1
|
Cho SW, Malick H, Kim SJ, Grattoni A. Advances in Skin-on-a-Chip Technologies for Dermatological Disease Modeling. J Invest Dermatol 2024; 144:1707-1715. [PMID: 38493383 DOI: 10.1016/j.jid.2024.01.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/19/2024] [Accepted: 01/29/2024] [Indexed: 03/18/2024]
Abstract
Skin-on-a-chip (SoC) technologies are emerging as a paradigm shift in dermatology research by replicating human physiology in a dynamic manner not achievable by current animal models. Although animal models have contributed to successful clinical trials, their ability to predict human outcomes remains questionable, owing to inherent differences in skin anatomy and immune response. Covering areas including infectious diseases, autoimmune skin conditions, wound healing, drug toxicity, aging, and antiaging, SoC aims to circumvent the inherent disparities created by traditional models. In this paper, we review current SoC technologies, highlighting their potential as an alternative to animal models for a deeper understanding of complex skin conditions.
Collapse
Affiliation(s)
- Seo Won Cho
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, Texas, USA; Texas A&M University School of Medicine, College Station, Texas, USA
| | - Hamza Malick
- Texas A&M University School of Medicine, College Station, Texas, USA
| | - Soo Jung Kim
- Department of Dermatology, Baylor College of Medicine, Houston, Texas, USA
| | - Alessandro Grattoni
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, Texas, USA; Department of Surgery, Houston Methodist Hospital, Houston, Texas, USA; Department of Radiation Oncology, Houston Methodist Hospital, Houston, Texas, USA.
| |
Collapse
|
2
|
Sanjel B, Shim WS. The contribution of mouse models to understanding atopic dermatitis. Biochem Pharmacol 2022; 203:115177. [PMID: 35843300 DOI: 10.1016/j.bcp.2022.115177] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 07/08/2022] [Accepted: 07/11/2022] [Indexed: 12/28/2022]
Abstract
Atopic dermatitis (AD) is a dermatological disease accompanied by dry and cracked skin with severe pruritus. Although various therapeutic strategies have been introduced to alleviate AD, it remains challenging to cure the disorder. To achieve such a goal, understanding the pathophysiological mechanisms of AD is a prerequisite, requiring mouse models that properly reflect the AD phenotypes. Currently, numerous AD mouse models have been established, but each model has its own advantages and weaknesses. In this review, we categorized and summarized mouse models of AD and described their characteristics from a researcher's perspective.
Collapse
Affiliation(s)
- Babina Sanjel
- College of Pharmacy, Gachon University, Hambangmoero 191, Yeonsu-gu, Incheon 21936, Republic of Korea; Gachon Institute of Pharmaceutical Sciences, Hambangmoero 191, Yeonsu-gu, Incheon 21936, Republic of Korea
| | - Won-Sik Shim
- College of Pharmacy, Gachon University, Hambangmoero 191, Yeonsu-gu, Incheon 21936, Republic of Korea; Gachon Institute of Pharmaceutical Sciences, Hambangmoero 191, Yeonsu-gu, Incheon 21936, Republic of Korea.
| |
Collapse
|
3
|
Translational Relevance of Mouse Models of Atopic Dermatitis. J Clin Med 2021; 10:jcm10040613. [PMID: 33561938 PMCID: PMC7914954 DOI: 10.3390/jcm10040613] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/31/2021] [Accepted: 02/03/2021] [Indexed: 02/06/2023] Open
Abstract
The complexity of atopic dermatitis (AD) continues to present a challenge in the appropriate selection of a mouse model because no single murine model completely recapitulates all aspects of human AD. This has been further complicated by recent evidence of the distinct AD endotypes that are dictated by unique patterns of inflammation involving Th1, Th2, Th17, and Th22 axes. A review of currently used mouse models demonstrates that while all AD mouse models consistently exhibit Th2 inflammation, only some demonstrate concomitant Th17 and/or Th22 induction. As the current understanding of the pathogenic contributions of these unique endotypes and their potential therapeutic roles expands, ongoing efforts to maximize a given mouse model’s homology with human AD necessitates a close evaluation of its distinct immunological signature.
Collapse
|
4
|
Gough P, Myles IA. Tumor Necrosis Factor Receptors: Pleiotropic Signaling Complexes and Their Differential Effects. Front Immunol 2020; 11:585880. [PMID: 33324405 PMCID: PMC7723893 DOI: 10.3389/fimmu.2020.585880] [Citation(s) in RCA: 131] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 11/02/2020] [Indexed: 12/15/2022] Open
Abstract
Since its discovery in 1975, TNFα has been a subject of intense study as it plays significant roles in both immunity and cancer. Such attention is well deserved as TNFα is unique in its engagement of pleiotropic signaling via its two receptors: TNFR1 and TNFR2. Extensive research has yielded mechanistic insights into how a single cytokine can provoke a disparate range of cellular responses, from proliferation and survival to apoptosis and necrosis. Understanding the intracellular signaling pathways induced by this single cytokine via its two receptors is key to further revelation of its exact functions in the many disease states and immune responses in which it plays a role. In this review, we describe the signaling complexes formed by TNFR1 and TNFR2 that lead to each potential cellular response, namely, canonical and non-canonical NF-κB activation, apoptosis and necrosis. This is followed by a discussion of data from in vivo mouse and human studies to examine the differential impacts of TNFR1 versus TNFR2 signaling.
Collapse
Affiliation(s)
- Portia Gough
- Epithelial Therapeutics Unit, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, United States
| | - Ian A Myles
- Epithelial Therapeutics Unit, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
5
|
Uluçkan Ö, Jiménez M, Roediger B, Schnabl J, Díez-Córdova LT, Troulé K, Weninger W, Wagner EF. Cutaneous Immune Cell-Microbiota Interactions Are Controlled by Epidermal JunB/AP-1. Cell Rep 2020; 29:844-859.e3. [PMID: 31644908 PMCID: PMC6856727 DOI: 10.1016/j.celrep.2019.09.042] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 07/01/2019] [Accepted: 09/13/2019] [Indexed: 12/16/2022] Open
Abstract
Atopic dermatitis (AD) is a multi-factorial skin disease with a complex inflammatory signature including type 2 and type 17 activation. Although colonization by S. aureus is common in AD, the mechanisms rendering an organism prone to dysbiosis, and the role of IL-17A in the control of S. aureus-induced skin inflammation, are not well understood. Here, we show several pathological aspects of AD, including type 2/type 17 immune responses, elevated IgE, barrier dysfunction, pruritus, and importantly, spontaneous S. aureus colonization in JunBΔep mice, with a large transcriptomic overlap with AD. Additionally, using Rag1−/− mice, we demonstrate that adaptive immune cells are necessary for protection against S. aureus colonization. Prophylactic antibiotics, but not antibiotics after established dysbiosis, reduce IL-17A expression and skin inflammation, examined using Il17a-eGFP reporter mice. Mechanistically, keratinocytes lacking JunB exhibit higher MyD88 levels in vitro and in vivo, previously shown to regulate S. aureus colonization. In conclusion, our data identify JunB as an upstream regulator of microbiota-immune cell interactions and characterize the IL-17A response upon spontaneous dysbiosis. JunBΔep mice display several defining features of atopic dermatitis Skin of JunBΔep mice are colonized by human-derived S. aureus Adaptive immune system is necessary for protection against S. aureus JunB is an upstream regulator of the microbiota-immune cell interactions
Collapse
Affiliation(s)
- Özge Uluçkan
- Cancer Cell Biology Program, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain.
| | - Maria Jiménez
- Cancer Cell Biology Program, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain
| | - Ben Roediger
- Centenary Institute, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia
| | - Jakob Schnabl
- Cancer Cell Biology Program, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain
| | - Lucía T Díez-Córdova
- Cancer Cell Biology Program, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain
| | - Kevin Troulé
- Bioinformatics Unit, Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain
| | - Wolfgang Weninger
- Centenary Institute, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia; Department of Dermatology, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Erwin F Wagner
- Cancer Cell Biology Program, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain; Department of Dermatology, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria; Department of Dermatology and Department of Laboratory Medicine, Medical University of Vienna, Lazarettgasse 14a, 1090 Vienna, Austria.
| |
Collapse
|
6
|
Klufa J, Bauer T, Hanson B, Herbold C, Starkl P, Lichtenberger B, Srutkova D, Schulz D, Vujic I, Mohr T, Rappersberger K, Bodenmiller B, Kozakova H, Knapp S, Loy A, Sibilia M. Hair eruption initiates and commensal skin microbiota aggravate adverse events of anti-EGFR therapy. Sci Transl Med 2019; 11:eaax2693. [PMID: 31826981 DOI: 10.1126/scitranslmed.aax2693] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 07/30/2019] [Accepted: 10/11/2019] [Indexed: 12/11/2022]
Abstract
Epidermal growth factor receptor (EGFR)-targeted anticancer therapy induces stigmatizing skin toxicities affecting patients' quality of life and therapy adherence. The lack of mechanistic details underlying these adverse events hampers their management. We found that EGFR/ERK signaling is required in LRIG1-positive stem cells during de novo hair eruption to secure barrier integrity and prevent the invasion of commensal microbiota and inflammatory skin disease. EGFR-deficient epidermis is permissive for microbiota outgrowth and displays an atopic-like TH2-dominated signature. The opening of the follicular ostia during hair eruption allows invasion of commensal microbiota into the hair follicle, initiating an additional TH1 and TH17 response culminating in chronic folliculitis. Restoration of epidermal ERK signaling via prophylactic FGF7 treatment or transgenic SOS expression rescues the barrier defect in the absence of EGFR, highlighting a therapeutic anchor point. These data reveal that commensal skin microbiota provoke atopic-like inflammatory skin diseases by invading into the follicular opening of erupting hair.
Collapse
Affiliation(s)
- Jörg Klufa
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna and Comprehensive Cancer Center, Vienna 1090, Austria
| | - Thomas Bauer
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna and Comprehensive Cancer Center, Vienna 1090, Austria.
| | - Buck Hanson
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Research Network Chemistry meets Microbiology, University of Vienna, Vienna 1090, Austria
| | - Craig Herbold
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Research Network Chemistry meets Microbiology, University of Vienna, Vienna 1090, Austria
| | - Philipp Starkl
- CeMM-Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna 1090, Austria
- Laboratory of Infection Biology, Department of Medicine I, Medical University of Vienna, Vienna 1090, Austria
| | - Beate Lichtenberger
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna and Comprehensive Cancer Center, Vienna 1090, Austria
| | - Dagmar Srutkova
- Laboratory of Gnotobiology, Institute of Microbiology, Czech Academy of Sciences, v.v.i., Novy Hradek 549 22, Czech Republic
| | - Daniel Schulz
- Institute of Molecular Life Sciences, University of Zurich, Zurich 8057, Switzerland
| | - Igor Vujic
- Department of Dermatology and Venereology, Medical Institution Rudolfstiftung, Vienna 1030, Austria
- Department of Dermatology, Medical University of Vienna, Vienna 1090, Austria
| | - Thomas Mohr
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna and Comprehensive Cancer Center, Vienna 1090, Austria
| | - Klemens Rappersberger
- Department of Dermatology and Venereology, Medical Institution Rudolfstiftung, Vienna 1030, Austria
| | - Bernd Bodenmiller
- Institute of Molecular Life Sciences, University of Zurich, Zurich 8057, Switzerland
| | - Hana Kozakova
- Laboratory of Gnotobiology, Institute of Microbiology, Czech Academy of Sciences, v.v.i., Novy Hradek 549 22, Czech Republic
| | - Sylvia Knapp
- CeMM-Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna 1090, Austria
- Laboratory of Infection Biology, Department of Medicine I, Medical University of Vienna, Vienna 1090, Austria
| | - Alexander Loy
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Research Network Chemistry meets Microbiology, University of Vienna, Vienna 1090, Austria
| | - Maria Sibilia
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna and Comprehensive Cancer Center, Vienna 1090, Austria.
| |
Collapse
|
7
|
ZAG Regulates the Skin Barrier and Immunity in Atopic Dermatitis. J Invest Dermatol 2019; 139:1648-1657.e7. [DOI: 10.1016/j.jid.2019.01.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 01/10/2019] [Accepted: 01/24/2019] [Indexed: 01/03/2023]
|
8
|
Kim D, Kobayashi T, Nagao K. Research Techniques Made Simple: Mouse Models of Atopic Dermatitis. J Invest Dermatol 2019; 139:984-990.e1. [PMID: 31010529 DOI: 10.1016/j.jid.2019.02.014] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 02/20/2019] [Accepted: 02/21/2019] [Indexed: 01/29/2023]
Abstract
Atopic dermatitis (AD) is a common, chronic inflammatory skin disease characterized by impaired barrier function, eczematous dermatitis, and chronic pruritus. Mouse models have been heavily used to deepen our understanding of complicated disease mechanisms in AD and to provide a preclinical platform before performing clinical interventional research on novel therapeutic agents in humans. However, what aspects of human AD these mouse AD models faithfully recapitulate is insufficiently understood. We categorized mouse AD models into three groups: (i) inbred models, (ii) genetically engineered mice in which genes of interest are overexpressed or deleted in a specific cell type, and (iii) models induced by topical application of exogenous agents. To maximize benefits from current murine AD models, understanding the strengths and limitations of each model is essential when selecting a system suitable for a specific research question. We describe known and emerging AD mouse models and discuss the usefulness and pitfalls of each system.
Collapse
Affiliation(s)
- Doyoung Kim
- Cutaneous Leukocyte Biology Section, Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Disease, National Institutes of Health, Bethesda, Maryland, USA
| | - Tetsuro Kobayashi
- Cutaneous Leukocyte Biology Section, Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Disease, National Institutes of Health, Bethesda, Maryland, USA
| | - Keisuke Nagao
- Cutaneous Leukocyte Biology Section, Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Disease, National Institutes of Health, Bethesda, Maryland, USA.
| |
Collapse
|
9
|
Li L, Cataisson C, Flowers B, Fraser E, Sanchez V, Day CP, Yuspa SH. Topical Application of a Dual ABC Transporter Substrate and NF-κB Inhibitor Blocks Multiple Sources of Cutaneous Inflammation in Mouse Skin. J Invest Dermatol 2019; 139:1506-1515.e7. [PMID: 30684549 DOI: 10.1016/j.jid.2018.12.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 12/21/2018] [Accepted: 12/30/2018] [Indexed: 12/16/2022]
Abstract
Among the molecular signals underlying cutaneous inflammation is the transcription complex NF-κB, its upstream modulators, and cytokines and chemokines that are the downstream proinflammatory effectors. Central to NF-κB activation is IκB kinase (IKK), which phosphorylates IκBα, releasing NF-κB to the nucleus. In a screening of a kinase inhibitor library, we identified two IKK inhibitors that were high-affinity substrates for p-glycoprotein (ABCB1), the multidrug resistance protein known to facilitate transdermal drug delivery. ACHP (2-amino-6-[2-(cyclopropylmethoxy)-6-hydroxyphenyl]-4-(4-piperidinyl)-3-pyridinecarbonitrile) and IKK 16 prevented both nuclear translocation of NF-κB and activation of a NF-κB reporter and reduced the induction of cytokine and chemokine transcripts in human or mouse keratinocytes by IL-1α, tumor necrosis factor-α, and phorbol myristate acetate. ACHP, but not IKK 16, was nontoxic to mouse or human keratinocytes at any dose tested. In mice, topical ACHP prevented the cutaneous inflammation induced by topical phorbol myristate acetate or imiquimod, reduced the inflammation from erythema doses of artificial sunlight, and lowered the tumor incidence of mice treated with 7,12-dimethyl benzanthracene when applied before phorbol myristate acetate. Topical ACHP also reduced the NF-κB and IL-17 inflammatory signature after multiple doses of imiquimod. Thus, ACHP and IKK 16 hit their NF-κB target in mouse and human keratinocytes, and ACHP is an effective topical nonsteroidal anti-inflammatory in mice.
Collapse
Affiliation(s)
- Luowei Li
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Christophe Cataisson
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Brittany Flowers
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Elise Fraser
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Vanesa Sanchez
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Chi-Ping Day
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Stuart H Yuspa
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA.
| |
Collapse
|