1
|
Li X, An T, Yang Y, Xu Z, Chen S, Yi Z, Deng C, Zhou F, Man Y, Hu C. TLR9 activation in large wound induces tissue repair and hair follicle regeneration via γδT cells. Cell Death Dis 2024; 15:598. [PMID: 39153998 PMCID: PMC11330466 DOI: 10.1038/s41419-024-06994-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/07/2024] [Accepted: 08/12/2024] [Indexed: 08/19/2024]
Abstract
The mechanisms underlying tissue repair in response to damage have been one of main subjects of investigation. Here we leverage the wound-induced hair neogenesis (WIHN) models in adult mice to explore the correlation between degree of damage and the healing process and outcome. The multimodal analysis, in combination with single-cell RNA sequencing help to explore the difference in wounds of gentle and heavy damage degrees, identifying the potential role of toll-like receptor 9 (TLR9) in sensing the injury and regulating the immune reaction by promoting the migration of γδT cells. The TLR9 deficient mice or wounds injected with TLR9 antagonist have greatly impaired healing and lower WIHN levels. Inhibiting the migration of γδT cells or knockout of γδT cells also suppress the wound healing and regeneration, which can't be rescued by TLR9agonist. Finally, the amphiregulin (AREG) is shown as one of most important effectors secreted by γδT cells and keratinocytes both in silicon or in the laboratory, whose expression influences WIHN levels and the expression of stem cell markers. In total, our findings reveal a previously unrecognized role for TLR9 in sensing skin injury and influencing the tissue repair and regeneration by modulation of the migration of γδT cells, and identify the TLR9-γδT cells-areg axis as new potential targets for enhancing tissue regeneration.
Collapse
Affiliation(s)
- Xinhui Li
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Tiantian An
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yang Yang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Zhaoyu Xu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Shuaidong Chen
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Zumu Yi
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Chen Deng
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Feng Zhou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yi Man
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China.
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Chen Hu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China.
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
2
|
Xie K, Ning C, Yang A, Zhang Q, Wang D, Fan X. Resequencing Analyses Revealed Genetic Diversity and Selection Signatures during Rabbit Breeding and Improvement. Genes (Basel) 2024; 15:433. [PMID: 38674368 PMCID: PMC11049387 DOI: 10.3390/genes15040433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/23/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Domestication has shaped the diverse characteristics of rabbits, including coat color, fur structure, body size, and various physiological traits. Utilizing whole-genome resequencing (DNBSEQ-T7), we analyzed the genetic diversity, population structure, and genomic selection across 180 rabbits from 17 distinct breeds to uncover the genetic basis of these traits. We conducted whole-genome sequencing on 17 rabbit breeds, identifying 17,430,184 high-quality SNPs and analyzing genomic diversity, patterns of genomic variation, population structure, and selection signatures related to coat color, coat structure, long hair, body size, reproductive capacity, and disease resistance. Through PCA and NJ tree analyses, distinct clusters emerged among Chinese indigenous rabbits, suggesting varied origins and domestication histories. Selective sweep testing pinpointed regions and genes linked to domestication and key morphological and economic traits, including those affecting coat color (TYR, ASIP), structure (LIPH), body size (INSIG2, GLI3), fertility (EDNRA, SRD5A2), heat stress adaptation (PLCB1), and immune response (SEC31A, CD86, LAP3). Our study identified key genomic signatures of selection related to traits such as coat color, fur structure, body size, and fertility; these findings highlight the genetic basis underlying phenotypic diversification in rabbits and have implications for breeding programs aiming to improve productive, reproductive, and adaptive traits. The detected genomic signatures of selection also provide insights into rabbit domestication and can aid conservation efforts for indigenous breeds.
Collapse
Affiliation(s)
- Kerui Xie
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an 271018, China;
| | - Chao Ning
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai’an 271018, China; (C.N.); (Q.Z.)
| | - Aiguo Yang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai’an 271018, China; (C.N.); (Q.Z.)
| | - Qin Zhang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai’an 271018, China; (C.N.); (Q.Z.)
| | - Dan Wang
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an 271018, China
| | - Xinzhong Fan
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an 271018, China;
| |
Collapse
|
3
|
Frech S, Lichtenberger BM. Modulating embryonic signaling pathways paves the way for regeneration in wound healing. Front Physiol 2024; 15:1367425. [PMID: 38434140 PMCID: PMC10904466 DOI: 10.3389/fphys.2024.1367425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 02/05/2024] [Indexed: 03/05/2024] Open
Abstract
Epithelial tissues, including the skin, are highly proliferative tissues with the capability to constant renewal and regeneration, a feature that is essential for survival as the skin forms a protective barrier against external insults and water loss. In adult mammalian skin, every injury will lead to a scar. The scar tissue that is produced to seal the wound efficiently is usually rigid and lacks elasticity and the skin's original resilience to external impacts, but also secondary appendages such as hair follicles and sebaceous glands. While it was long thought that hair follicles develop solely during embryogenesis, it is becoming increasingly clear that hair follicles can also regenerate within a wound. The ability of the skin to induce hair neogenesis following injury however declines with age. As fetal and neonatal skin have the remarkable capacity to heal without scarring, the recapitulation of a neonatal state has been a primary target of recent regenerative research. In this review we highlight how modulating dermal signaling or the abundance of specific fibroblast subsets could be utilized to induce de novo hair follicles within the wound bed, and thus to shift wound repair with a scar to scarless regeneration.
Collapse
|
4
|
Song Y, Liu C, Zhou Y, Lin G, Xu C, Msuthwana P, Wang S, Ma J, Zhuang F, Fu X, Wang Y, Liu T, Liu Q, Wang J, Sui Y, Sun Y. Regulation of feather follicle development and Msx2 gene SNP degradation in Hungarian white goose. BMC Genomics 2022; 23:821. [PMID: 36510127 PMCID: PMC9743523 DOI: 10.1186/s12864-022-09060-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 12/01/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Hungarian white goose has excellent down production performance and was introduced to China in 2010. The growth and development of feather follicles has an important impact on down production. Goose feather follicles can be divided into primary and secondary feather follicles, both of which originate in the embryonic stage. Msx2 (Msh Homeobox 2) plays a regulatory role in tissues and organs such as eyes, teeth, bones and skin. However, its regulatory mechanism on goose feather follicles development remains unclear. RESULTS Msx2 gene first increased, then decreased and increased at the end (E13, E18, E23, E28) during embryonic feather follicle development, and the expression level was the highest at E18. The pEGFP-N1-Msx2 overexpression vector and si-Msx2 siRNA vector were constructed to transfect goose embryo dermal fibroblasts. The results showed that the cell viability of ov-Msx2 group was significantly increased, and the gene expression levels of FGF5 and TGF-β1 genes were significantly down-regulated (P < 0.05), the expressions of PCNA, Bcl2, CDK1, FOXN1 and KGF genes were significantly up-regulated (P < 0.05). After transfection of siRNA vector, the cell viability of the si-Msx2 group was significantly decreased (P < 0.01) compared with the si-NC group. TGF-β1 expression was significantly up-regulated (P < 0.05), FGF5 expression was extremely significantly up-regulated (P < 0.01), while PCNA, Bcl2, CDK1, FOXN1 and KGF gene expression was significantly down-regulated (P < 0.05). High-throughput sequencing technology was used to mine the exon SNPs of Msx2. A total of 11 SNP loci were screened, four of the SNPs located in exon 1 were missense mutations. The feather follicle diameter of the GC genotype at the G78C site is significantly larger than that of the other two genotypes. CONCLUSIONS Msx2 maybe inhibit the apoptosis of goose dermal fibroblasts and promotes their proliferation. G78C can be used as a potential molecular marker for downy Variety.
Collapse
Affiliation(s)
- Yupu Song
- grid.464353.30000 0000 9888 756XCollege of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118 China
| | - Chang Liu
- Changchun Animal Husbandry Service, Changchun, 130062 China
| | - Yuxuan Zhou
- grid.464353.30000 0000 9888 756XCollege of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118 China
| | - Guangyu Lin
- Jilin Provincial Animal Husbandry Information Center, Changchun, 130000 China
| | - Chenguang Xu
- Changchun Animal Husbandry Service, Changchun, 130062 China
| | - Petunia Msuthwana
- grid.464353.30000 0000 9888 756XCollege of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118 China
| | - Sihui Wang
- grid.464353.30000 0000 9888 756XCollege of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118 China
| | - Jingyun Ma
- grid.464353.30000 0000 9888 756XCollege of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118 China
| | - Fangming Zhuang
- grid.464353.30000 0000 9888 756XCollege of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118 China
| | - Xianou Fu
- grid.464353.30000 0000 9888 756XCollege of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118 China
| | - Yudong Wang
- grid.464353.30000 0000 9888 756XCollege of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118 China
| | - Tuoya Liu
- grid.464353.30000 0000 9888 756XCollege of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118 China
| | - Qianyan Liu
- grid.464353.30000 0000 9888 756XCollege of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118 China
| | - Jingbo Wang
- grid.464353.30000 0000 9888 756XCollege of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118 China
| | - Yujian Sui
- grid.464353.30000 0000 9888 756XCollege of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118 China
| | - Yongfeng Sun
- grid.464353.30000 0000 9888 756XCollege of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118 China ,Key Laboratory for Animal Production, Product Quality and Safety of Ministry of Education, Changchun, 130118 China
| |
Collapse
|
5
|
Chen H, Zhang Y, Zhou D, Ma X, Yang S, Xu T. Mechanical engineering of hair follicle regeneration by in situ bioprinting. BIOMATERIALS ADVANCES 2022; 142:213127. [PMID: 36244245 DOI: 10.1016/j.bioadv.2022.213127] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 08/30/2022] [Accepted: 09/17/2022] [Indexed: 05/12/2023]
Abstract
Hair loss caused by various factors such as trauma, stress, and diseases hurts patient psychology and seriously affects patients' quality of life, but there is no effective method to control it. In situ bioprinting is a method for printing bioinks directly into defective sites according to the shape and characteristics of the defective tissue or organ to promote tissue or organ repair. In this study, we applied a 3D bioprinting machine in situ bioprinting of epidermal stem cells (Epi-SCs), skin-derived precursors (SKPs), and Matrigel into the wounds of nude mice to promote hair follicle regeneration based on their native microenvironment. The results showed successful regeneration of hair follicles and other skin appendages at 4 weeks after in situ bioprinting. Moreover, we confirmed that bioprinting only slightly decreased stem cell viability and maintained the stemness of the stem cells. These findings demonstrated a mechanical engineering method for hair follicle regeneration by in situ bioprinting which has potential in the clinic.
Collapse
Affiliation(s)
- Haiyan Chen
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, People's Republic of China; Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, People's Republic of China; East China Institute of Digital Medical Engineering, Shangrao 334000, People's Republic of China
| | - Yi Zhang
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, People's Republic of China; Huaqing Zhimei Bio-tech Co., Ltd, Shenzhen 518107, People's Republic of China
| | - Dezhi Zhou
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Xiaoxiao Ma
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, People's Republic of China
| | - Siming Yang
- Departement of Dermatology, Fourth Medical Center, Chinese PLA General Hospital, Beijing 100048, People's Republic of China.
| | - Tao Xu
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, People's Republic of China; Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, People's Republic of China; Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, People's Republic of China.
| |
Collapse
|
6
|
Islam M, Karmakar PC, Tusher-Al-Arafat, Arifuzzaman M, Karim N, Akhtar N, Asaduzzaman SM. Human Amniotic Membrane and Titanium Dioxide Nanoparticle Derived Gel for Burn Wound Healing in a Rat Model. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2022. [DOI: 10.1007/s40883-022-00280-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
7
|
Topological Distribution of Wound Stiffness Modulates Wound-Induced Hair Follicle Neogenesis. Pharmaceutics 2022; 14:pharmaceutics14091926. [PMID: 36145674 PMCID: PMC9504897 DOI: 10.3390/pharmaceutics14091926] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/02/2022] [Accepted: 09/06/2022] [Indexed: 11/17/2022] Open
Abstract
In the large full-thickness mouse skin regeneration model, wound-induced hair neogenesis (WIHN) occurs in the wound center. This implies a spatial regulation of hair regeneration. The role of mechanotransduction during tissue regeneration is poorly understood. Here, we created wounds with equal area but different shapes to understand if perturbing mechanical forces change the area and quantity of de novo hair regeneration. Atomic force microscopy of wound stiffness demonstrated a stiffness gradient across the wound with the wound center softer than the margin. Reducing mechanotransduction signals using FAK or myosin II inhibitors significantly increased WIHN and, conversely, enhancing these signals with an actin stabilizer reduced WIHN. Here, α-SMA was downregulated in FAK inhibitor-treated wounds and lowered wound stiffness. Wound center epithelial cells exhibited a spherical morphology relative to wound margin cells. Differential gene expression analysis of FAK inhibitor-treated wound RNAseq data showed that cytoskeleton-, integrin-, and matrix-associated genes were downregulated, while hair follicular neogenesis, cell proliferation, and cell signaling genes were upregulated. Immunohistochemistry staining showed that FAK inhibition increased pSTAT3 nuclear staining in the regenerative wound center, implying enhanced signaling for hair follicular neogenesis. These findings suggest that controlling wound stiffness modulates tissue regeneration encompassing epithelial competence, tissue patterning, and regeneration during wound healing.
Collapse
|
8
|
Liu J, Yin G, Hu K, Huang H, Xu F, Yang Y, Chen F. Parental uveitis causes elevated hair loss in offspring of C57BL/6J mice. Exp Eye Res 2022; 219:109056. [PMID: 35367248 DOI: 10.1016/j.exer.2022.109056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/17/2022] [Accepted: 03/24/2022] [Indexed: 01/10/2023]
Abstract
Our previous study demonstrated that parental uveitis in a susceptible population can cause hair loss and increase the susceptibility to experimental autoimmune uveitis (EAU) in offspring. However, it is unclear whether parental uveitis affects the development of offspring in an EAU-moderate-susceptible population. Herein, moderate-susceptible C57BL/6J mice were immunized with inter-photoreceptor retinoid binding protein (IRBP) 651-670 to develop EAU and were kept together for mating. Gross examination and histopathological changes of the offspring gestated with parental uveitis were observed to evaluate the impact of parental uveitis on the development of the offspring. Differentially expressed genes (DEGs) were screened by RNA sequencing in the affected skin and eyeball of the offspring on postnatal day 27. Adult offspring were injected 75 μg IRBP651-670 to evaluate their susceptibility to EAU. Gross examination in the offspring revealed hair loss on postnatal days 11-31. Histopathological observation showed increased melanin granules and hair follicles of skin in the affected offspring with hair loss. Gene Ontology (GO) analysis in the skin revealed differential expression of genes involved in the mitotic cell cycle, response to endogenous stimulus, hair follicle development, and hair cycle. The DEGs in the skin were predominately associated with the cell cycle and peroxisome proliferator-activated receptor (PPAR) signaling pathway. The GO enrichment analysis in the eyeball showed differential expression of genes involved in the nervous system development, camera-type eye photoreceptor cell differentiation, neuron projection morphogenesis, axon development, and calcium-induced calcium release activity; enriched pathways included the circadian entrainment and glutamatergic synapses. No increased susceptibility to EAU in offspring gestated from parental remitting EAU was observed at a low-dose 75 μg IRBP induction. These results suggested that parental uveitis in a moderate-susceptible population could affect the skin development and DEG profiles of skin and eyeball related to the response to endogenous stimulus, the PPAR signaling pathway, and glutamatergic synapse, which provides the molecular evidence to explain the influence of parental uveitis on offspring development.
Collapse
Affiliation(s)
- Jianping Liu
- Department of Pathology, Chongqing Medical University, Chongqing, PR China
| | - Guangnian Yin
- Laboratory Animal Center, Chongqing Medical University, Chongqing, PR China; The Second Affiliated Hospital of Army Military Medical University, Chongqing, PR China
| | - Kaijiao Hu
- Laboratory Animal Center, Chongqing Medical University, Chongqing, PR China; Chongqing Engineering Research Center for Rodent Laboratory Animals, Chongqing, PR China
| | - Hui Huang
- Laboratory Animal Center, Chongqing Medical University, Chongqing, PR China; Chongqing Engineering Research Center for Rodent Laboratory Animals, Chongqing, PR China
| | - Fei Xu
- Laboratory Animal Center, Chongqing Medical University, Chongqing, PR China; Chongqing Engineering Research Center for Rodent Laboratory Animals, Chongqing, PR China
| | - Yaying Yang
- Department of Pathology, Chongqing Medical University, Chongqing, PR China.
| | - Feilan Chen
- Laboratory Animal Center, Chongqing Medical University, Chongqing, PR China; Chongqing Engineering Research Center for Rodent Laboratory Animals, Chongqing, PR China.
| |
Collapse
|
9
|
Ankawa R, Fuchs Y. May the best wound WIHN: the hallmarks of wound-induced hair neogenesis. Curr Opin Genet Dev 2021; 72:53-60. [PMID: 34861514 DOI: 10.1016/j.gde.2021.10.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/05/2021] [Accepted: 10/21/2021] [Indexed: 01/06/2023]
Abstract
The hair follicle is a unique mini organ that undergoes continuous cycles of replenishment. While hair follicle formation was long thought to occur strictly during embryogenesis, it is now becoming increasingly clear that hair follicles can regenerate from the wound bed. Here, we provide an overview of the recent advancements in the field of Wound Induced Hair Neogenesis (WIHN) in mice. We briefly outline the hair follicle morphogenic process and discuss the major features of adult hair follicle regeneration. We examine the role of distinct cell types and review the contribution of specific signaling pathways to the WIHN phenotype. The phenomenon of neogenic hair regeneration provides an important platform, which may offer new insights into mammalian regeneration in the adult setting.
Collapse
Affiliation(s)
- Roi Ankawa
- Laboratory of Stem Cell Biology and Regenerative Medicine, Department of Biology, Technion Israel Institute of Technology, Israel; Lorry Lokey Interdisciplinary Center for Life Sciences & Engineering, Technion Israel Institute of Technology, Israel; Technion Integrated Cancer Center, Technion Israel Institute of Technology, Haifa 3200, Israel
| | - Yaron Fuchs
- Laboratory of Stem Cell Biology and Regenerative Medicine, Department of Biology, Technion Israel Institute of Technology, Israel; Lorry Lokey Interdisciplinary Center for Life Sciences & Engineering, Technion Israel Institute of Technology, Israel; Technion Integrated Cancer Center, Technion Israel Institute of Technology, Haifa 3200, Israel.
| |
Collapse
|
10
|
Li J, Lee MO, Davis BW, Wu P, Hsieh Li SM, Chuong CM, Andersson L. The crest phenotype in domestic chicken is caused by a 197 bp duplication in the intron of HOXC10. G3-GENES GENOMES GENETICS 2021; 11:6062401. [PMID: 33704432 PMCID: PMC8022956 DOI: 10.1093/g3journal/jkaa048] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 11/01/2020] [Indexed: 11/12/2022]
Abstract
The Crest mutation in chicken shows incomplete dominance and causes a spectacular phenotype in which the small feathers normally present on the head are replaced by much larger feathers normally present only in dorsal skin. Using whole-genome sequencing, we show that the crest phenotype is caused by a 197 bp duplication of an evolutionarily conserved sequence located in the intron of HOXC10 on chromosome 33. A diagnostic test showed that the duplication was present in all 54 crested chickens representing eight breeds and absent from all 433 non-crested chickens representing 214 populations. The mutation causes ectopic expression of at least five closely linked HOXC genes, including HOXC10, in cranial skin of crested chickens. The result is consistent with the interpretation that the crest feathers are caused by an altered body region identity. The upregulated HOXC gene expression is expanded to skull tissue of Polish chickens showing a large crest often associated with cerebral hernia, but not in Silkie chickens characterized by a small crest, both homozygous for the duplication. Thus, the 197 bp duplication is required for the development of a large crest and susceptibility to cerebral hernia because only crested chicken show this malformation. However, this mutation is not sufficient to cause herniation because this malformation is not present in breeds with a small crest, like Silkie chickens.
Collapse
Affiliation(s)
- Jingyi Li
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA.,Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, 430070 Wuhan, Hubei, China
| | - Mi-Ok Lee
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Brian W Davis
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Ping Wu
- Department of Pathology, University of Southern California, Los Angeles, CA 90033, USA
| | - Shu-Man Hsieh Li
- Department of Pathology, University of Southern California, Los Angeles, CA 90033, USA.,Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033, USA.,Department of Biochemistry, National Defense Medical Center, Taipei 114, Taiwan
| | - Cheng-Ming Chuong
- Department of Pathology, University of Southern California, Los Angeles, CA 90033, USA
| | - Leif Andersson
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA.,Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, SE-751 23 Uppsala, Sweden.,Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden
| |
Collapse
|
11
|
Zhang C, Wang T, Zhang L, Chen P, Tang S, Chen A, Li M, Peng G, Gao H, Weng H, Zhang H, Li S, Chen J, Chen L, Chen X. Combination of lyophilized adipose-derived stem cell concentrated conditioned medium and polysaccharide hydrogel in the inhibition of hypertrophic scarring. Stem Cell Res Ther 2021; 12:23. [PMID: 33413617 PMCID: PMC7792059 DOI: 10.1186/s13287-020-02061-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 11/27/2020] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Mesenchymal stem cell-based acellular therapies have been widely exploited in managing hypertrophic scars. However, low maintenance dose and transitory therapeutic effects during topical medication remain a thorny issue. Herein, this study aimed to optimize the curative effect of adipose-derived stem cell conditioned medium (ADSC-CM) in the prevention of hypertrophic scarring. METHODS In the present study, ADSC-CM was concentrated via the freeze-drying procedure. The efficacy of different dose groups (CM, CM5, CM10) was conducted on the proliferation, apoptosis, and α-smooth muscle actin (α-SMA) expression of human keloid fibroblasts (HKFs) in vitro. Incorporation of adipose-derived stem cell concentrated conditioned medium (ADSCC-CM) into polysaccharide hydrogel was investigated in rabbit ear, in vivo. Haematoxylin-eosin (H&E) and Masson's trichrome staining were performed for the evaluation of scar hyperplasia. RESULTS We noted that ADSCC-CM could downregulate the α-SMA expression of HKFs in a dose-dependent manner. In the rabbit ear model, the scar hyperplasia in the medium-dose group (CM5) and high-dose group (CM10) was inhibited with reduced scar elevation index (SEI) under 4 months of observation. It is noteworthy that the union of CM5 and polysaccharide hydrogel (CM5+H) yielded the best preventive effect on scar hyperplasia. Briefly, melanin, height, vascularity, and pliability in the CM5+H group were better than those of the control group. Collagen was evenly distributed, and skin appendages could be regenerated. CONCLUSIONS Altogether, ADSCC-CM can downregulate the expression of α-SMA due to its anti-fibrosis effect and promote the rearrangement of collagen fibres, which is integral to scar precaution. The in situ cross bonding of ADSCC-CM and polysaccharide hydrogel could remarkably enhance the therapeutic outcomes in inhibiting scar proliferation. Hence, the alliance of ADSCC-CM and hydrogel may become a potential alternative in hypertrophic scar prophylaxis.
Collapse
Affiliation(s)
- Chaoyu Zhang
- Department of Plastic Surgery, Fujian Medical University Union Hospital, Fuzhou, China.,Department of Plastic Surgery and Regenerative Medicine Institute, Fujian Medical University, Fuzhou, China.,Department of Stem Cell Research Institute, Fujian Medical University, Fuzhou, China
| | - Ting Wang
- Department of Plastic Surgery, Fujian Medical University Union Hospital, Fuzhou, China.,Department of Plastic Surgery and Regenerative Medicine Institute, Fujian Medical University, Fuzhou, China
| | - Li Zhang
- Department of Central Sterile Supply, Fujian Medical University Union Hospital, Fuzhou, China
| | - Penghong Chen
- Department of Plastic Surgery, Fujian Medical University Union Hospital, Fuzhou, China.,Department of Plastic Surgery and Regenerative Medicine Institute, Fujian Medical University, Fuzhou, China.,Department of Stem Cell Research Institute, Fujian Medical University, Fuzhou, China
| | - Shijie Tang
- Department of Plastic Surgery, Fujian Medical University Union Hospital, Fuzhou, China.,Department of Plastic Surgery and Regenerative Medicine Institute, Fujian Medical University, Fuzhou, China.,Department of Stem Cell Research Institute, Fujian Medical University, Fuzhou, China
| | - Aizhen Chen
- Department of Plastic Surgery, Fujian Medical University Union Hospital, Fuzhou, China.,Department of Plastic Surgery and Regenerative Medicine Institute, Fujian Medical University, Fuzhou, China.,Department of Stem Cell Research Institute, Fujian Medical University, Fuzhou, China
| | - Ming Li
- Department of Plastic Surgery, Fujian Medical University Union Hospital, Fuzhou, China.,Department of Plastic Surgery and Regenerative Medicine Institute, Fujian Medical University, Fuzhou, China
| | - Guohao Peng
- Department of Plastic Surgery, Fujian Medical University Union Hospital, Fuzhou, China.,Department of Plastic Surgery and Regenerative Medicine Institute, Fujian Medical University, Fuzhou, China.,Department of Stem Cell Research Institute, Fujian Medical University, Fuzhou, China
| | - Hangqi Gao
- Department of Plastic Surgery, Fujian Medical University Union Hospital, Fuzhou, China.,Department of Plastic Surgery and Regenerative Medicine Institute, Fujian Medical University, Fuzhou, China
| | - Haiyan Weng
- Department of Plastic Surgery, Fujian Medical University Union Hospital, Fuzhou, China.,Department of Plastic Surgery and Regenerative Medicine Institute, Fujian Medical University, Fuzhou, China
| | - Haoruo Zhang
- Department of Plastic Surgery, Fujian Medical University Union Hospital, Fuzhou, China.,Department of Plastic Surgery and Regenerative Medicine Institute, Fujian Medical University, Fuzhou, China
| | - Shirong Li
- Department of Plastic and Reconstructive Surgery, Southwestern Hospital, Army Military Medical University, Chongqing, China
| | - Jinghua Chen
- Department of Pharmaceutical Analysis, The School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Liangwan Chen
- Department of Cardiac Surgery, Fujian Medical University Union Hospital, Fuzhou, China.
| | - Xiaosong Chen
- Department of Plastic Surgery, Fujian Medical University Union Hospital, Fuzhou, China. .,Department of Plastic Surgery and Regenerative Medicine Institute, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
12
|
Rahmani W, Sinha S, Biernaskie J. Immune modulation of hair follicle regeneration. NPJ Regen Med 2020; 5:9. [PMID: 32411394 PMCID: PMC7214459 DOI: 10.1038/s41536-020-0095-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 04/15/2020] [Indexed: 12/13/2022] Open
Abstract
The mammalian hair follicle undergoes repeated bouts of regeneration orchestrated by a variety of hair follicle stem cells. The last decade has witnessed the emergence of the immune niche as a key regulator of stem cell behavior and hair follicle regeneration. Hair follicles chemotactically attract macrophages and T cells so that they are in range to regulate epithelial stem cell quiescence, proliferation and differentiation during physiologic and injured states. Disruption of this dynamic relationship leads to clinically significant forms of hair loss including scarring and non-scarring alopecias. In this review, we summarize key concepts behind immune-mediated hair regeneration, highlight gaps in the literature and discuss the therapeutic potential of exploiting this relationship for treating various immune-mediated alopecias.
Collapse
Affiliation(s)
- Waleed Rahmani
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4 Canada
| | - Sarthak Sinha
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 1N4 Canada
| | - Jeff Biernaskie
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 1N4 Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 1N4 Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 1N4 Canada
| |
Collapse
|
13
|
刘 鹏, 谭 秋, 江 燕, 吕 青. [Wound-induced hair follicle neogenesis: a new perspective on hair follicles regeneration in adult mammals]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2020; 34:393-398. [PMID: 32174089 PMCID: PMC8171643 DOI: 10.7507/1002-1892.201905102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 12/14/2019] [Indexed: 02/05/2023]
Abstract
OBJECTIVE To explore the research progress of the cell sources and related signaling pathways of the wound-induced hair follicle neogenesis (WIHN) in recent years. METHODS The literature related to WIHN in recent years was reviewed, and the cell sources and molecular mechanism were summarized and discussed. RESULTS Current research shows that WIHN is a rare regeneration phenomenon in the skin of adult mammals, with multiple cell origins, both hair follicle stem cells and epithelial stem cells around the wound. Its molecular mechanism is complicated, which is regulated by many signaling pathways. Besides, the process is closely related to the immune response, the immunocytes and their related cytokines provide suitable conditions for this process. CONCLUSION There are still many unsolved problems on the cellular origins and molecular mechanisms of the WIHN. Further study on the mechanisms will enhance the understanding of adult mammals' hair follicle regeneration and may provide new strategy for functional healing of the human skin.
Collapse
Affiliation(s)
- 鹏程 刘
- 四川大学华西医院乳腺疾病研究中心 乳腺外科(成都 610041)Department of Breast Surgery, Clinical Research Center for Breast Disease, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| | - 秋雯 谭
- 四川大学华西医院乳腺疾病研究中心 乳腺外科(成都 610041)Department of Breast Surgery, Clinical Research Center for Breast Disease, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
- 四川大学华西医院干细胞与组织工程实验室(成都 610041)Laboratory of Stem Cell and Tissue Engineering, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| | - 燕林 江
- 四川大学华西医院乳腺疾病研究中心 乳腺外科(成都 610041)Department of Breast Surgery, Clinical Research Center for Breast Disease, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| | - 青 吕
- 四川大学华西医院乳腺疾病研究中心 乳腺外科(成都 610041)Department of Breast Surgery, Clinical Research Center for Breast Disease, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| |
Collapse
|
14
|
Jiang D, Rinkevich Y. Scars or Regeneration?-Dermal Fibroblasts as Drivers of Diverse Skin Wound Responses. Int J Mol Sci 2020; 21:E617. [PMID: 31963533 PMCID: PMC7014275 DOI: 10.3390/ijms21020617] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/13/2020] [Accepted: 01/15/2020] [Indexed: 12/13/2022] Open
Abstract
Scarring and regeneration are two physiologically opposite endpoints to skin injuries, with mammals, including humans, typically healing wounds with fibrotic scars. We aim to provide an updated review on fibroblast heterogeneity as determinants of the scarring-regeneration continuum. We discuss fibroblast-centric mechanisms that dictate scarring-regeneration continua with a focus on intercellular and cell-matrix adhesion. Improved understanding of fibroblast lineage-specific mechanisms and how they determine scar severity will ultimately allow for the development of antiscarring therapies and the promotion of tissue regeneration.
Collapse
Affiliation(s)
| | - Yuval Rinkevich
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum München, Max-Lebsche-Platz 31, 81377 Munich, Germany;
| |
Collapse
|
15
|
Insights regarding skin regeneration in non-amniote vertebrates: Skin regeneration without scar formation and potential step-up to a higher level of regeneration. Semin Cell Dev Biol 2019; 100:109-121. [PMID: 31831357 DOI: 10.1016/j.semcdb.2019.11.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 11/16/2019] [Accepted: 11/22/2019] [Indexed: 12/17/2022]
Abstract
Skin wounds are among the most common injuries in animals and humans. Vertebrate skin is composed of an epidermis and dermis. After a deep skin injury in mammals, the wound heals, but the dermis cannot regenerate. Instead, collagenous scar tissue forms to fill the gap in the dermis, but the scar does not function like the dermis and often causes disfiguration. In contrast, in non-amniote vertebrates, including fish and amphibians, the dermis and skin derivatives are regenerated after a deep skin injury, without a recognizable scar remaining. Furthermore, skin regeneration can be compared with a higher level of organ regeneration represented by limb regeneration in these non-amniotes, as fish, anuran amphibians (frogs and toads), and urodele amphibians (newts and salamanders) have a high capacity for organ regeneration. Comparative studies of skin regeneration together with limb or other organ regeneration could reveal how skin regeneration is stepped up to a higher level of regeneration. The long history of regenerative biology research has revealed that fish, anurans, and urodeles have their own strengths as models for regeneration studies, and excellent model organisms of these non-amniote vertebrates that are suitable for molecular genetic studies are now available. Here, we summarize the advantages of fish, anurans, and urodeles for skin regeneration studies with special reference to three model organisms: zebrafish (Danio rerio), African clawed frog (Xenopus laevis), and Iberian ribbed newt (Pleurodele waltl). All three of these animals quickly cover skin wounds with the epidermis (wound epidermis formation) and regenerate the dermis and skin derivatives as adults. The availability of whole genome sequences, transgenesis, and genome editing with these models enables cell lineage tracing and the use of human disease models in skin regeneration phenomena, for example. Zebrafish present particular advantages in genetics research (e.g., human disease model and Cre-loxP system). Amphibians (X. laevis and P. waltl) have a skin structure (keratinized epidermis) common with humans, and skin regeneration in these animals can be stepped up to limb regeneration, a higher level of regeneration.
Collapse
|
16
|
Lin C, Chiu P, Hsueh Y, Shieh S, Wu C, Wong T, Chuong C, Hughes MW. Regeneration of rete ridges in Lanyu pig (
Sus scrofa
): Insights for human skin wound healing. Exp Dermatol 2019; 28:472-479. [DOI: 10.1111/exd.13875] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 12/23/2018] [Accepted: 01/07/2019] [Indexed: 12/28/2022]
Affiliation(s)
- Chein‐Hong Lin
- International Center for Wound Repair and RegenerationNational Cheng Kung University Tainan Taiwan
- Department of Basic MedicineCollege of MedicineNational Cheng Kung University Tainan Taiwan
| | - Po‐Yuan Chiu
- International Center for Wound Repair and RegenerationNational Cheng Kung University Tainan Taiwan
- Institute of Clinical MedicineNational Cheng Kung University Hospital Tainan Taiwan
| | - Yuan‐Yu Hsueh
- International Center for Wound Repair and RegenerationNational Cheng Kung University Tainan Taiwan
- Division of Plastic and Reconstructive SurgeryDepartment of SurgeryNational Cheng Kung University Hospital Tainan Taiwan
| | - Shyh‐Jou Shieh
- International Center for Wound Repair and RegenerationNational Cheng Kung University Tainan Taiwan
- Division of Plastic and Reconstructive SurgeryDepartment of SurgeryNational Cheng Kung University Hospital Tainan Taiwan
| | - Chia‐Ching Wu
- International Center for Wound Repair and RegenerationNational Cheng Kung University Tainan Taiwan
- Department of Basic MedicineCollege of MedicineNational Cheng Kung University Tainan Taiwan
| | - Tak‐Wah Wong
- Department of DermatologyNational Cheng Kung University Hospital Tainan Taiwan
| | - Cheng‐Ming Chuong
- International Center for Wound Repair and RegenerationNational Cheng Kung University Tainan Taiwan
- Department of Basic MedicineCollege of MedicineNational Cheng Kung University Tainan Taiwan
- Institute of Clinical MedicineNational Cheng Kung University Hospital Tainan Taiwan
- Department of PathologyUniversity of Southern California Los Angeles California
| | - Michael W. Hughes
- International Center for Wound Repair and RegenerationNational Cheng Kung University Tainan Taiwan
- Institute of Clinical MedicineNational Cheng Kung University Hospital Tainan Taiwan
| |
Collapse
|
17
|
Single-cell analysis reveals fibroblast heterogeneity and myeloid-derived adipocyte progenitors in murine skin wounds. Nat Commun 2019; 10:650. [PMID: 30737373 PMCID: PMC6368572 DOI: 10.1038/s41467-018-08247-x] [Citation(s) in RCA: 330] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Accepted: 12/19/2018] [Indexed: 01/11/2023] Open
Abstract
During wound healing in adult mouse skin, hair follicles and then adipocytes regenerate. Adipocytes regenerate from myofibroblasts, a specialized contractile wound fibroblast. Here we study wound fibroblast diversity using single-cell RNA-sequencing. On analysis, wound fibroblasts group into twelve clusters. Pseudotime and RNA velocity analyses reveal that some clusters likely represent consecutive differentiation states toward a contractile phenotype, while others appear to represent distinct fibroblast lineages. One subset of fibroblasts expresses hematopoietic markers, suggesting their myeloid origin. We validate this finding using single-cell western blot and single-cell RNA-sequencing on genetically labeled myofibroblasts. Using bone marrow transplantation and Cre recombinase-based lineage tracing experiments, we rule out cell fusion events and confirm that hematopoietic lineage cells give rise to a subset of myofibroblasts and rare regenerated adipocytes. In conclusion, our study reveals that wounding induces a high degree of heterogeneity among fibroblasts and recruits highly plastic myeloid cells that contribute to adipocyte regeneration. The diversity of fibroblasts contributing to wound healing is unclear. Here, the authors use single-cell RNA-sequencing to identify heterogeneity among murine fibroblasts in the wound and find that recruited myeloid cells contribute to adipocyte regeneration during healing.
Collapse
|
18
|
Maden M, Brant JO. Insights into the regeneration of skin from Acomys, the spiny mouse. Exp Dermatol 2019; 28:436-441. [PMID: 30457673 DOI: 10.1111/exd.13847] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 10/29/2018] [Accepted: 11/16/2018] [Indexed: 12/11/2022]
Abstract
Members of the Acomys genus, known as spiny mice, are unique among mammals in being perfectly capable of regenerating large areas of skin that have been removed. During this regenerative process hairs, sebaceous glands, erector pili muscles, adipocytes and the panniculus carnosus all regenerate and the dermis does not scar. We review here the processes that the epidermis and the individual components of the dermis undergo during spiny mouse regeneration as well as the molecules that have been identified as potentially important in regeneration. We then relate this to what has been proposed as playing a role in studies from the laboratory mouse, Mus musculus. Differences in the immune systems of spiny mice and laboratory mice are also highlighted as this is suggested to play a part not only in the perfect wound healing that embryos display but also in regeneration in lower vertebrates.
Collapse
Affiliation(s)
- Malcolm Maden
- UF Genetics Institute & Department of Biology, University of Florida, Gainesville, Florida
| | - Jason O Brant
- UF Genetics Institute & Department of Biology, University of Florida, Gainesville, Florida
| |
Collapse
|
19
|
Dekoninck S, Blanpain C. Stem cell dynamics, migration and plasticity during wound healing. Nat Cell Biol 2019; 21:18-24. [PMID: 30602767 PMCID: PMC7615151 DOI: 10.1038/s41556-018-0237-6] [Citation(s) in RCA: 210] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 10/24/2018] [Indexed: 12/11/2022]
Abstract
Tissue repair is critical for animal survival. The skin epidermis is particularly exposed to injuries, which necessitates rapid repair. The coordinated action of distinct epidermal stem cells recruited from various skin regions together with other cell types, including fibroblasts and immune cells, is required to ensure efficient and harmonious wound healing. A complex crosstalk ensures the activation, migration and plasticity of these cells during tissue repair.
Collapse
Affiliation(s)
- Sophie Dekoninck
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles, Brussels, Belgium
| | - Cédric Blanpain
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles, Brussels, Belgium.
- WELBIO, Université Libre de Bruxelles, Brussels, Belgium.
| |
Collapse
|