1
|
Hua X, Ficaro MK, Wallace NL, Dai J. Epidermal RORα Maintains Barrier Integrity and Prevents Allergic Inflammation by Regulating Late Differentiation and Lipid Metabolism. Int J Mol Sci 2024; 25:10698. [PMID: 39409027 PMCID: PMC11476758 DOI: 10.3390/ijms251910698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/02/2024] [Accepted: 10/03/2024] [Indexed: 10/20/2024] Open
Abstract
The skin epidermis provides a barrier that is imperative for preventing transepidermal water loss (TEWL) and protecting against environmental stimuli. The underlying molecular mechanisms for regulating barrier functions and sustaining its integrity remain unclear. RORα is a nuclear receptor highly expressed in the epidermis of normal skin. Clinical studies showed that the epidermal RORα expression is significantly reduced in the lesions of multiple inflammatory skin diseases. In this study, we investigate the central roles of RORα in stabilizing skin barrier function using mice with an epidermis-specific Rora gene deletion (RoraEKO). While lacking spontaneous skin lesions or dermatitis, RoraEKO mice exhibited an elevated TEWL rate and skin characteristics of barrier dysfunction. Immunostaining and Western blot analysis revealed low levels of cornified envelope proteins in the RoraEKO epidermis, suggesting disturbed late epidermal differentiation. In addition, an RNA-seq analysis showed the altered expression of genes related to "keratinization" and "lipid metabolism" in RORα deficient epidermis. A lipidomic analysis further uncovered an aberrant ceramide composition in the RoraEKO epidermis. Importantly, epidermal Rora ablation greatly exaggerated percutaneous allergic inflammatory responses to oxazolone in an allergic contact dermatitis (ACD) mouse model. Our results substantiate the essence of epidermal RORα in maintaining late keratinocyte differentiation and normal barrier function while suppressing cutaneous inflammation.
Collapse
Affiliation(s)
- Xiangmei Hua
- School of Pharmacy, The University of Wisconsin, Madison, WI 53705, USA; (X.H.); (M.K.F.); (N.L.W.)
| | - Maria K. Ficaro
- School of Pharmacy, The University of Wisconsin, Madison, WI 53705, USA; (X.H.); (M.K.F.); (N.L.W.)
| | - Nicole L. Wallace
- School of Pharmacy, The University of Wisconsin, Madison, WI 53705, USA; (X.H.); (M.K.F.); (N.L.W.)
| | - Jun Dai
- School of Pharmacy, The University of Wisconsin, Madison, WI 53705, USA; (X.H.); (M.K.F.); (N.L.W.)
- Carbone Cancer Center, The University of Wisconsin, Madison, WI 53705, USA
- Skin Disease Research Center, The University of Wisconsin, Madison, WI 53705, USA
| |
Collapse
|
2
|
Chen C, Chen Y, Li Y, Zhang H, Huang X, Li Y, Li Z, Han J, Wu X, Liu H, Sun T. EGR3 Inhibits Tumor Progression by Inducing Schwann Cell-Like Differentiation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400066. [PMID: 38973154 PMCID: PMC11425834 DOI: 10.1002/advs.202400066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/31/2024] [Indexed: 07/09/2024]
Abstract
The mechanism and function of the expression of Schwann characteristics by nevus cells in the mature zone of the dermis are unknown. Early growth response 3 (EGR3) induces Schwann cell-like differentiation of melanoma cells by simulating the process of nevus maturation, which leads to a strong phenotypic transformation of the cells, including the formation of long protrusions and a decrease in cell motility, proliferation, and melanin production. Meanwhile, EGR3 regulates the levels of myelin protein zero (MPZ) and collagen type I alpha 1 chain (COL1A1) through SRY-box transcription factor 10 (SOX10)-dependent and independent mechanisms, by binding to non-strictly conserved motifs, respectively. Schwann cell-like differentiation demonstrates significant benefits in both in vivo and clinical studies. Finally, a CD86-P2A-EGR3 recombinant mRNA vaccine is developed which leads to tumor control through forced cell differentiation and enhanced immune infiltration. Together, these data support further development of the recombinant mRNA as a treatment for cancer.
Collapse
Affiliation(s)
- Cai‐hong Chen
- Tianjin Nankai University State Key Laboratory of Medicinal Chemical Biology and College of PharmacyTianjin300350China
| | - Yang Chen
- Tianjin Nankai University State Key Laboratory of Medicinal Chemical Biology and College of PharmacyTianjin300350China
| | - Yi‐nan Li
- Tianjin Nankai University State Key Laboratory of Medicinal Chemical Biology and College of PharmacyTianjin300350China
| | - Heng Zhang
- Tianjin Nankai University State Key Laboratory of Medicinal Chemical Biology and College of PharmacyTianjin300350China
- Tianjin International Joint Academy of BiomedicineTianjin300450China
| | - Xiu Huang
- Tianjin Nankai University State Key Laboratory of Medicinal Chemical Biology and College of PharmacyTianjin300350China
- Tianjin International Joint Academy of BiomedicineTianjin300450China
| | - Ying‐ying Li
- Tianjin Nankai University State Key Laboratory of Medicinal Chemical Biology and College of PharmacyTianjin300350China
| | - Zhi‐yang Li
- Tianjin Nankai University State Key Laboratory of Medicinal Chemical Biology and College of PharmacyTianjin300350China
- Tianjin International Joint Academy of BiomedicineTianjin300450China
| | - Jing‐xia Han
- Tianjin Nankai University State Key Laboratory of Medicinal Chemical Biology and College of PharmacyTianjin300350China
- Tianjin International Joint Academy of BiomedicineTianjin300450China
| | - Xin‐ying Wu
- Tianjin Nankai University State Key Laboratory of Medicinal Chemical Biology and College of PharmacyTianjin300350China
| | - Hui‐juan Liu
- Tianjin Nankai University State Key Laboratory of Medicinal Chemical Biology and College of PharmacyTianjin300350China
- Tianjin International Joint Academy of BiomedicineTianjin300450China
| | - Tao Sun
- Tianjin Nankai University State Key Laboratory of Medicinal Chemical Biology and College of PharmacyTianjin300350China
| |
Collapse
|
3
|
Morgenstern E, Molthof C, Schwartz U, Graf J, Bruckmann A, Hombach S, Kretz M. lncRNA LINC00941 modulates MTA2/NuRD occupancy to suppress premature human epidermal differentiation. Life Sci Alliance 2024; 7:e202302475. [PMID: 38649186 PMCID: PMC11035861 DOI: 10.26508/lsa.202302475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/25/2024] Open
Abstract
Numerous long non-coding RNAs (lncRNAs) were shown to have a functional impact on cellular processes such as human epidermal homeostasis. However, the mechanism of action for many lncRNAs remains unclear to date. Here, we report that lncRNA LINC00941 regulates keratinocyte differentiation on an epigenetic level through association with the NuRD complex, one of the major chromatin remodelers in cells. We find that LINC00941 interacts with NuRD-associated MTA2 and CHD4 in human primary keratinocytes. LINC00941 perturbation changes MTA2/NuRD occupancy at bivalent chromatin domains in close proximity to transcriptional regulator genes, including the EGR3 gene coding for a transcription factor regulating epidermal differentiation. Notably, LINC00941 depletion resulted in reduced NuRD occupancy at the EGR3 gene locus, increased EGR3 expression in human primary keratinocytes, and increased abundance of EGR3-regulated epidermal differentiation genes in cells and human organotypic epidermal tissues. Our results therefore indicate a role of LINC00941/NuRD in repressing EGR3 expression in non-differentiated keratinocytes, consequentially preventing premature differentiation of human epidermal tissues.
Collapse
Affiliation(s)
- Eva Morgenstern
- Regensburg Center for Biochemistry (RCB), University of Regensburg, Regensburg, Germany
| | - Carolin Molthof
- Regensburg Center for Biochemistry (RCB), University of Regensburg, Regensburg, Germany
| | - Uwe Schwartz
- NGS Analysis Center Biology and Pre-Clinical Medicine, University of Regensburg, Regensburg, Germany
| | - Johannes Graf
- Regensburg Center for Biochemistry (RCB), University of Regensburg, Regensburg, Germany
| | - Astrid Bruckmann
- Regensburg Center for Biochemistry (RCB), University of Regensburg, Regensburg, Germany
| | - Sonja Hombach
- Regensburg Center for Biochemistry (RCB), University of Regensburg, Regensburg, Germany
- Institute for Molecular Medicine, MSH Medical School Hamburg, Hamburg, Germany
| | - Markus Kretz
- Regensburg Center for Biochemistry (RCB), University of Regensburg, Regensburg, Germany
- Institute for Molecular Medicine, MSH Medical School Hamburg, Hamburg, Germany
| |
Collapse
|
4
|
Xu Y, Zeng C, Bin J, Tang H, Li W. Identifying novel circadian rhythm biomarkers for diagnosis and prognosis of melanoma by an integrated bioinformatics and machine learning approach. Aging (Albany NY) 2024; 16:11824-11842. [PMID: 39213172 PMCID: PMC11386929 DOI: 10.18632/aging.205961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 12/26/2023] [Indexed: 09/04/2024]
Abstract
Melanoma is a highly malignant skin tumor with poor prognosis. Circadian rhythm is closely related to melanoma pathogenesis. This study aimed to identify key circadian rhythm genes (CRGs) in melanoma and explore their potential as diagnostic and prognostic biomarkers. Microarray data of melanoma tissues and normal skins were obtained. Differentially expressed genes were identified and weighted gene co-expression network analysis (WGCNA) was performed to screen hub genes associated with melanoma. By overlapping hub genes with known CRGs, 125 melanoma-related CRGs were identified. Functional enrichment analysis revealed these CRGs were mainly involved in circadian rhythm and other cancer-related pathways. Three machine learning algorithms including LASSO regression, support vector machine-recursive feature elimination (SVM-RFE), and random forest were utilized to select key CRGs. Six CRGs (ABCC2, CA14, EGR3, FBXW7, LDHB, and PSEN2) were identified as key CRGs for melanoma diagnosis and prognosis. Diagnostic values of key CRGs were evaluated by ROC analysis in training and validation sets. Prognostic values of key CRGs were assessed by survival analysis and a multivariate Cox regression prognostic model was constructed. The prognostic model could effectively stratify melanoma patients into high- and low-risk groups with significantly different survival. A nomogram integrating clinical variables and risk score was built to predict 3-, 5- and 10-year overall survival of melanoma patients. In summary, six CRGs were identified as key genes associated with melanoma pathogenesis and may serve as promising diagnostic and prognostic biomarkers. The prognostic model and nomogram could facilitate personalized prognosis evaluation of melanoma patients.
Collapse
Affiliation(s)
- Yi Xu
- Department of Plastic Surgery, Second People’s Hospital of Hunan Province, Changsha, Hunan, China
| | - Churuo Zeng
- Department of Plastic Surgery, Second People’s Hospital of Hunan Province, Changsha, Hunan, China
| | - Jie Bin
- Department of Plastic Surgery, Second People’s Hospital of Hunan Province, Changsha, Hunan, China
| | - Hua Tang
- Department of Plastic Surgery, Second People’s Hospital of Hunan Province, Changsha, Hunan, China
| | - Wei Li
- Department of Plastic Surgery, Second People’s Hospital of Hunan Province, Changsha, Hunan, China
| |
Collapse
|
5
|
Zhou KY, Deng LJ, Luo SY, Wang QX, Fang S. Expression of Early Growth Response 3 in Skin Cancers. Appl Immunohistochem Mol Morphol 2024; 32:169-175. [PMID: 38478384 DOI: 10.1097/pai.0000000000001191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 02/13/2024] [Indexed: 04/05/2024]
Abstract
OBJECTIVE To assess the expression of early growth response 3 (EGR3) in normal skin and different types of skin tumors: cutaneous squamous cell carcinoma (cSCC), basal cell carcinoma (BCC), melanoma (MM), and cutaneous adnexal tumors containing sebaceous carcinoma (SC), trichoepithelioma (TE) and clear cell hidradenoma (CCH). BACKGROUND EGR3, expressed in multiple organs, including skin, plays an important role in cell differentiation and tumor growth. Previous studies have shown that EGR3 suppresses tumor growth and is downregulated in various malignancies. However, its distribution in normal skin and its expression especially in skin tumors have not been studied. MATERIALS AND METHODS Samples of normal cases (n = 4), cSCC (n = 12), BCC (n = 12), MM (n = 12), SC (n = 4), TE (n = 4), and CCH (n = 4) were collected from patients treated in our department between 2018 and 2023. Immunohistochemistry was used to investigate the expression of EGR3. The results were analyzed with the description of the staining pattern and the histochemical score. RESULTS Immunohistochemical staining showed that EGR3 was uniquely expressed in normal skin in the granular layer and upper part of the stratum spinosum, as well as in sebaceous glands and hair follicles, but not in sweat glands. In skin cancers, BCC, SC, and TE showed positive EGR3 staining, whereas cSCC, MM, and CCH were negative. CONCLUSIONS EGR3 has a specific expression pattern in normal skin and in skin tumors, which is important for the differential diagnosis of skin tumors, in particular for cSCC and sebaceous gland carcinoma.
Collapse
Affiliation(s)
- Kai-Yi Zhou
- Department of Dermatology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | | | | | | | | |
Collapse
|
6
|
Smirnov A, Lena AM, Tosetti G, Yang X, Cappello A, Helmer Citterich M, Melino G, Candi E. Epigenetic priming of an epithelial enhancer by p63 and CTCF controls expression of a skin-restricted gene XP33. Cell Death Discov 2023; 9:446. [PMID: 38065940 PMCID: PMC10709559 DOI: 10.1038/s41420-023-01716-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/27/2023] [Accepted: 11/07/2023] [Indexed: 07/11/2024] Open
Abstract
The transcription factor p63 is a renowned master regulator of gene expression of stratified epithelia. While multiple proteins have been identified as p63 bona fide targets, little is known about non-coding RNAs (ncRNAs) whose transcription is controlled by p63. Here, we describe a skin-specific non-coding RNA XP33 as a novel target of p63. XP33 levels are increased during keratinocyte differentiation in vitro, while its depletion results in decreased expression of late cornified gene LCE2D. By using publicly available multi-omics data, we show that CTCF and p63 establish an epithelial enhancer to prime XP33 transcription in a tissue-restricted manner. XP33 promoter and enhancer form a chromatin loop exclusively in keratinocytes but not in other cell types. Moreover, the XP33 enhancer is occupied by differentiation-specific factors that control XP33 transcription. Altogether, we identify a tissue-specific non-coding RNA whose expression is epigenetically regulated by p63 and CTCF.
Collapse
Affiliation(s)
- Artem Smirnov
- Department of Experimental Medicine, Torvergata Oncoscience Research, University of Rome "Tor Vergata", via Montpellier 1, 00133, Rome, Italy
- Biochemistry Laboratory, Istituto Dermopatico Immacolata (IDI-IRCCS), 00166, Rome, Italy
| | - Anna Maria Lena
- Department of Experimental Medicine, Torvergata Oncoscience Research, University of Rome "Tor Vergata", via Montpellier 1, 00133, Rome, Italy
| | - Giulia Tosetti
- Department of Experimental Medicine, Torvergata Oncoscience Research, University of Rome "Tor Vergata", via Montpellier 1, 00133, Rome, Italy
| | - Xue Yang
- Department of Experimental Medicine, Torvergata Oncoscience Research, University of Rome "Tor Vergata", via Montpellier 1, 00133, Rome, Italy
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, Soochow University, 215000, Suzhou, China
| | - Angela Cappello
- Department of Experimental Medicine, Torvergata Oncoscience Research, University of Rome "Tor Vergata", via Montpellier 1, 00133, Rome, Italy
- Interdisciplinary Department of Medicine University of Bari "Aldo Moro", 70124, Bari, Italy
| | - Manuela Helmer Citterich
- Biology Department, University of Rome "Tor Vergata", Via della Ricerca Scientifica, snc, 00133, Rome, Italy
| | - Gerry Melino
- Department of Experimental Medicine, Torvergata Oncoscience Research, University of Rome "Tor Vergata", via Montpellier 1, 00133, Rome, Italy
| | - Eleonora Candi
- Department of Experimental Medicine, Torvergata Oncoscience Research, University of Rome "Tor Vergata", via Montpellier 1, 00133, Rome, Italy.
- Biochemistry Laboratory, Istituto Dermopatico Immacolata (IDI-IRCCS), 00166, Rome, Italy.
| |
Collapse
|
7
|
Thaler R, Yoshizaki K, Nguyen T, Fukumoto S, Den Besten P, Bikle DD, Oda Y. Mediator 1 ablation induces enamel-to-hair lineage conversion in mice through enhancer dynamics. Commun Biol 2023; 6:766. [PMID: 37479880 PMCID: PMC10362024 DOI: 10.1038/s42003-023-05105-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 07/06/2023] [Indexed: 07/23/2023] Open
Abstract
Postnatal cell fate is postulated to be primarily determined by the local tissue microenvironment. Here, we find that Mediator 1 (Med1) dependent epigenetic mechanisms dictate tissue-specific lineage commitment and progression of dental epithelia. Deletion of Med1, a key component of the Mediator complex linking enhancer activities to gene transcription, provokes a tissue extrinsic lineage shift, causing hair generation in incisors. Med1 deficiency gives rise to unusual hair growth via primitive cellular aggregates. Mechanistically, we find that MED1 establishes super-enhancers that control enamel lineage transcription factors in dental stem cells and their progenies. However, Med1 deficiency reshapes the enhancer landscape and causes a switch from the dental transcriptional program towards hair and epidermis on incisors in vivo, and in dental epithelial stem cells in vitro. Med1 loss also provokes an increase in the number and size of enhancers. Interestingly, control dental epithelia already exhibit enhancers for hair and epidermal key transcription factors; these transform into super-enhancers upon Med1 loss suggesting that these epigenetic mechanisms cause the shift towards epidermal and hair lineages. Thus, we propose a role for Med1 in safeguarding lineage specific enhancers, highlight the central role of enhancer accessibility in lineage reprogramming and provide insights into ectodermal regeneration.
Collapse
Affiliation(s)
- Roman Thaler
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
- Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, USA
| | - Keigo Yoshizaki
- Section of Orthodontics and Dentofacial Orthopedics, Division of Oral Health, Growth and Development, Kyushu University Faculty of Dental Science, Fukuoka, Japan
| | - Thai Nguyen
- Departments of Medicine and Endocrinology, University of California San Francisco and San Francisco Veterans Affairs Health Center, San Francisco, CA, USA
| | - Satoshi Fukumoto
- Section of Pediatric Dentistry, Division of Oral Health, Growth and Development, Kyushu University Faculty of Dental Science, Fukuoka, Japan
- Division of Pediatric Dentistry, Department of Oral Health and Development Sciences, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Pamela Den Besten
- Department of Dentistry, University of California San Francisco, San Francisco, CA, USA
| | - Daniel D Bikle
- Departments of Medicine and Endocrinology, University of California San Francisco and San Francisco Veterans Affairs Health Center, San Francisco, CA, USA
| | - Yuko Oda
- Departments of Medicine and Endocrinology, University of California San Francisco and San Francisco Veterans Affairs Health Center, San Francisco, CA, USA.
| |
Collapse
|
8
|
Yue L, Yu HF, Tian XC, Guo B, Zheng LW. Egr3 as an important regulator of uterine decidualization through targeting Hand2. Cell Biol Int 2023; 47:406-416. [PMID: 36317452 DOI: 10.1002/cbin.11933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/23/2022] [Accepted: 09/26/2022] [Indexed: 01/13/2023]
Abstract
Early growth response 3 (Egr3) is required for embryogenesis, but little understanding is usable about its function in embryo implantation and decidualization. The present study exhibited an obvious localization of Egr3 in luminal epithelium and subluminal stroma at implantation sites. Administration of estrogen brought about a distinct gather of Egr3 mRNA in uterine luminal and glandular epithelia. Meanwhile, Egr3 was visualized in the decidua where it might facilitate the proliferation of stromal cells via Ccnd3 and accelerate stromal differentiation, testifying the significance of Egr3 in decidualization. In ovariectomized mice uteri or stromal cells, progesterone advanced the expression of Egr3 whose obstruction counteracted the inducement of stromal differentiation by progesterone. Consistently, Egr3 mediated the influence of cAMP and heparin-binding EGF-like growth factor (HB-EGF) on the differentiation program. Additionally, cAMP-protein kinase A (PKA) signaling mediated the adjustment of progesterone on Egr3. Impediment of HB-EGF antagonized the ascendance of Egr3 conferred by cAMP. In stromal cells, Egr3 activated the transcription of Hand2 whose promoter region exhibited the binding enrichment of Egr3. Activation of Hand2 relieved the weakness of stromal differentiation by Egr3 hinderance, whereas knockdown of Hand2 neutralized the guidance of Egr3 overexpression on the differentiation program. Collectively, Egr3 was identified as an important regulator of uterine decidualization through targeting Hand2 in response to progesterone/cAMP/HB-EGF pathway.
Collapse
Affiliation(s)
- Liang Yue
- Department of Obstetrics and Gynecology, Reproductive Medical Center, The Second Hospital of Jilin University, Changchun, People's Republic of China
| | - Hai-Fan Yu
- Department of Animal Histology and Embryology, College of Veterinary Medicine, Jilin University, Changchun, People's Republic of China
| | - Xue-Chao Tian
- Department of Animal Histology and Embryology, College of Veterinary Medicine, Jilin University, Changchun, People's Republic of China
| | - Bin Guo
- Department of Animal Histology and Embryology, College of Veterinary Medicine, Jilin University, Changchun, People's Republic of China
| | - Lian-Wen Zheng
- Department of Obstetrics and Gynecology, Reproductive Medical Center, The Second Hospital of Jilin University, Changchun, People's Republic of China
| |
Collapse
|
9
|
Widgerow AD, Ziegler ME, Garruto JA, Mraz Robinson D, Palm MD, Vega JH, Bell M. Designing Topical Hyaluronic Acid technology - size does matter…. J Cosmet Dermatol 2022; 21:2865-2870. [PMID: 35486441 PMCID: PMC9540682 DOI: 10.1111/jocd.15027] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/21/2022] [Accepted: 04/25/2022] [Indexed: 11/30/2022]
Abstract
INTRODUCTION Hyaluronic acid (HA) plays an important role in cellular and extracellular matrix (ECM) homeostasis. Recent studies demonstrate that low molecular weight (MW) HA has proinflammatory characteristics while high MW HA is considered anti-inflammatory and regenerative. In formulating a topical HA product, the possibility of creating a focused high MW HA technology was posed, combining external surface high MW HA constituents with active agents promoting fibroblast production of high MW in the depths of the dermis. METHODS Human dermal fibroblasts and keratinocytes were treated with various agents, and RNA sequencing (RNA-seq) was conducted to identify genes involved in HA synthesis. HA production by fibroblasts was assessed by collecting the culture supernatant, concentrating the protein, and conducting polyacrylamide gel electrophoresis (PAGE). The gel was stained with Stains-All to identify bands relative to known HA products of different MWs. Subsequently, the supernatants were treated with hyaluronidase to confirm the bands corresponded to HA. RESULTS The RNA-seq results revealed a variety of agents up-regulated HA-related genes. However, a potent upregulation of HA synthesis gene was observed by hexapeptide-11 in the keratinocytes and a newly identified proprietary octapeptide in the fibroblasts. PAGE demonstrated not only robust production of HA by octapeptide, but significantly, the HA produced was ~2 Mega Daltons in size. Octapeptide was the most potent stimulator among the tested agents. CONCLUSION Comprehensive in vitro testing identified a group of active agents that stimulated high MW HA production. This novel approach to HA topical application with exclusively high MW HA production should maximize hydration capacity while encouraging regenerative activity within in the ECM. Multi-center trials are underway.
Collapse
Affiliation(s)
- Alan D Widgerow
- Dept. of Plastic Surgery, University of California, Irvine.,Alastin
| | | | | | | | - Melanie D Palm
- Art of Skin MD, Solana Beach.,University of California, San Diego
| | | | | |
Collapse
|
10
|
Lachner J, Derdak S, Mlitz V, Wagner T, Holthaus KB, Ehrlich F, Mildner M, Tschachler E, Eckhart L. An In Vitro Model of Avian Skin Reveals Evolutionarily Conserved Transcriptional Regulation of Epidermal Barrier Formation. J Invest Dermatol 2021; 141:2829-2837. [PMID: 34116064 DOI: 10.1016/j.jid.2021.04.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 03/29/2021] [Accepted: 04/12/2021] [Indexed: 01/23/2023]
Abstract
The function of the skin as a barrier against a dry environment evolved in a common ancestor of terrestrial vertebrates such as mammals and birds. However, it is unknown which elements of the genetic program of skin barrier formation are evolutionarily ancient and conserved. In this study, we determined the transcriptomes of chicken keratinocytes (KCs) grown in monolayer culture and in an organotypic model of avian skin. The differentiation-associated changes in global gene expression were compared with previously published transcriptome changes of human KCs cultured under equivalent conditions. We found that specific keratins and genes of the epidermal differentiation complex were upregulated during the differentiation of both chicken and human KCs. Likewise, the transcriptional upregulation of genes that control the synthesis and transport of lipids, anti-inflammatory cytokines of the IL-1 family, protease inhibitors, and other regulators of tissue homeostasis was conserved in the KCs of both species. However, some avian KC differentiation-associated transcripts lack homologs in mammals and vice versa, indicating a genetic basis for taxon-specific skin features. The results of this study reveal an evolutionarily ancient program in which dynamic gene transcription controls the metabolism and transport of lipids as well as other core processes during terrestrial skin barrier formation.
Collapse
Affiliation(s)
- Julia Lachner
- Skin Biology Laboratory, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Sophia Derdak
- Core Facilities, Medical University of Vienna, Vienna, Austria
| | - Veronika Mlitz
- Skin Biology Laboratory, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Tanja Wagner
- Skin Biology Laboratory, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Karin Brigit Holthaus
- Skin Biology Laboratory, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Florian Ehrlich
- Skin Biology Laboratory, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Michael Mildner
- Skin Biology Laboratory, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Erwin Tschachler
- Skin Biology Laboratory, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Leopold Eckhart
- Skin Biology Laboratory, Department of Dermatology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
11
|
Liu X, Frost J, Bowcock A, Zhang W. Canonical and Interior Circular RNAs Function as Competing Endogenous RNAs in Psoriatic Skin. Int J Mol Sci 2021; 22:ijms22105182. [PMID: 34068434 PMCID: PMC8153647 DOI: 10.3390/ijms22105182] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/11/2021] [Accepted: 05/11/2021] [Indexed: 12/14/2022] Open
Abstract
(1) Background: Understanding the function of circular RNAs (circRNAs), a class of noncoding RNA, in psoriatic skin can provide important insights into the complex regulation of genes contributing to the pathogenesis of psoriasis. (2) Methods: A novel method was applied to RNA-seq datasets from 93 skin biopsy samples to comprehensively identify circRNAs of all types, i.e., canonical circRNAs from the intron-exon junctions of mRNAs and interior circRNAs (i-circRNAs) from the interior regions of exons, introns, and intergenic regions. Selected circRNAs were experimentally validated by qRT-PCR and Sanger sequencing. CircRNAs with abundant and differential expression were identified and their putative function as competing endogenous RNAs (ceRNAs) was analyzed by an integrated analysis of circRNAs, microRNAs, and mRNAs. (3) Results: With a comprehensive search using no information of splicing signals, we systematically identified 179 highly abundant circRNAs in psoriatic skin. Many of these were reported for the first time and many were differentially expressed in involved versus normal or uninvolved skin. Validation based on three additional RNA-seq datasets confirmed most of the identified circRNAs in psoriatic skin. Experimental analyses confirmed the expression of the well-known circRNA CDR1as, a canonical circRNA, and a novel i-circRNA in psoriasis. We also identified many circRNAs that may act as ceRNAs to regulate the expression of mRNA genes in psoriasis-related signaling pathways in psoriasis. (4) Conclusions: The result of the study suggested that circRNAs are abundant in psoriatic skin, have distinct characteristics, and contribute to psoriatic pathogenesis.
Collapse
Affiliation(s)
- Xiaoxin Liu
- Institute for Systems Biology, Jianghan University, Wuhan 430056, China;
- Department of Computer Science and Engineering, Washington University, Saint Louis, MO 63130, USA
| | - Jacqueline Frost
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (J.F.); (A.B.)
| | - Anne Bowcock
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (J.F.); (A.B.)
- Departments of Dermatology and Genetics & Genomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Weixiong Zhang
- Institute for Systems Biology, Jianghan University, Wuhan 430056, China;
- Department of Computer Science and Engineering, Washington University, Saint Louis, MO 63130, USA
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO 63130, USA
- Correspondence:
| |
Collapse
|
12
|
Addison R, Weatherhead SC, Pawitri A, Smith GR, Rider A, Grantham HJ, Cockell SJ, Reynolds NJ. Therapeutic wavelengths of ultraviolet B radiation activate apoptotic, circadian rhythm, redox signalling and key canonical pathways in psoriatic epidermis. Redox Biol 2021; 41:101924. [PMID: 33812333 PMCID: PMC8050411 DOI: 10.1016/j.redox.2021.101924] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/22/2021] [Accepted: 02/26/2021] [Indexed: 01/09/2023] Open
Abstract
Ultraviolet B radiation (UVB) exerts pleiotropic effects on human skin. DNA damage response and repair pathways are activated by UVB; if damage cannot be repaired, apoptosis ensues. Although cumulative UVB exposure predisposes to skin cancer, UVB phototherapy is widely used as an effective treatment for psoriasis. Previous studies defined the therapeutic action spectrum of UVB and showed that psoriasis is resistant to apoptosis. This study aimed to investigate early molecular responses within psoriasis plaques following irradiation with single equi-erythemogenic doses of clinically-effective (311 nm, narrow-band) compared to clinically-ineffective (290 nm) UVB. Forty-eight micro-dissected epidermal samples from 20 psoriatic patients were analyzed using microarrays. Our bioinformatic analysis compared gene expression between 311 nm irradiated, 290 nm irradiated and control psoriasis epidermis to specifically identify 311 nm UVB differentially expressed genes (DEGs) and their upstream regulatory pathways. Key DEGs and pathways were validated by immunohistochemical analysis. There was a dynamic induction and repression of 311 nm UVB DEGs between 6 h and 18 h, only a limited number of DEGs maintained their designated expression status between time-points. Key disease and function pathways included apoptosis, cell death, cell migration and leucocyte chemotaxis. DNA damage response pathways, NRF2-mediated oxidative stress response and P53 signalling were key nodes, interconnecting apoptosis and cell cycle arrest. Interferon signalling, dendritic cell maturation, granulocyte adhesion and atherosclerotic pathways were also differentially regulated. Consistent with these findings, top transcriptional regulators of 311 nm UVB DEGs related to: a) apoptosis, DNA damage response and cell cycle control; b) innate/acquired immune regulation and inflammation; c) hypoxia/redox response and angiogenesis; d) circadian rhythmicity; f) EGR/AP1 signalling and keratinocyte differentiation; and g) mitochondrial biogenesis. This research provides important insights into the molecular targets of 311 nm UVB, underscoring key roles for apoptosis and cell death. These and the other key pathways delineated may be central to the therapeutic effects of 311 nm in psoriasis.
Collapse
Affiliation(s)
- Rachel Addison
- Institute of Translational and Clinical Medicine, Faculty of Medical Sciences, Framlington Place, Newcastle University, Newcastle Upon Tyne, UK
| | - Sophie C Weatherhead
- Institute of Translational and Clinical Medicine, Faculty of Medical Sciences, Framlington Place, Newcastle University, Newcastle Upon Tyne, UK; Department of Dermatology, Royal Victoria Infirmary, Newcastle Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK
| | - Anandika Pawitri
- Institute of Translational and Clinical Medicine, Faculty of Medical Sciences, Framlington Place, Newcastle University, Newcastle Upon Tyne, UK
| | - Graham R Smith
- Bioinformatics Support Unit, Faculty of Medical Sciences, Framlington Place, Newcastle University, Newcastle Upon Tyne, UK
| | - Ashley Rider
- Institute of Translational and Clinical Medicine, Faculty of Medical Sciences, Framlington Place, Newcastle University, Newcastle Upon Tyne, UK
| | - Henry J Grantham
- Institute of Translational and Clinical Medicine, Faculty of Medical Sciences, Framlington Place, Newcastle University, Newcastle Upon Tyne, UK; Department of Dermatology, Royal Victoria Infirmary, Newcastle Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK
| | - Simon J Cockell
- Bioinformatics Support Unit, Faculty of Medical Sciences, Framlington Place, Newcastle University, Newcastle Upon Tyne, UK
| | - Nick J Reynolds
- Institute of Translational and Clinical Medicine, Faculty of Medical Sciences, Framlington Place, Newcastle University, Newcastle Upon Tyne, UK; Department of Dermatology, Royal Victoria Infirmary, Newcastle Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK.
| |
Collapse
|
13
|
Kim KH, Shim JS, Kim HJ, Son ED. Penta-O-galloyl-β-D-glucose from Paeonia lactiflora Pall. root extract enhances the expression of skin barrier genes via EGR3. JOURNAL OF ETHNOPHARMACOLOGY 2020; 248:112337. [PMID: 31655148 DOI: 10.1016/j.jep.2019.112337] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 09/10/2019] [Accepted: 10/21/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLIGICAL RELEVANCE Paeonia lactiflora Pall. has long been used to treat inflammatory skin diseases, such as psoriasis. AIM OF THE STUDY The skin acts as a barrier and provides protection against various stresses by expressing skin barrier genes during keratinocyte differentiation. However, the effect of Paeonia lactiflora Pall. root extract on the expression of skin barrier genes has not been investigated. Here, we aimed to show that treatment of keratinocytes with Paeonia lactiflora Pall. root can upregulate genes related to keratinocyte differentiation. MATERIALS AND METHODS To determine the effect Paeonia lactiflora Pall. root extract, RNA-Seq, gene ontology, and gene set enrichment analysis were performed. Reverse transcriptase quantitative polymerase chain reaction analysis was performed to confirm the increased expression of skin barrier genes. RESULTS Treatment with Paeonia lactiflora Pall. root enhanced the expression of skin barrier genes, including the filaggrin, loricrin, and involucrin. Moreover, we found that penta-O-galloyl-β-D-glucose (PGG), one of the ingredients in Paeonia lactiflora Pall. root, enhanced the expression of skin barrier genes, by upregulating the expression of the transcription factor EGR3. CONCLUSIONS PGG and Paeonia lactiflora Pall. root extract have therapeutic potential for the treatment of diseases related to skin barrier disruption and can be used in cosmetics to enhance skin barrier function.
Collapse
Affiliation(s)
- Kyu-Han Kim
- Basic Research & Innovation Division, R&D Unit, AmorePacific Corporation, Yongin-si, Gyeonggi-do, 446-729, South Korea.
| | - Jin Sup Shim
- Basic Research & Innovation Division, R&D Unit, AmorePacific Corporation, Yongin-si, Gyeonggi-do, 446-729, South Korea
| | - Hyoung-June Kim
- Basic Research & Innovation Division, R&D Unit, AmorePacific Corporation, Yongin-si, Gyeonggi-do, 446-729, South Korea
| | - Eui Dong Son
- Basic Research & Innovation Division, R&D Unit, AmorePacific Corporation, Yongin-si, Gyeonggi-do, 446-729, South Korea
| |
Collapse
|
14
|
Wang Y, Zheng Y, Guo D, Zhang X, Guo S, Hui T, Yue C, Sun J, Guo S, Bai Z, Cai W, Zhang X, Fan Y, Wang Z, Bai W. m6A Methylation Analysis of Differentially Expressed Genes in Skin Tissues of Coarse and Fine Type Liaoning Cashmere Goats. Front Genet 2020; 10:1318. [PMID: 32038703 PMCID: PMC6987416 DOI: 10.3389/fgene.2019.01318] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 12/03/2019] [Indexed: 01/27/2023] Open
Abstract
N6-methyladenosine (m6A) is the most common internal modification in mRNAs of all higher eukaryotes. Here we perform two high-throughput sequencing methods, m6A-modified RNA immunoprecipitation sequence (MeRIP-seq) and RNA sequence (RNA-seq) to identify key genes with m6A modification in cashmere fiber growth. A total of 9,085 m6A sites were differentially RNA m6A methylated as reported from by MeRIP-seq, including 7,170 upregulated and 1,915 downregulated. In addition, by comparing m6A-modified genes between the fine-type Liaoning cashmere goat (FT-LCG) and coarse-type Liaoning Cashmere Goat (CT-LCG) skin samples, we obtain 1,170 differentially expressed genes. In order to identify the differently methylated genes related to cashmere fiber growth, 19 genes were selected to validate by performing qRT-PCR in FT-LCG and CT-LCG. In addition, GO enrichment analysis shows that differently methylated genes are mainly involved in keratin filament and intermediate filament. These findings provide a theoretical basis for future research on the function of m6A modification during the growth of cashmere fiber.
Collapse
Affiliation(s)
- Yanru Wang
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Yuanyuan Zheng
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Dan Guo
- Academy of Animal Husbandry Science of Liaoning Province, Liaoyang, China
| | - Xinghui Zhang
- Academy of Animal Husbandry Science of Liaoning Province, Liaoyang, China
| | | | - Taiyu Hui
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Chang Yue
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Jiaming Sun
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Suping Guo
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Zhixian Bai
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Weidong Cai
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Xinjiang Zhang
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Yixing Fan
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Zeying Wang
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Wenlin Bai
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|