1
|
Jafari N, Abediankenari S. Role of microRNAs in immunoregulatory functions of epithelial cells. BMC Immunol 2024; 25:84. [PMID: 39707170 DOI: 10.1186/s12865-024-00675-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 11/27/2024] [Indexed: 12/23/2024] Open
Abstract
Epithelial cells (ECs) provide the first line of defense against microbial threats and environmental challenges. They participate in the host's immune responses via the expression and secretion of various immune-related molecules such as cytokines and chemokines, as well as interaction with immune cells. A growing body of evidence suggests that the dysregulated function of ECs can be involved in the pathophysiology of a broad range of infectious, autoimmune, and inflammatory diseases, including inflammatory bowel disease (IBD), asthma, multiple sclerosis, and rheumatoid arthritis. To maintain a substantial immunoregulatory function of ECs, precise expression of different molecules and their regulatory effects are indispensable. MicroRNAs (miRNAs, miRs) are small non-coding RNAs that regulate gene expression commonly at post-transcriptional level through degradation of target messenger RNAs (mRNAs) or suppression of protein translation. MiRNAs implicate as critical regulators in many cellular processes, including apoptosis, growth, differentiation, and immune response. Due to the crucial roles of miRNAs in such a vast range of biological processes, they have become the spotlight of biological research for more than two decades, but we are still at the beginning stages of the use of miRNA-based therapies in the improvement of human health. Hence, in the present paper, attempts are made to provide a comprehensive overview with regard to the roles of miRNAs in the immunoregulatory functions of ECs. A better understanding of the molecular mechanisms through which immunoregulatory properties of ECs are manifested, could aid the development of efficient strategies to prevent and treat multiple human diseases.
Collapse
Affiliation(s)
- Narjes Jafari
- Immunogenetics Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Saeid Abediankenari
- Immunogenetics Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
- Department of Immunology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
2
|
Tang Y, Zhou Y, Ren J, Wang Y, Li X, Qi M, Yang Y, Zhu C, Wang C, Ma Y, Tang Z, Yu G. TRPV4-β-catenin axis is a novel therapeutic target for dry skin-induced chronic itch. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167491. [PMID: 39218273 DOI: 10.1016/j.bbadis.2024.167491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 08/13/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
Dry skin induced chronic pruritus is an increasingly common and debilitating problem, especially in the elderly. Although keratinocytes play important roles in innate and adaptive immunity and keratinocyte proliferation is a key feature of dry skin induced chronic pruritus, the exact contribution of keratinocytes to the pathogenesis of dry skin induced chronic pruritus is poorly understood. In this study, we generated the acetone-ether-water induced dry skin model in mice and found that epidermal hyperplasia induced by this model is partly dependent on the β-catenin signaling pathway. XAV939, an antagonist of β-catenin signaling pathway, inhibited epidermal hyperplasia in dry skin model mice. Importantly, dry skin induced chronic pruritus also dramatically reduced in XAV939 treated mice. Moreover, acetone-ether-water treatment-induced epidermal hyperplasia and chronic itch were decreased in Trpv4-/- mice. In vitro, XAV939 inhibited hypo-osmotic stress induced proliferation of HaCaT cells, and hypo-osmotic stress induced proliferation of in HaCaT cells and primary cultured keratinocytes were also significantly reduced by blocking TRPV4 function. Finally, thymic stromal lymphopoietin release was examined both in vivo and in vitro, which was significantly inhibited by XAV939 treatment and Trpv4 deficiency, and anti-TSLP antibody treatment significantly decreased AEW-induced scratching behavior. Overall, our study revealed a unique ability of TRPV4 expressing keratinocytes in the skin, which critically mediated dry skin induced epidermal hyperplasia and chronic pruritus, thus provided novel insights into the development of therapies for chronic pruritus in the elderly.
Collapse
Affiliation(s)
- Ye Tang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China; Key Laboratory for Chinese Medicine of Prevention and Treatment in Neurological Diseases, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Yuan Zhou
- Key Laboratory for Chinese Medicine of Prevention and Treatment in Neurological Diseases, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Jiahui Ren
- Key Laboratory for Chinese Medicine of Prevention and Treatment in Neurological Diseases, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Yin Wang
- Key Laboratory for Chinese Medicine of Prevention and Treatment in Neurological Diseases, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Xue Li
- Key Laboratory for Chinese Medicine of Prevention and Treatment in Neurological Diseases, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Mingxin Qi
- Key Laboratory for Chinese Medicine of Prevention and Treatment in Neurological Diseases, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Yan Yang
- Key Laboratory for Chinese Medicine of Prevention and Treatment in Neurological Diseases, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Chan Zhu
- Key Laboratory for Chinese Medicine of Prevention and Treatment in Neurological Diseases, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Changming Wang
- Key Laboratory for Chinese Medicine of Prevention and Treatment in Neurological Diseases, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Yuxiang Ma
- School of Life Science, China Pharmaceutical University, Nanjing, Jiangsu 210009, China.
| | - Zongxiang Tang
- Key Laboratory for Chinese Medicine of Prevention and Treatment in Neurological Diseases, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China.
| | - Guang Yu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China; Key Laboratory for Chinese Medicine of Prevention and Treatment in Neurological Diseases, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China.
| |
Collapse
|
3
|
Dai X, Shiraishi K, Muto J, Mori H, Murakami M, Sayama K. Nuclear IL-33 Plays an Important Role in EGFR-Mediated Keratinocyte Migration by Regulating the Activation of Signal Transducer and Activator of Transcription 3 and NF-κB. JID INNOVATIONS 2023; 3:100205. [PMID: 37441125 PMCID: PMC10333683 DOI: 10.1016/j.xjidi.2023.100205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 02/21/2023] [Accepted: 02/27/2023] [Indexed: 07/15/2023] Open
Abstract
Nuclear IL-33 levels are high at the epidermal edges of skin wounds and facilitate wound healing. However, IL-33-mediated regulation of keratinocyte (KC) biology during wound healing remains poorly understood. During skin-wound healing, KC migration and re-epithelialization are mediated predominantly by EGFR signaling activation and depend on the function of signal transducer and activator of transcription 3 (STAT3). We found that migrating KCs at the leading edges of mouse skin wounds exhibited concomitant induction and nuclear colocalization of IL-33 and phosphorylated STAT3. In cultured human KCs, activation of EGFR signaling caused rapid elevation of nuclear IL-33, which directly interacts with phosphorylated STAT3, promoting STAT3 activation. In vitro KC migration and wound-healing assays revealed that high nuclear IL-33 levels were required for KC migration and wound closure. KC mobility associated with a lack of suprabasal epidermal keratins and extracellular matrix degradation mediated by matrix metalloproteinases (MMPs) control cell migration at the intracellular and extracellular levels, respectively. In EGFR-activated KCs, nuclear IL-33 mediated keratin 1 and 10 downregulation and MMP9 upregulation by promoting STAT3 activation and limited MMP1, MMP3, and MMP10 induction by suppressing NF-κB transactivation. Thus, epidermal nuclear IL-33 is involved in KC migration and wound closure by regulating the STAT3 and NF-κB pathways.
Collapse
Affiliation(s)
- Xiuju Dai
- Department of Dermatology, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Ken Shiraishi
- Department of Dermatology, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Jun Muto
- Department of Dermatology, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Hideki Mori
- Department of Dermatology, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Masamoto Murakami
- Department of Dermatology, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Koji Sayama
- Department of Dermatology, Ehime University Graduate School of Medicine, Ehime, Japan
| |
Collapse
|
4
|
Cayrol C, Girard JP. Interleukin-33 (IL-33): A critical review of its biology and the mechanisms involved in its release as a potent extracellular cytokine. Cytokine 2022; 156:155891. [DOI: 10.1016/j.cyto.2022.155891] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 04/14/2022] [Accepted: 04/15/2022] [Indexed: 12/15/2022]
|
5
|
Hypo-osmotic stress induces the epithelial alarmin IL-33 in the colonic barrier of ulcerative colitis. Sci Rep 2022; 12:11550. [PMID: 35798804 PMCID: PMC9263100 DOI: 10.1038/s41598-022-15573-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 06/27/2022] [Indexed: 11/08/2022] Open
Abstract
Epithelial alarmins are gaining interest as therapeutic targets for chronic inflammation. The nuclear alarmin interleukin-33 (IL-33) is upregulated in the colonic mucosa of acute ulcerative colitis (UC) and may represent an early instigator of the inflammatory cascade. However, it is not clear what signals drive the expression of IL-33 in the colonic mucosa, nor is the exact role of IL-33 elucidated. We established an ex vivo model using endoscopic colonic biopsies from healthy controls and UC patients. Colonic biopsies exposed to hypo-osmotic medium induced a strong nuclear IL-33 expression in colonic crypts in both healthy controls and UC biopsies. Mucosal IL33 mRNA was also significantly increased following hypo-osmotic stress in healthy controls compared to non-stimulated biopsies (fold change 3.9, p-value < 0.02). We observed a modest induction of IL-33 in response to TGF-beta-1 stimulation, whereas responsiveness to inflammatory cytokines TNF and IFN-gamma was negligible. In conclusion our findings indicate that epithelial IL-33 is induced by hypo-osmotic stress, rather than prototypic proinflammatory cytokines in colonic ex vivo biopsies. This is a novel finding, linking a potent cytokine and alarmin of the innate immune system with cellular stress mechanisms and mucosal inflammation.
Collapse
|
6
|
Hasegawa T, Oka T, Demehri S. Alarmin Cytokines as Central Regulators of Cutaneous Immunity. Front Immunol 2022; 13:876515. [PMID: 35432341 PMCID: PMC9005840 DOI: 10.3389/fimmu.2022.876515] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 03/08/2022] [Indexed: 12/13/2022] Open
Abstract
Skin acts as the primary interface between the body and the environment. The skin immune system is composed of a complex network of immune cells and factors that provide the first line of defense against microbial pathogens and environmental insults. Alarmin cytokines mediate an intricate intercellular communication between keratinocytes and immune cells to regulate cutaneous immune responses. Proper functions of the type 2 alarmin cytokines, thymic stromal lymphopoietin (TSLP), interleukin (IL)-25, and IL-33, are paramount to the maintenance of skin homeostasis, and their dysregulation is commonly associated with allergic inflammation. In this review, we discuss recent findings on the complex regulatory network of type 2 alarmin cytokines that control skin immunity and highlight the mechanisms by which these cytokines regulate skin immune responses in host defense, chronic inflammation, and cancer.
Collapse
Affiliation(s)
| | - Tomonori Oka
- Center for Cancer Immunology and Cutaneous Biology Research Center, Department of Dermatology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Shadmehr Demehri
- Center for Cancer Immunology and Cutaneous Biology Research Center, Department of Dermatology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
7
|
Macleod T, Berekmeri A, Bridgewood C, Stacey M, McGonagle D, Wittmann M. The Immunological Impact of IL-1 Family Cytokines on the Epidermal Barrier. Front Immunol 2022; 12:808012. [PMID: 35003136 PMCID: PMC8733307 DOI: 10.3389/fimmu.2021.808012] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/06/2021] [Indexed: 12/25/2022] Open
Abstract
The skin barrier would not function without IL-1 family members, but their physiological role in the immunological aspects of skin barrier function are often overlooked. This review summarises the role of IL-1 family cytokines (IL-1α, IL-1β, IL-1Ra, IL-18, IL-33, IL-36α, IL-36β, IL-36γ, IL-36Ra, IL-37 and IL-38) in the skin. We focus on novel aspects of their interaction with commensals and pathogens, the important impact of proteases on cytokine activity, on healing responses and inflammation limiting mechanisms. We discuss IL-1 family cytokines in the context of IL-4/IL-13 and IL-23/IL-17 axis-driven diseases and highlight consequences of human loss/gain of function mutations in activating or inhibitory pathway molecules. This review highlights recent findings that emphasize the importance of IL-1 family cytokines in both physiological and pathological cutaneous inflammation and emergent translational therapeutics that are helping further elucidate these cytokines.
Collapse
Affiliation(s)
- Tom Macleod
- School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom.,Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), University of Leeds, Leeds, United Kingdom
| | - Anna Berekmeri
- Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), University of Leeds, Leeds, United Kingdom
| | - Charlie Bridgewood
- Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), University of Leeds, Leeds, United Kingdom
| | - Martin Stacey
- School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
| | - Dennis McGonagle
- Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), University of Leeds, Leeds, United Kingdom.,National Institute for Health Research (NIHR) Leeds Biomedical Research Centre (BRC), The Leeds Teaching Hospitals, Leeds, United Kingdom
| | - Miriam Wittmann
- Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), University of Leeds, Leeds, United Kingdom.,National Institute for Health Research (NIHR) Leeds Biomedical Research Centre (BRC), The Leeds Teaching Hospitals, Leeds, United Kingdom
| |
Collapse
|
8
|
Cayrol C. IL-33, an Alarmin of the IL-1 Family Involved in Allergic and Non Allergic Inflammation: Focus on the Mechanisms of Regulation of Its Activity. Cells 2021; 11:cells11010107. [PMID: 35011670 PMCID: PMC8750818 DOI: 10.3390/cells11010107] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/15/2021] [Accepted: 12/20/2021] [Indexed: 02/04/2023] Open
Abstract
Interleukin-33 (IL-33) is a member of the interleukin-1 (IL-1) family that is expressed in the nuclei of endothelial and epithelial cells of barrier tissues, among others. It functions as an alarm signal that is released upon tissue or cellular injury. IL-33 plays a central role in the initiation and amplification of type 2 innate immune responses and allergic inflammation by activating various target cells expressing its ST2 receptor, including mast cells and type 2 innate lymphoid cells. Depending on the tissue environment, IL-33 plays a wide variety of roles in parasitic and viral host defense, tissue repair and homeostasis. IL-33 has evolved a variety of sophisticated regulatory mechanisms to control its activity, including nuclear sequestration and proteolytic processing. It is involved in many diseases, including allergic, inflammatory and infectious diseases, and is a promising therapeutic target for the treatment of severe asthma. In this review, I will summarize the literature around this fascinating pleiotropic cytokine. In the first part, I will describe the basics of IL-33, from the discovery of interleukin-33 to its function, including its expression, release and signaling pathway. The second part will be devoted to the regulation of IL-33 protein leading to its activation or inactivation.
Collapse
Affiliation(s)
- Corinne Cayrol
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, 31077 Toulouse, France
| |
Collapse
|
9
|
Lee WJ, Shim WS. Cutaneous Neuroimmune Interactions of TSLP and TRPV4 Play Pivotal Roles in Dry Skin-Induced Pruritus. Front Immunol 2021; 12:772941. [PMID: 34925342 PMCID: PMC8674573 DOI: 10.3389/fimmu.2021.772941] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/16/2021] [Indexed: 11/16/2022] Open
Abstract
Dry skin is a symptom of skin barrier dysfunction that evokes pruritus; however, the cutaneous neuroimmune interactions underlying dry skin-induced pruritus remain unclear. Therefore, we aimed to elucidate the mechanisms underlying dry skin-induced pruritus. To this end, an acetone/ethanol/water (AEW)-induced mouse model of dry skin was used in this study. We observed that the production of thymic stromal lymphopoietin (TSLP) significantly increased in the keratinocytes of AEW mice. Importantly, treatment with an antagonist of transient receptor potential cation channel subfamily V member 4 (TRPV4), HC067047, ameliorated dry skin conditions in AEW mice. The symptoms of dry skin were significantly reduced in Trpv4 knockout (KO) mice following treatment with AEW. The increase in the intracellular calcium levels by TSLP in the dorsal root ganglia (DRG) of Trpv4 KO mice was also significantly attenuated. The spontaneous scratching bouts were significantly decreased in both the HC067047-treated and Trpv4 KO AEW mice. Importantly, the TSLP-dependent release of tryptase from the mast cells was significantly reduced in both the HC067047-treated mice and Trpv4 KO AEW mice. Notably, inhibition of the TSLP-induced signaling pathway in DRG selectively reduced the spontaneous scratching bouts in AEW mice. Overall, the results demonstrated that the cutaneous neuroimmune interactions of TSLP and TRPV4 play pivotal roles in dry skin-induced pruritus.
Collapse
Affiliation(s)
- Wook-Joo Lee
- College of Pharmacy, Gachon University, Incheon, South Korea
- Gachon Institute of Pharmaceutical Sciences, Incheon, South Korea
| | - Won-Sik Shim
- College of Pharmacy, Gachon University, Incheon, South Korea
- Gachon Institute of Pharmaceutical Sciences, Incheon, South Korea
| |
Collapse
|
10
|
Boreika R, Sitkauskiene B. Interleukin-32 in Pathogenesis of Atopic Diseases: Proinflammatory or Anti-Inflammatory Role? J Interferon Cytokine Res 2021; 41:235-243. [PMID: 34280028 DOI: 10.1089/jir.2020.0230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Atopic diseases, such as atopic dermatitis (AD), allergic asthma (AA), and allergic rhinitis (AR), are increasingly becoming a worldwide issue. This atopic triad originates at an early age and on a multifactorial basis, causing significant discomfort to susceptible individuals. The global case number is now reaching new highs, so exploring immune system regulation and its components is becoming critical. One cytokine, interleukin-32 (IL-32), is involved in inflammation and regulation of the immune system. It has nine isoforms that show varying degrees of expression, both intracellularly and extracellularly. IL-32 is secreted by immune cells, such as monocytes, macrophages, natural killer cells, and T cells, and by nonimmune cells, including fibroblasts, keratinocytes, and endothelial cells. Its production is regulated and augmented by microorganisms, mitogens, and other cytokines. Early studies demonstrated that IL-32 was an immune regulator that functioned to protect against inflammatory diseases, including AD, AA, and AR, and proposed a proinflammatory role for IL-32 in immune regulation and symptom exacerbation. However, several later reports suggested that IL-32 is downregulated in inflammatory diseases and exerts an anti-inflammatory effect. This review article focuses on recent findings regarding the detrimental and protective roles of IL-32 in development and management of inflammatory diseases. The exact role of IL-32 in AD, AA, and AR still remains to be elucidated. Future research should explore new avenues of IL-32 functionality in human inflammatory diseases.
Collapse
Affiliation(s)
- Rytis Boreika
- Department of Immunology and Allergology, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Brigita Sitkauskiene
- Department of Immunology and Allergology, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| |
Collapse
|
11
|
The Dynamics of the Skin's Immune System. Int J Mol Sci 2019; 20:ijms20081811. [PMID: 31013709 PMCID: PMC6515324 DOI: 10.3390/ijms20081811] [Citation(s) in RCA: 343] [Impact Index Per Article: 57.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/09/2019] [Accepted: 04/09/2019] [Indexed: 12/12/2022] Open
Abstract
The skin is a complex organ that has devised numerous strategies, such as physical, chemical, and microbiological barriers, to protect the host from external insults. In addition, the skin contains an intricate network of immune cells resident to the tissue, crucial for host defense as well as tissue homeostasis. In the event of an insult, the skin-resident immune cells are crucial not only for prevention of infection but also for tissue reconstruction. Deregulation of immune responses often leads to impaired healing and poor tissue restoration and function. In this review, we will discuss the defensive components of the skin and focus on the function of skin-resident immune cells in homeostasis and their role in wound healing.
Collapse
|