorders, is caused in most cases by inactivating mutations in the ABCC6 gene. It was recently discovered that absence of ABCC6-mediated adenosine triphosphate release from the liver and consequently reduced plasma inorganic pyrophosphate (PPi) levels underlie PXE. This study examined whether reduced levels of circulating PPi, an antimineralization factor, is the sole mechanism of PXE. The Abcc6-/- and Enpp1asj mice were crossed with transgenic mice expressing human ENPP1, an ectonucleotidase that generates PPi from adenosine triphosphate. We generated Abcc6-/- and Enpp1asj mice, either wild-type or hemizygous for human ENPP1. Plasma levels of PPi and the degree of ectopic mineralization were determined. Overexpression of human ENPP1 in Enpp1asj mice normalized plasma PPi levels to that of wild-type mice and, consequently, completely prevented ectopic mineralization. These changes were accompanied by restoration of their bone microarchitecture. In contrast, although significantly reduced mineralization was noted in Abcc6-/- mice expressing human ENPP1, small mineralization foci were still evident despite increased plasma PPi levels. These results suggest that PPi is the major mediator of ectopic mineralization in PXE, but there might be an alternative, as yet unknown mechanism, independent of PPi, by which ABCC6 prevents ectopic mineralization under physiologic conditions.
Collapse
Affiliation(s)
- Jingyi Zhao
- Department of Dermatology and Cutaneous Biology, The Sidney Kimmel Medical College, and the PXE International Center of Excellence in Research and Clinical Care, Thomas Jefferson University, Philadelphia, Pennsylvania, USA; Department of Dermatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Joshua Kingman
- Department of Dermatology and Cutaneous Biology, The Sidney Kimmel Medical College, and the PXE International Center of Excellence in Research and Clinical Care, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | | | - Jouni Uitto
- Department of Dermatology and Cutaneous Biology, The Sidney Kimmel Medical College, and the PXE International Center of Excellence in Research and Clinical Care, Thomas Jefferson University, Philadelphia, Pennsylvania, USA; Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Qiaoli Li
- Department of Dermatology and Cutaneous Biology, The Sidney Kimmel Medical College, and the PXE International Center of Excellence in Research and Clinical Care, Thomas Jefferson University, Philadelphia, Pennsylvania, USA; Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
31
|
Abstract
Pseudoxanthoma elasticum (PXE) is a genetic metabolic disease with autosomal recessive inheritance caused by mutations in the ABCC6 gene. The lack of functional ABCC6 protein leads to ectopic mineralization that is most apparent in the elastic tissues of the skin, eyes and blood vessels. The clinical prevalence of PXE has been estimated at between 1 per 100,000 and 1 per 25,000, with slight female predominance. The first clinical sign of PXE is almost always small yellow papules on the nape and sides of the neck and in flexural areas. The papules coalesce, and the skin becomes loose and wrinkled. The mid-dermal elastic fibers are short, fragmented, clumped and calcified. Dystrophic calcification of Bruch's membrane, revealed by angioid streaks, may trigger choroidal neovascularization and, ultimately, loss of central vision and blindness in late-stage disease. Lesions in small and medium-sized artery walls may result in intermittent claudication and peripheral artery disease. Cardiac complications (myocardial infarction, angina pectoris) are thought to be relatively rare but merit thorough investigation. Ischemic strokes have been reported. PXE is a metabolic disease in which circulating levels of an anti-mineralization factor are low. There is good evidence to suggest that the factor is inorganic pyrophosphate (PPi), and that the circulating low levels of PPi and decreased PPi/Pi ratio result from the lack of ATP release by hepatocytes harboring the mutant ABCC6 protein. However, the substrate(s) bound, transported or modulated by the ABCC6 protein remain unknown. More than 300 sequence variants of the ABCC6 gene have been identified. There is no cure for PXE; the main symptomatic treatments are vascular endothelial growth factor inhibitor therapy (for ophthalmic manifestations), lifestyle, lipid-lowering and dietary measures (for reducing vascular risk factors), and vascular surgery (for severe cardiovascular manifestations). Future treatment options may include gene therapy/editing and pharmacologic chaperone therapy.
Collapse
Affiliation(s)
- Dominique P Germain
- Division of Medical Genetics, University of Versailles - Saint Quentin en Yvelines, Paris-Saclay University, 2 avenue de la source de la Bièvre, F-78180, Montigny, France.
| |
Collapse
|