1
|
Butera A, Agostini M, Cassandri M, De Nicola F, Fanciulli M, D’Ambrosio L, Falasca L, Nardacci R, Wang L, Piacentini M, Knight RA, Jia W, Sun Q, Shi Y, Wang Y, Candi E, Melino G. ZFP750 affects the cutaneous barrier through regulating lipid metabolism. SCIENCE ADVANCES 2023; 9:eadg5423. [PMID: 37115925 PMCID: PMC10146900 DOI: 10.1126/sciadv.adg5423] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
An essential function of the epidermis is to provide a physical barrier that prevents the loss of water. Essential mediators of this barrier function include ceramides, cholesterol, and very long chain fatty acids, and their alteration causes human pathologies, including psoriasis and atopic dermatitis. A frameshift mutation in the human ZNF750 gene, which encodes a zinc finger transcription factor, has been shown to cause a seborrhea-like dermatitis. Here, we show that genetic deletion of the mouse homolog ZFP750 results in loss of epidermal barrier function, which is associated with a substantial reduction of ceramides, nonpolar lipids. The alteration of epidermal lipid homeostasis is directly linked to the transcriptional activity of ZFP750. ZFP750 directly and/or indirectly regulates the expression of crucial enzymes primarily involved in the biosynthesis of ceramides. Overall, our study identifies the transcription factor ZFP750 as a master regulator epidermal homeostasis through lipid biosynthesis and thus contributing to our understanding of the pathogenesis of several human skin diseases.
Collapse
Affiliation(s)
- Alessio Butera
- Department of Experimental Medicine, TOR, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Massimiliano Agostini
- Department of Experimental Medicine, TOR, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Matteo Cassandri
- Department of Oncohematology, Bambino Gesù Children’s Hospital, 00146 Rome, Italy
| | - Francesca De Nicola
- Department of Research, Advanced Diagnostics, and Technological Innovation, Translational Research Area, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Maurizio Fanciulli
- Department of Research, Advanced Diagnostics, and Technological Innovation, Translational Research Area, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Lorenzo D’Ambrosio
- Department of Research, Advanced Diagnostics, and Technological Innovation, Translational Research Area, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Laura Falasca
- Laboratory of Electron Microscopy, National Institute for Infectious Diseases “L. Spallanzani,” IRCCS, Rome Italy
| | - Roberta Nardacci
- Laboratory of Electron Microscopy, National Institute for Infectious Diseases “L. Spallanzani,” IRCCS, Rome Italy
- Departmental Faculty of Medicine and Surgery, Saint Camillus International University of Health Sciences (UniCamillus), Rome, Italy
| | - Lu Wang
- University of Hawaii Cancer Center, Honolulu, HI 96813, USA
| | - Mauro Piacentini
- Laboratory of Electron Microscopy, National Institute for Infectious Diseases “L. Spallanzani,” IRCCS, Rome Italy
| | - Richard A. Knight
- Department of Experimental Medicine, TOR, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Wei Jia
- University of Hawaii Cancer Center, Honolulu, HI 96813, USA
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Qiang Sun
- Laboratory of Cell Engineering, Institute of Biotechnology, Research Unit of Cell Death Mechanism, 2021RU008, Chinese Academy of Medical Science, 20 Dongda Street, Beijing, 100071, China
| | - Yufang Shi
- The Third Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University, Suzhou 215123, China
| | - Ying Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences/Shanghai Jiao Tong University School of Medicine, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Eleonora Candi
- Department of Experimental Medicine, TOR, University of Rome “Tor Vergata”, 00133 Rome, Italy
- IDI-IRCCS, via Monti di Creta, 106, 00166 Rome, Italy
| | - Gerry Melino
- Department of Experimental Medicine, TOR, University of Rome “Tor Vergata”, 00133 Rome, Italy
- Corresponding author.
| |
Collapse
|
2
|
Aepler J, Wodtke J, Wodtke R, Haase-Kohn C, Löser R, Pietzsch J, Hauser S. The Role of Transglutaminase 2 in the Radioresistance of Melanoma Cells. Cells 2022; 11:cells11081342. [PMID: 35456021 PMCID: PMC9027323 DOI: 10.3390/cells11081342] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 04/12/2022] [Indexed: 12/04/2022] Open
Abstract
Transglutaminase 2 (TG2) is a protein expressed in many tissues that exerts numerous, sometimes contradictory, intra- and extracellular functions, under both physiological and pathophysiological conditions. In the context of tumor progression, it has been found to be involved in cell adhesion, DNA repair mechanisms, induction of apoptosis, and mesenchymal transdifferentiation, among others. Here, we hypothesized that TG2 also contributes to the radioresistance of two human melanoma cell lines, A375 and MeWo, which can be seen to differ in their basal TG2 biosynthesis by examining their proliferation and clonal expansion after irradiation. For this purpose, cellular TG2 biosynthesis and TG2 activity were modulated by transfection-induced overexpression or TG2 knock-out and application of TG2-selective inhibitors. Proliferation and clonal expansion of TG2-overexpressing cells was not enhanced over wildtype cells, suggesting that increased TG2 biosynthesis does not further enhance the radioresistance of melanoma cells. Conversely, TG2 knock-out in A375 cells reduced their proliferation, as well as clonal and spheroidal expansion after irradiation, which indicates a contribution of TG2 to the radioresistance of melanoma cells. Since TG1, TG3, and partly also, TG6 biosynthesis was detectable in A375 and MeWo cells, it can be assumed that these other members of the TG family may exert a partially compensatory effect.
Collapse
Affiliation(s)
- Julia Aepler
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstrasse 400, 01328 Dresden, Germany; (J.A.); (J.W.); (R.W.); (C.H.-K.); (R.L.); (J.P.)
- School of Sciences, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01307 Dresden, Germany
| | - Johanna Wodtke
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstrasse 400, 01328 Dresden, Germany; (J.A.); (J.W.); (R.W.); (C.H.-K.); (R.L.); (J.P.)
| | - Robert Wodtke
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstrasse 400, 01328 Dresden, Germany; (J.A.); (J.W.); (R.W.); (C.H.-K.); (R.L.); (J.P.)
| | - Cathleen Haase-Kohn
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstrasse 400, 01328 Dresden, Germany; (J.A.); (J.W.); (R.W.); (C.H.-K.); (R.L.); (J.P.)
| | - Reik Löser
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstrasse 400, 01328 Dresden, Germany; (J.A.); (J.W.); (R.W.); (C.H.-K.); (R.L.); (J.P.)
- School of Sciences, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01307 Dresden, Germany
| | - Jens Pietzsch
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstrasse 400, 01328 Dresden, Germany; (J.A.); (J.W.); (R.W.); (C.H.-K.); (R.L.); (J.P.)
- School of Sciences, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01307 Dresden, Germany
| | - Sandra Hauser
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstrasse 400, 01328 Dresden, Germany; (J.A.); (J.W.); (R.W.); (C.H.-K.); (R.L.); (J.P.)
- Correspondence:
| |
Collapse
|
3
|
Transglutaminase 3 crosslinks the secreted gel-forming mucus component Mucin-2 and stabilizes the colonic mucus layer. Nat Commun 2022; 13:45. [PMID: 35017479 PMCID: PMC8752817 DOI: 10.1038/s41467-021-27743-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 12/09/2021] [Indexed: 02/07/2023] Open
Abstract
The colonic mucus layer is organized as a two-layered system providing a physical barrier against pathogens and simultaneously harboring the commensal flora. The factors contributing to the organization of this gel network are not well understood. In this study, the impact of transglutaminase activity on this architecture was analyzed. Here, we show that transglutaminase TGM3 is the major transglutaminase-isoform expressed and synthesized in the colon. Furthermore, intrinsic extracellular transglutaminase activity in the secreted mucus was demonstrated in vitro and ex vivo. Absence of this acyl-transferase activity resulted in faster degradation of the major mucus component the MUC2 mucin and changed the biochemical properties of mucus. Finally, TGM3-deficient mice showed an early increased susceptibility to Dextran Sodium Sulfate-induced colitis. Here, we report that natural isopeptide cross-linking by TGM3 is important for mucus homeostasis and protection of the colon from inflammation, reducing the risk of colitis. The colonic mucus layer is an organized system providing a physical barrier against pathogens and simultaneously harbouring the commensal flora. Here the authors report that transglutaminase 3 activity contributes to homeostasis of the colonic mucus layer and the lack of this enzymatic activity leads to increased susceptibility against DSS-induced colitis in mice.
Collapse
|
4
|
Lee SJ, Lee KB, Hong AY, Son YH, Lee DH, Jeong EM, Kim IG. Transglutaminase 2 mediates UVB-induced matrix metalloproteinase-1 expression by inhibiting nuclear p65 degradation in dermal fibroblasts. Exp Dermatol 2021; 31:743-752. [PMID: 34882846 DOI: 10.1111/exd.14512] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/25/2021] [Accepted: 12/07/2021] [Indexed: 12/22/2022]
Abstract
Matrix metalloproteinases (MMPs) play a key role in tissue remodelling by cleaving extracellular matrix (ECM) components. In the skin, UV irradiation increases expression of MMPs that causes dysregulation of ECM homeostasis in dermis, leading to acceleration of skin aging. However, the mediator(s) that links UV irradiation to the upregulation of MMPs have not been fully defined. Previously, we showed that UVB irradiation activated transglutaminase 2 (TG2) in keratinocytes, eliciting an inflammatory response by activating NF-κB signalling. In this study, we reported the role of TG2 in mediating the UVB-induced expression of MMP-1. In human dermal fibroblasts, UVB irradiation enhanced the expression and activity of TG2, which in turn promotes the expression of MMP-1. Analyses of MMP-1 promoter showed that activation of the NF-κB signalling pathway, rather than AP-1, was responsible for the TG2-mediated upregulation of MMP-1. Moreover, Western blot analysis revealed that TG2 increased the activity of NF-κB by inhibiting degradation of p65 in the nucleus. Furthermore, ex vivo skin from TG2-knockout mice exhibited significantly reduced levels of MMP-1 compared to that from wild-type mice. These results indicate that TG2 functions as a mediator for the UVB-induced expression of MMP-1 in dermal fibroblasts, providing a new target for preventing skin photodamage.
Collapse
Affiliation(s)
- Seok-Jin Lee
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Korea
| | - Ki Baek Lee
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Korea
| | - Ah-Young Hong
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Korea
| | - Young Hoon Son
- Department of Biomedical Engineering, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Dong Hun Lee
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Korea.,Department of Human-Environment Interface Biology, Seoul National University College of Medicine, Seoul, Korea
| | - Eui Man Jeong
- Department of Pharmacy, College of Pharmacy, Jeju National University, Jeju, Korea
| | - In-Gyu Kim
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Korea.,Department of Human-Environment Interface Biology, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
5
|
Chermnykh ES, Alpeeva EV, Vorotelyak EA. Transglutaminase 3: The Involvement in Epithelial Differentiation and Cancer. Cells 2020; 9:cells9091996. [PMID: 32872587 PMCID: PMC7563467 DOI: 10.3390/cells9091996] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/21/2020] [Accepted: 08/26/2020] [Indexed: 12/14/2022] Open
Abstract
Transglutaminases (TGMs) contribute to the formation of rigid, insoluble macromolecular complexes, which are essential for the epidermis and hair follicles to perform protective and barrier functions against the environment. During differentiation, epidermal keratinocytes undergo structural alterations being transformed into cornified cells, which constitute a highly tough outermost layer of the epidermis, the stratum corneum. Similar processes occur during the hardening of the hair follicle and the hair shaft, which is provided by the enzymatic cross-linking of the structural proteins and keratin intermediate filaments. TGM3, also known as epidermal TGM, is one of the pivotal enzymes responsible for the formation of protein polymers in the epidermis and the hair follicle. Numerous studies have shown that TGM3 is extensively involved in epidermal and hair follicle physiology and pathology. However, the roles of TGM3, its substrates, and its importance for the integument system are not fully understood. Here, we summarize the main advances that have recently been achieved in TGM3 analyses in skin and hair follicle biology and also in understanding the functional role of TGM3 in human tumor pathology as well as the reliability of its prognostic clinical usage as a cancer diagnosis biomarker. This review also focuses on human and murine hair follicle abnormalities connected with TGM3 mutations.
Collapse
|
6
|
Teshima H, Kato M, Tatsukawa H, Hitomi K. Analysis of the expression of transglutaminases in the reconstructed human epidermis using a three-dimensional cell culture. Anal Biochem 2020; 603:113606. [DOI: 10.1016/j.ab.2020.113606] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/16/2020] [Accepted: 01/27/2020] [Indexed: 12/11/2022]
|
7
|
McCabe MC, Hill RC, Calderone K, Cui Y, Yan Y, Quan T, Fisher GJ, Hansen KC. Alterations in extracellular matrix composition during aging and photoaging of the skin. Matrix Biol Plus 2020; 8:100041. [PMID: 33543036 PMCID: PMC7852213 DOI: 10.1016/j.mbplus.2020.100041] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 04/02/2020] [Accepted: 06/05/2020] [Indexed: 02/07/2023] Open
Abstract
Human skin is composed of the cell-rich epidermis, the extracellular matrix (ECM) rich dermis, and the hypodermis. Within the dermis, a dense network of ECM proteins provides structural support to the skin and regulates a wide variety of signaling pathways which govern cell proliferation and other critical processes. Both intrinsic aging, which occurs steadily over time, and extrinsic aging (photoaging), which occurs as a result of external insults such as solar radiation, cause alterations to the dermal ECM. In this study, we utilized both quantitative and global proteomics, alongside single harmonic generation (SHG) and two-photon autofluorescence (TPAF) imaging, to assess changes in dermal composition during intrinsic and extrinsic aging. We find that both intrinsic and extrinsic aging result in significant decreases in ECM-supporting proteoglycans and structural ECM integrity, evidenced by decreasing collagen abundance and increasing fibril fragmentation. Intrinsic aging also produces changes distinct from those produced by photoaging, including reductions in elastic fiber and crosslinking enzyme abundance. In contrast, photoaging is primarily defined by increases in elastic fiber-associated protein and pro-inflammatory proteases. Changes associated with photoaging are evident even in young (mid 20s) sun-exposed forearm skin, indicating that proteomic evidence of photoaging is present decades prior to clinical signs of photoaging. GO term enrichment revealed that both intrinsic aging and photoaging share common features of chronic inflammation. The proteomic data has been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the data set identifier PXD015982. Intrinsic aging and photoaging both decrease ECM-supporting proteoglycans and structural ECM. Intrinsic aging produces reductions in elastic fiber and crosslinking enzyme abundance. Photoaging results in increases in pro-inflammatory proteases and elastic fiber abundance. Intrinsic aging and photoaging share common features associated with chronic inflammation. Proteomic changes associated with photoaging are evident decades prior to clinical aging signs.
Collapse
Key Words
- AUC, area under the curve
- Aging
- CE, cornified envelope
- CNBr, cyanogen bromide
- Collagen
- ECM, extracellular matrix
- Extracellular matrix
- GO, gene ontology
- Photoaging
- Proteomics
- QconCATs, quantitative concatemers
- SHG, single harmonic generation
- Skin
- TPAF, two-photon autofluorescence
- UV, ultraviolet
- iECM, insoluble ECM
- sECM, soluble ECM
Collapse
Affiliation(s)
- Maxwell C. McCabe
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado, 12801 E 17th Ave., Aurora, CO 80045, USA
| | - Ryan C. Hill
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado, 12801 E 17th Ave., Aurora, CO 80045, USA
| | - Kenneth Calderone
- Department of Dermatology, University of Michigan, 1150 W. Medical Center Drive, Medical Science I R6447, Ann Arbor, MI 48109, USA
| | - Yilei Cui
- Department of Dermatology, University of Michigan, 1150 W. Medical Center Drive, Medical Science I R6447, Ann Arbor, MI 48109, USA
| | - Yan Yan
- Department of Dermatology, University of Michigan, 1150 W. Medical Center Drive, Medical Science I R6447, Ann Arbor, MI 48109, USA
| | - Taihao Quan
- Department of Dermatology, University of Michigan, 1150 W. Medical Center Drive, Medical Science I R6447, Ann Arbor, MI 48109, USA
| | - Gary J. Fisher
- Department of Dermatology, University of Michigan, 1150 W. Medical Center Drive, Medical Science I R6447, Ann Arbor, MI 48109, USA
| | - Kirk C. Hansen
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado, 12801 E 17th Ave., Aurora, CO 80045, USA
- Corresponding author.
| |
Collapse
|
8
|
Piro MC, Ventura A, Smirnov A, Saggini A, Lena AM, Mauriello A, Bianchi L, Melino G, Candi E. Transglutaminase 3 Reduces the Severity of Psoriasis in Imiquimod-Treated Mouse Skin. Int J Mol Sci 2020; 21:ijms21051566. [PMID: 32106600 PMCID: PMC7084269 DOI: 10.3390/ijms21051566] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/21/2020] [Accepted: 02/24/2020] [Indexed: 12/26/2022] Open
Abstract
Four transglutaminase (TG) isoforms have been detected in epidermal keratinocytes: TG1, TG2, TG3, and TG5. Except for TG1 and TG3, their contribution to keratinocyte development and structure remains undefined. In this paper, we focused on the roles of TG2 and TG3 in imiquimod-induced psoriasis in mouse skin. We evaluated the severity of psoriasis markers in the skin of imiquimod-treated TG3 null and TG2 null mice. Our results showed that compromised TG3KO mouse skin was more responsive than WT or TG2KO mouse skin to the action of the pro-inflammatory drug imiquimod.
Collapse
Affiliation(s)
- Maria Cristina Piro
- Department of Experimental Medicine, TOR, University of Rome “Tor Vergata”, 00133 Rome, Italy; (M.C.P.); (A.S.); (A.S.); (A.M.L.); (A.M.)
| | - Alessandra Ventura
- Dermatology Unit, Department of Biotechnological and Applied Clinical Science, University of L’Aquila, IT-67100 L’Aquila, Italy;
| | - Artem Smirnov
- Department of Experimental Medicine, TOR, University of Rome “Tor Vergata”, 00133 Rome, Italy; (M.C.P.); (A.S.); (A.S.); (A.M.L.); (A.M.)
| | - Andrea Saggini
- Department of Experimental Medicine, TOR, University of Rome “Tor Vergata”, 00133 Rome, Italy; (M.C.P.); (A.S.); (A.S.); (A.M.L.); (A.M.)
| | - Anna Maria Lena
- Department of Experimental Medicine, TOR, University of Rome “Tor Vergata”, 00133 Rome, Italy; (M.C.P.); (A.S.); (A.S.); (A.M.L.); (A.M.)
| | - Alessandro Mauriello
- Department of Experimental Medicine, TOR, University of Rome “Tor Vergata”, 00133 Rome, Italy; (M.C.P.); (A.S.); (A.S.); (A.M.L.); (A.M.)
| | - Luca Bianchi
- Dermatology Unit, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy;
| | - Gerry Melino
- Department of Experimental Medicine, TOR, University of Rome “Tor Vergata”, 00133 Rome, Italy; (M.C.P.); (A.S.); (A.S.); (A.M.L.); (A.M.)
- Medical Research Council, University of Cambridge, Cambridge CB21QP, UK
| | - Eleonora Candi
- Department of Experimental Medicine, TOR, University of Rome “Tor Vergata”, 00133 Rome, Italy; (M.C.P.); (A.S.); (A.S.); (A.M.L.); (A.M.)
- IDI-IRCCS, Biochemistry laboratory, 00167 Rome, Italy
- Correspondence: ; Tel.: +39-06-72596976
| |
Collapse
|
9
|
Su H, Luo Y, Sun J, Liu X, Ling S, Xu B, Zhang Y, Liu J, Li W, Wang B, Yao X. Transglutaminase 3 Promotes Skin Inflammation in Atopic Dermatitis by Activating Monocyte-Derived Dendritic Cells via DC-SIGN. J Invest Dermatol 2020; 140:370-379.e8. [DOI: 10.1016/j.jid.2019.07.703] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 07/01/2019] [Accepted: 07/12/2019] [Indexed: 01/15/2023]
|
10
|
Antiga E, Maglie R, Quintarelli L, Verdelli A, Bonciani D, Bonciolini V, Caproni M. Dermatitis Herpetiformis: Novel Perspectives. Front Immunol 2019; 10:1290. [PMID: 31244841 PMCID: PMC6579917 DOI: 10.3389/fimmu.2019.01290] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 05/21/2019] [Indexed: 02/06/2023] Open
Abstract
Dermatitis herpetiformis (DH) is an inflammatory disease of the skin, considered the specific cutaneous manifestation of celiac disease (CD). Both DH and CD occur in gluten-sensitive individuals, share the same Human Leukocyte Antigen (HLA) haplotypes (DQ2 and DQ8), and improve following the administration of a gluten-free diet. Moreover, almost all DH patients show typical CD alterations at the small bowel biopsy, ranging from villous atrophy to augmented presence of intraepithelial lymphocytes, as well as the generation of circulating autoantibodies against tissue transglutaminase (tTG). Clinically, DH presents with polymorphic lesions, including papules, vesicles, and small blisters, symmetrically distributed in typical anatomical sites including the extensor aspects of the limbs, the elbows, the sacral regions, and the buttocks. Intense pruritus is almost the rule. However, many atypical presentations of DH have also been reported. Moreover, recent evidence suggested that DH is changing. Firstly, some studies reported a reduced incidence of DH, probably due to early recognition of CD, so that there is not enough time for DH to develop. Moreover, data from Japanese literature highlighted the absence of intestinal involvement as well as of the typical serological markers of CD (i.e., anti-tTG antibodies) in Japanese patients with DH. Similar cases may also occur in Caucasian patients, complicating DH diagnosis. The latter relies on the combination of clinical, histopathologic, and immunopathologic findings. Detecting granular IgA deposits at the dermal-epidermal junction by direct immunofluorescence (DIF) from perilesional skin represents the most specific diagnostic tool. Further, assessing serum titers of autoantibodies against epidermal transglutaminase (eTG), the supposed autoantigen of DH, may also serve as a clue for the diagnosis. However, a study from our group has recently demonstrated that granular IgA deposits may also occur in celiac patients with non-DH inflammatory skin diseases, raising questions about the effective role of eTG IgA autoantibodies in DH and suggesting the need of revising diagnostic criteria, conceivably emphasizing clinical aspects of the disease along with DIF. DH usually responds to the gluten-free diet. Topical clobetasol ointment or dapsone may be also applied to favor rapid disease control. Our review will focus on novel pathogenic insights, controversies, and management aspects of DH.
Collapse
Affiliation(s)
- Emiliano Antiga
- Section of Dermatology, Department of Health Sciences, University of Florence, Florence, Italy
| | - Roberto Maglie
- Section of Dermatology, Department of Health Sciences, University of Florence, Florence, Italy
| | - Lavinia Quintarelli
- Section of Dermatology, Department of Health Sciences, University of Florence, Florence, Italy
| | - Alice Verdelli
- Section of Dermatology, Department of Health Sciences, University of Florence, Florence, Italy
| | - Diletta Bonciani
- Section of Dermatology, Department of Health Sciences, University of Florence, Florence, Italy
| | - Veronica Bonciolini
- Section of Dermatology, Department of Health Sciences, University of Florence, Florence, Italy
| | - Marzia Caproni
- Section of Dermatology, Department of Health Sciences, University of Florence, Florence, Italy
| |
Collapse
|
11
|
Watanabe Y, Furukawa E, Tatsukawa H, Hashimoto H, Kamei Y, Taniguchi Y, Hitomi K. Higher susceptibility to osmolality of the medaka (Oryzias latipes) mutants in orthologue genes of mammalian skin transglutaminases. Biosci Biotechnol Biochem 2018; 82:1165-1168. [DOI: 10.1080/09168451.2018.1453294] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Abstract
Transglutaminase (TG) is an essential enzyme to catalyze cross-linking reactions of epidermal proteins. Recently, we biochemically characterized human skin TG orthologues for medaka (Oryzias latipes), a model fish. By genome editing, gene-modified fishes for the two orthologues were obtained, both of which lack the ordinal enzymes. These fish appeared to exhibit higher susceptibility to osmolality at the period of larvae.
Collapse
Affiliation(s)
- Yuko Watanabe
- Graduate School of Pharmaceutical Sciences, Nagoya University , Nagoya, Japan
| | - Eri Furukawa
- Graduate School of Pharmaceutical Sciences, Nagoya University , Nagoya, Japan
| | - Hideki Tatsukawa
- Graduate School of Pharmaceutical Sciences, Nagoya University , Nagoya, Japan
| | | | | | - Yoshihito Taniguchi
- Department of Preventive Medicine and Public Health, School of Medicine, Kyorin University , Tokyo, Japan
| | - Kiyotaka Hitomi
- Graduate School of Pharmaceutical Sciences, Nagoya University , Nagoya, Japan
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University , Nagoya, Japan
| |
Collapse
|
12
|
Lee SJ, Lee KB, Son YH, Shin J, Lee JH, Kim HJ, Hong AY, Bae HW, Kwon MA, Lee WJ, Kim JH, Lee DH, Jeong EM, Kim IG. Transglutaminase 2 mediates UV-induced skin inflammation by enhancing inflammatory cytokine production. Cell Death Dis 2017; 8:e3148. [PMID: 29072680 PMCID: PMC5680918 DOI: 10.1038/cddis.2017.550] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 09/12/2017] [Accepted: 09/14/2017] [Indexed: 12/26/2022]
Abstract
UV irradiation elicits acute inflammation in the skin by increasing proinflammatory cytokine production in keratinocytes. However, the downstream protein target(s) that link UV radiation to the activation of signaling pathways responsible for cytokine expression have not been fully elucidated. In this study, we report a novel role of transglutaminase 2 (TG2), a member of the TG enzyme family whose activities are critical for cornified envelope formation, in mediating UV-induced inflammation. Our results showed that TG2-deficient mice exhibited reduced inflammatory responses to UV irradiation, including reduced erythema, edema, dilation of blood vessels, inflammatory cell infiltration, and levels of inflammatory cytokines. Using primary mouse keratinocytes and HaCaT cells, we found that UV irradiation-induced cytokine production by activating TG2, but not by upregulating TG2 expression, and that ER calcium release triggered by the UV-induced activation of phospholipase C was required for TG2 activation. Moreover, TG2 activity enhanced p65 phosphorylation, leading to an increase in NF-κB transcriptional activity. These results indicate that TG2 is a critical mediator of cytokine expression in the UV-induced inflammatory response of keratinocytes, and suggest that TG2 inhibition might be useful for preventing UV-related skin disorders, such as photoaging and skin cancer caused by chronic UV exposure.
Collapse
Affiliation(s)
- Seok-Jin Lee
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Ki Baek Lee
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Young Hoon Son
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jiwoong Shin
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jin-Haeng Lee
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hyo-Jun Kim
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Ah-Young Hong
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hee Won Bae
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Mee-Ae Kwon
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Won Jong Lee
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jin-Hee Kim
- Department of Biomedical Laboratory Science, Cheongju University College of Health Science, Cheongju, Republic of Korea
| | - Dong Hun Lee
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea.,Institute of Human-Environment Interface Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Eui Man Jeong
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Republic of Korea.,Institute of Human-Environment Interface Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - In-Gyu Kim
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Republic of Korea.,Institute of Human-Environment Interface Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
13
|
Voegeli R, Monneuse JM, Schoop R, Summers B, Rawlings AV. The effect of photodamage on the female Caucasian facial stratum corneum corneome using mass spectrometry-based proteomics. Int J Cosmet Sci 2017; 39:637-652. [PMID: 28865110 DOI: 10.1111/ics.12426] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 08/29/2017] [Indexed: 12/23/2022]
Abstract
BACKGROUND The effect of photodamage on facial stratum corneum (SC) is still poorly understood. OBJECTIVE To describe the SC proteome from tape strippings of Caucasian SC from photoexposed cheek and photoprotected post-auricular (PA) site, a global analysis of photodamage on the skin will be developed leading to a better understanding of keratinocyte signalling pathways and identification of new molecular targets for the treatment of photoaged skin. METHODS Female Caucasian subjects had nine consecutive tape strippings taken from their cheeks and PA site. Proteins were extracted and the trypsin-digested peptides were analysed by nanochromatography coupled to a high-resolution mass spectrometer. Data-dependent acquisition allowed protein identification that was processed by Paragon algorithm of Protein Pilot software. RESULTS Changes in the levels of epidermal differentiation proteins were apparent indicating poor epidermal differentiation and SC maturation (keratins, cornified envelope (CE) proteins) on photoexposed cheeks. Differences in protease-anti-protease balance were observed for corneodesmolysis (favouring desquamation) and filaggrinolysis (favouring reduced filaggrin processing). 12R-LOX, a CE maturation enzyme, was reduced in photodamaged skin but not transglutaminases. Changes in signal keratinocyte transduction pathway markers were demonstrated especially by reduced levels of downstream signalling markers such as calreticulin (unfolded protein response; UPR) and increased level of stratifin (target of rapamycin; mTOR). Evidence for impaired proteostasis was apparent by reduced levels of a key proteasomal subunit (subunit beta type-6). Finally, key antioxidant proteins were upregulated except catalase. CONCLUSION Clear examples of poor keratinocyte differentiation and associated metabolic and signalling pathways together with reduced SC maturation were identified in photodamaged facial SC. Corneocyte immaturity was evident with changes in CE proteins. Particularly, the reduction in 12R-LOX is a novel finding in photodamaged skin and supports the lack of SC maturation. Moreover, filaggrinolysis was reduced, whereas corneodesmolysis was enhanced. From our results, we propose that there is a poor cross-talk between the keratinocyte endoplasmic reticulum UPR, proteasome network and autophagy machinery that possibly leads to impaired keratinocyte proteostasis. Superimposed on these aberrations is an apparently enhanced mTOR pathway that also contributes to reduced SC formation and maturation. Our results clearly indicate a corneocyte scaffold disorder in photodamaged cheek SC.
Collapse
Affiliation(s)
- R Voegeli
- DSM Nutritional Products Ltd., Wurmisweg 571, 4303, Kaiseraugst, Switzerland
| | - J-M Monneuse
- Phylogene S.A., 62, Route Nationale 113, 30620, Bernis, France
| | - R Schoop
- DSM Nutritional Products Ltd., Wurmisweg 571, 4303, Kaiseraugst, Switzerland
| | - B Summers
- Photobiology Laboratory, Sefako Makgatho Health Sciences University, Molotlegi St, Medunsa 0204, Pretoria, South Africa
| | - A V Rawlings
- AVR Consulting Ltd., 26 Shavington Way, Northwich, Cheshire CW9 8FH, UK
| |
Collapse
|