1
|
Ziadlou R, Pandian GN, Hafner J, Akdis CA, Stingl G, Maverakis E, Brüggen MC. Subcutaneous adipose tissue: Implications in dermatological diseases and beyond. Allergy 2024. [PMID: 39206504 DOI: 10.1111/all.16295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 07/19/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Subcutaneous adipose tissue (SAT) is the deepest component of the three-layered cutaneous integument. While mesenteric adipose tissue-based immune processes have gained recognition in the context of the metabolic syndrome, SAT has been traditionally considered primarily for energy storage, with less attention to its immune functions. SAT harbors a reservoir of immune and stromal cells that significantly impact metabolic and immunologic processes not only in the skin, but even on a systemic level. These processes include wound healing, cutaneous and systemic infections, immunometabolic, and autoimmune diseases, inflammatory skin diseases, as well as neoplastic conditions. A better understanding of SAT immune functions in different processes, could open avenues for novel therapeutic interventions. Targeting SAT may not only address SAT-specific diseases but also offer potential treatments for cutaneous or even systemic conditions. This review aims to provide a comprehensive overview on SAT's structure and functions, highlight recent advancements in understanding its role in both homeostatic and pathological conditions within and beyond the skin, and discuss the main questions for future research in the field.
Collapse
Affiliation(s)
- Reihane Ziadlou
- Faculty of Medicine, University of Zurich, Zurich, Switzerland
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
- Christine Kühne Center for Allergy Research and Education CK-CARE, Davos, Switzerland
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Zurich, Switzerland
| | - Ganesh N Pandian
- Institute for Integrated Cell-Material Science (WPI-iCeMS), Kyoto University, Kyoto, Japan
| | - Jürg Hafner
- Faculty of Medicine, University of Zurich, Zurich, Switzerland
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | - Cezmi A Akdis
- Faculty of Medicine, University of Zurich, Zurich, Switzerland
- Christine Kühne Center for Allergy Research and Education CK-CARE, Davos, Switzerland
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Zurich, Switzerland
| | - Georg Stingl
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Emanual Maverakis
- Department of Dermatology, University of California, Davis, California, USA
| | - Marie-Charlotte Brüggen
- Faculty of Medicine, University of Zurich, Zurich, Switzerland
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
- Christine Kühne Center for Allergy Research and Education CK-CARE, Davos, Switzerland
| |
Collapse
|
2
|
Li Y, Long J, Zhang Z, Yin W. Insights into the unique roles of dermal white adipose tissue (dWAT) in wound healing. Front Physiol 2024; 15:1346612. [PMID: 38465261 PMCID: PMC10920283 DOI: 10.3389/fphys.2024.1346612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/31/2024] [Indexed: 03/12/2024] Open
Abstract
Dermal white adipose tissue (dWAT) is a newly recognized layer of adipocytes within the reticular dermis of the skin. In many mammals, this layer is clearly separated by panniculus carnosus from subcutaneous adipose tissue (sWAT). While, they concentrated around the hair shaft and follicle, sebaceous gland, and arrector pili muscle, and forms a very specific cone geometry in human. Both the anatomy and the histology indicate that dWAT has distinct development and functions. Different from sWAT, the developmental origin of dWAT shares a common precursor with dermal fibroblasts during embryogenesis. Therefore, when skin injury happens and mature adipocytes in dWAT are exposed, they may undergo lipolysis and dedifferentiate into fibroblasts to participate in wound healing as embryogenetic stage. Studies using genetic strategies to selectively ablate dermal adipocytes observed delayed revascularization and re-epithelialization in wound healing. This review specifically summarizes the hypotheses of the functions of dWAT in wound healing. First, lipolysis of dermal adipocytes could contribute to wound healing by regulating inflammatory macrophage infiltration. Second, loss of dermal adipocytes occurs at the wound edge, and adipocyte-derived cells then become ECM-producing wound bed myofibroblasts during the proliferative phase of repair. Third, mature dermal adipocytes are rich resources for adipokines and cytokines and could release them in response to injury. In addition, the dedifferentiated dermal adipocytes are more sensitive to redifferentiation protocol and could undergo expansion in infected wound. We then briefly introduce the roles of dWAT in protecting the skin from environmental challenges: production of an antimicrobial peptide against infection. In the future, we believe there may be great potential for research in these areas: (1) taking advantage of the plasticity of dermal adipocytes and manipulating them in wound healing; (2) investigating the precise mechanism of dWAT expansion in infected wound healing.
Collapse
Affiliation(s)
| | | | | | - Wen Yin
- *Correspondence: Ziang Zhang, ; Wen Yin,
| |
Collapse
|
3
|
Knoedler S, Knoedler L, Kauke-Navarro M, Rinkevich Y, Hundeshagen G, Harhaus L, Kneser U, Pomahac B, Orgill DP, Panayi AC. Regulatory T cells in skin regeneration and wound healing. Mil Med Res 2023; 10:49. [PMID: 37867188 PMCID: PMC10591349 DOI: 10.1186/s40779-023-00484-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 10/04/2023] [Indexed: 10/24/2023] Open
Abstract
As the body's integumentary system, the skin is vulnerable to injuries. The subsequent wound healing processes aim to restore dermal and epidermal integrity and functionality. To this end, multiple tissue-resident cells and recruited immune cells cooperate to efficiently repair the injured tissue. Such temporally- and spatially-coordinated interplay necessitates tight regulation to prevent collateral damage such as overshooting immune responses and excessive inflammation. In this context, regulatory T cells (Tregs) hold a key role in balancing immune homeostasis and mediating cutaneous wound healing. A comprehensive understanding of Tregs' multifaceted field of activity may help decipher wound pathologies and, ultimately, establish new treatment modalities. Herein, we review the role of Tregs in orchestrating the regeneration of skin adnexa and catalyzing healthy wound repair. Further, we discuss how Tregs operate during fibrosis, keloidosis, and scarring.
Collapse
Affiliation(s)
- Samuel Knoedler
- Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Division of Plastic Surgery, Department of Surgery, Yale New Haven Hospital, Yale School of Medicine, New Haven, CT, 06510, USA
- Institute of Regenerative Biology and Medicine, Helmholtz Zentrum München, Munich, 85764, Germany
| | - Leonard Knoedler
- Division of Plastic Surgery, Department of Surgery, Yale New Haven Hospital, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Martin Kauke-Navarro
- Division of Plastic Surgery, Department of Surgery, Yale New Haven Hospital, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Yuval Rinkevich
- Institute of Regenerative Biology and Medicine, Helmholtz Zentrum München, Munich, 85764, Germany
| | - Gabriel Hundeshagen
- Department of Hand, Plastic and Reconstructive Surgery, Microsurgery, Burn Trauma Center, BG Trauma Center Ludwigshafen, University of Heidelberg, Ludwigshafen, 67071, Germany
| | - Leila Harhaus
- Department of Hand, Plastic and Reconstructive Surgery, Microsurgery, Burn Trauma Center, BG Trauma Center Ludwigshafen, University of Heidelberg, Ludwigshafen, 67071, Germany
| | - Ulrich Kneser
- Department of Hand, Plastic and Reconstructive Surgery, Microsurgery, Burn Trauma Center, BG Trauma Center Ludwigshafen, University of Heidelberg, Ludwigshafen, 67071, Germany
| | - Bohdan Pomahac
- Division of Plastic Surgery, Department of Surgery, Yale New Haven Hospital, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Dennis P Orgill
- Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Adriana C Panayi
- Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
- Department of Hand, Plastic and Reconstructive Surgery, Microsurgery, Burn Trauma Center, BG Trauma Center Ludwigshafen, University of Heidelberg, Ludwigshafen, 67071, Germany.
| |
Collapse
|
4
|
Strobl J, Haniffa M. Functional heterogeneity of human skin-resident memory T cells in health and disease. Immunol Rev 2023; 316:104-119. [PMID: 37144705 PMCID: PMC10952320 DOI: 10.1111/imr.13213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/11/2023] [Accepted: 04/15/2023] [Indexed: 05/06/2023]
Abstract
The human skin is populated by a diverse pool of memory T cells, which can act rapidly in response to pathogens and cancer antigens. Tissue-resident memory T cells (TRM ) have been implicated in range of allergic, autoimmune and inflammatory skin diseases. Clonal expansion of cells with TRM properties is also known to contribute to cutaneous T-cell lymphoma. Here, we review the heterogeneous phenotypes, transcriptional programs, and effector functions of skin TRM . We summarize recent studies on TRM formation, longevity, plasticity, and retrograde migration and contextualize the findings to skin TRM and their role in maintaining skin homeostasis and altered functions in skin disease.
Collapse
Affiliation(s)
- Johanna Strobl
- Department of DermatologyMedical University of ViennaViennaAustria
- CeMM Research Center for Molecular MedicineViennaAustria
| | - Muzlifah Haniffa
- Wellcome Sanger InstituteCambridgeUK
- Department of Dermatology and NIHR Newcastle Biomedical Research CentreNewcastle Hospitals NHS Foundation TrustNewcastle upon TyneUK
- Biosciences InstituteNewcastle UniversityNewcastle upon TyneUK
| |
Collapse
|
5
|
Zhang YX, Ou MY, Yang ZH, Sun Y, Li QF, Zhou SB. Adipose tissue aging is regulated by an altered immune system. Front Immunol 2023; 14:1125395. [PMID: 36875140 PMCID: PMC9981968 DOI: 10.3389/fimmu.2023.1125395] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 01/30/2023] [Indexed: 02/19/2023] Open
Abstract
Adipose tissue is a widely distributed organ that plays a critical role in age-related physiological dysfunctions as an important source of chronic sterile low-grade inflammation. Adipose tissue undergoes diverse changes during aging, including fat depot redistribution, brown and beige fat decrease, functional decline of adipose progenitor and stem cells, senescent cell accumulation, and immune cell dysregulation. Specifically, inflammaging is common in aged adipose tissue. Adipose tissue inflammaging reduces adipose plasticity and pathologically contributes to adipocyte hypertrophy, fibrosis, and ultimately, adipose tissue dysfunction. Adipose tissue inflammaging also contributes to age-related diseases, such as diabetes, cardiovascular disease and cancer. There is an increased infiltration of immune cells into adipose tissue, and these infiltrating immune cells secrete proinflammatory cytokines and chemokines. Several important molecular and signaling pathways mediate the process, including JAK/STAT, NFκB and JNK, etc. The roles of immune cells in aging adipose tissue are complex, and the underlying mechanisms remain largely unclear. In this review, we summarize the consequences and causes of inflammaging in adipose tissue. We further outline the cellular/molecular mechanisms of adipose tissue inflammaging and propose potential therapeutic targets to alleviate age-related problems.
Collapse
Affiliation(s)
- Yi-Xiang Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min-Yi Ou
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zi-Han Yang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Sun
- Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Qing-Feng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuang-Bai Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
6
|
Strobl J, Mündler V, Müller S, Gindl A, Berent S, Schötta AM, Kleissl L, Staud C, Redl A, Unterluggauer L, Aguilar González AE, Weninger ST, Atzmüller D, Klasinc R, Stanek G, Markowicz M, Stockinger H, Stary G. Tick feeding modulates the human skin immune landscape to facilitate tick-borne pathogen transmission. J Clin Invest 2022; 132:e161188. [PMID: 36166299 PMCID: PMC9621130 DOI: 10.1172/jci161188] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022] Open
Abstract
During cutaneous tick attachment, the feeding cavity becomes a site of transmission for tick salivary compounds and tick-borne pathogens. However, the immunological consequences of tick feeding for human skin remain unclear. Here, we assessed human skin and blood samples upon tick bite and developed a human skin explant model mimicking Ixodes ricinus bites and tick-borne pathogen infection. Following tick attachment, we observed rapidly occurring patterns of immunomodulation, including increases in neutrophils and cutaneous B and T cells. T cells upregulated tissue residency markers, while lymphocytic cytokine production was impaired. In early stages of Borrelia burgdorferi model infections, we detected strain-specific immune responses and close spatial relationships between macrophages and spirochetes. Preincubation of spirochetes with tick salivary gland extracts hampered accumulation of immune cells and increased spirochete loads. Collectively, we showed that tick feeding exerts profound changes on the skin immune network that interfere with the primary response against tick-borne pathogens.
Collapse
Affiliation(s)
- Johanna Strobl
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Verena Mündler
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Sophie Müller
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Anna Gindl
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Sara Berent
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Anna-Margarita Schötta
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Lisa Kleissl
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
| | - Clement Staud
- Department of Plastic and Reconstructive Surgery, Medical University of Vienna, Vienna, Austria
| | - Anna Redl
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | | | | | - Sophie T. Weninger
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Denise Atzmüller
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
| | - Romana Klasinc
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Gerold Stanek
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Mateusz Markowicz
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
- Austrian Agency for Health and Food Safety (AGES), Vienna, Austria
| | - Hannes Stockinger
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Georg Stary
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
| |
Collapse
|
7
|
Mitamura Y, Schulz D, Oro S, Li N, Kolm I, Lang C, Ziadlou R, Tan G, Bodenmiller B, Steiger P, Marzano A, de Prost N, Caudin O, Levesque M, Stoffel C, Schmid‐Grendelmeier P, Maverakis E, Akdis CA, Brüggen M. Cutaneous and systemic hyperinflammation drives maculopapular drug exanthema in severely ill COVID-19 patients. Allergy 2022; 77:595-608. [PMID: 34157151 PMCID: PMC8441838 DOI: 10.1111/all.14983] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 06/03/2021] [Accepted: 06/10/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Coronavirus disease-2019 (COVID-19) has been associated with cutaneous findings, some being the result of drug hypersensitivity reactions such as maculopapular drug rashes (MDR). The aim of this study was to investigate whether COVID-19 may impact the development of the MDR. METHODS Blood and skin samples from COVID-19 patients (based on a positive nasopharyngeal PCR) suffering from MDR (COVID-MDR), healthy controls, non-COVID-19-related patients with drug rash with eosinophilia and systemic symptoms (DRESS), and MDR were analyzed. We utilized imaging mass cytometry (IMC) to characterize the cellular infiltrate in skin biopsies. Furthermore, RNA sequencing transcriptome of skin biopsy samples and high-throughput multiplexed proteomic profiling of serum were performed. RESULTS IMC revealed by clustering analyses a more prominent, phenotypically shifted cytotoxic CD8+ T cell population and highly activated monocyte/macrophage (Mo/Mac) clusters in COVID-MDR. The RNA sequencing transcriptome demonstrated a more robust cytotoxic response in COVID-MDR skin. However, severe acute respiratory syndrome coronavirus 2 was not detected in skin biopsies at the time point of MDR diagnosis. Serum proteomic profiling of COVID-MDR patients revealed upregulation of various inflammatory mediators (IL-4, IL-5, IL-6, TNF, and IFN-γ), eosinophil and Mo/Mac -attracting chemokines (MCP-2, MCP-3, MCP-4 and CCL11). Proteomics analyses demonstrated a massive systemic cytokine storm in COVID-MDR compared with the relatively milder cytokine storm observed in DRESS, while MDR did not exhibit such features. CONCLUSION A systemic cytokine storm may promote activation of Mo/Mac and cytotoxic CD8+ T cells in severe COVID-19 patients, which in turn may impact the development of MDR.
Collapse
Affiliation(s)
| | - Daniel Schulz
- Institute for Molecular Health SciencesETH ZurichZurichSwitzerland
- Department of Quantitative BiomedicineUniversity of ZurichZurichSwitzerland
| | - Saskia Oro
- Department of DermatologyHenri Mondor HospitalParisFrance
| | - Nick Li
- Department of DermatologyUniversity Hospital ZurichZurichSwitzerland
- Faculty of MedicineUniversity ZurichZurichSwitzerland
| | - Isabel Kolm
- Department of DermatologyUniversity Hospital ZurichZurichSwitzerland
- Faculty of MedicineUniversity ZurichZurichSwitzerland
| | - Claudia Lang
- Department of DermatologyUniversity Hospital ZurichZurichSwitzerland
- Faculty of MedicineUniversity ZurichZurichSwitzerland
| | - Reihane Ziadlou
- Department of DermatologyUniversity Hospital ZurichZurichSwitzerland
- Faculty of MedicineUniversity ZurichZurichSwitzerland
| | - Ge Tan
- Swiss Institute for Allergy Research (SIAF) DavosDavosSwitzerland
| | - Bernd Bodenmiller
- Institute for Molecular Health SciencesETH ZurichZurichSwitzerland
- Department of Quantitative BiomedicineUniversity of ZurichZurichSwitzerland
| | - Peter Steiger
- Faculty of MedicineUniversity ZurichZurichSwitzerland
- Department of Intensive Care MedicineUniversity Hospital ZurichZurichSwitzerland
| | - Angelo Marzano
- Dermatology UnitFondazione IRCCS Ca' Granda Ospedale Maggiore PoliclinicoMilanItaly
- Department of Pathophysiology and TransplantationUniversità degli Studi di MilanoMilanItaly
| | | | - Olivier Caudin
- Department of DermatologyHenri Mondor HospitalParisFrance
| | - Mitchell Levesque
- Department of DermatologyUniversity Hospital ZurichZurichSwitzerland
- Faculty of MedicineUniversity ZurichZurichSwitzerland
| | - Corinne Stoffel
- Department of DermatologyUniversity Hospital ZurichZurichSwitzerland
- Faculty of MedicineUniversity ZurichZurichSwitzerland
| | - Peter Schmid‐Grendelmeier
- Department of DermatologyUniversity Hospital ZurichZurichSwitzerland
- Faculty of MedicineUniversity ZurichZurichSwitzerland
- Christine Kühne‐Center for Allergy Research and EducationDavosSwitzerland
| | - Emanual Maverakis
- Department of DermatologyUniversity of California, DavisSacramentoCAUSA
| | - Cezmi A. Akdis
- Swiss Institute for Allergy Research (SIAF) DavosDavosSwitzerland
- Christine Kühne‐Center for Allergy Research and EducationDavosSwitzerland
| | - Marie‐Charlotte Brüggen
- Department of DermatologyUniversity Hospital ZurichZurichSwitzerland
- Faculty of MedicineUniversity ZurichZurichSwitzerland
- Christine Kühne‐Center for Allergy Research and EducationDavosSwitzerland
| |
Collapse
|
8
|
Spindelboeck W, Halwachs B, Bayer N, Huber-Krassnitzer B, Schulz E, Uhl B, Gaksch L, Hatzl S, Bachmayr V, Kleissl L, Kump P, Deutsch A, Stary G, Greinix H, Gorkiewicz G, Högenauer C, Neumeister P. Antibiotic use and ileocolonic immune cells in patients receiving fecal microbiota transplantation for refractory intestinal GvHD: a prospective cohort study. Ther Adv Hematol 2022; 12:20406207211058333. [PMID: 34987741 PMCID: PMC8721365 DOI: 10.1177/20406207211058333] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 10/13/2021] [Indexed: 02/02/2023] Open
Abstract
Introduction Treatment-refractory, acute graft-versus-host disease (GvHD) of the lower gastrointestinal tract (GI) after allogeneic hematopoietic stem cell transplantation is life threatening and lacks effective treatment options. While fecal microbiota transplantation (FMT) was shown to ameliorate GI-GvHD, its mechanisms of action and the factors influencing the treatment response in humans remain unclear.The objective of this study is to assess response to FMT treatment, factors influencing response, and to study the mucosal immune cell composition in treatment-refractory GI-GvHD. Methods Consecutive patients with treatment-refractory GI-GvHD were treated with up to six endoscopically applied FMTs. Results We observed the response to FMT in four out of nine patients with severe, treatment refractory GI-GvHD, associated with a significant survival benefit (p = 0.017). The concomitant use of broad-spectrum antibiotics was the main factor associated with FMT failure (p = 0.048). In addition, antibiotic administration hindered the establishment of donor microbiota after FMT. Unlike in non-responders, the microbiota characteristics (e.g. α- and β-diversity, abundance of anaerobe butyrate-producers) in responders were more significantly similar to those of FMT donors. During active refractory GI-GvHD, an increased infiltrate of T cells, mainly Th17 and CD8+ T cells, was observed in the ileocolonic mucosa of patients, while the number of immunomodulatory cells such as regulatory T-cells and type 3 innate lymphoid cells decreased. After FMT, a change in immune cell patterns was induced, depending on the clinical response. Conclusion This study increases the knowledge about the crucial effects of antibiotics in patients given FMT for treatment refractory GI-GvHD and defines the characteristic alterations of ileocolonic mucosal immune cells in this setting.
Collapse
Affiliation(s)
- Walter Spindelboeck
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Bettina Halwachs
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Nadine Bayer
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Bianca Huber-Krassnitzer
- Division of Hematology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Eduard Schulz
- Division of Hematology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Barbara Uhl
- Division of Hematology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Lukas Gaksch
- Division of Hematology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Stefan Hatzl
- Division of Hematology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Victoria Bachmayr
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Lisa Kleissl
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Patrizia Kump
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Alexander Deutsch
- Division of Hematology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Georg Stary
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Hildegard Greinix
- Division of Hematology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | | | - Christoph Högenauer
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria
| | - Peter Neumeister
- Division of Hematology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| |
Collapse
|
9
|
MUW researcher of the month. Wien Klin Wochenschr 2021; 133:1231-1232. [PMID: 34787707 DOI: 10.1007/s00508-021-01983-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
10
|
Brüggen MC, Stingl G. Das subkutane weiße Fettgewebe: die unterste Etage der immunologischen Hautbarriere. J Dtsch Dermatol Ges 2020; 18:1225-1228. [PMID: 33251731 DOI: 10.1111/ddg.14335_g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 09/19/2020] [Indexed: 11/28/2022]
Abstract
Die äußere Begrenzung des Körpers von Säugetieren, die Haut, besteht aus drei Schichten, Epidermis, Dermis und subkutanem weissem Fettgewebe (subcutaneous white adipose tissue, SWAT). Während die Epidermis und Dermis hinsichtlich ihrer Funktion als «Immunbarriere» eingehend charakterisiert sind, ist über das SWAT nur wenig bekannt. SWAT des Menschen setzt sich aus Läppchen zusammen, die vor allem aus Adipozyten bestehen und durch vaskularisierte Bindegewebssepten unterteilt und voneinander getrennt werden. Eine immun-phänotypische Untersuchung von durch Fettabsaugung gewonnenem SWAT zeigte, dass gesundes SWAT keine Entzündungszeichen aufweist, jedoch Immunzellen beherbergt. Im Unterschied zur restlichen Haut handelt es sich dabei hauptsächlich um Makrophagen und, in geringerem Maße, T- Lymphozyten, deren Phänotyp darauf hinweist, dass ihnen primär anti-inflammatorische und regulierende Funktionen zukommen. SWAT besitzt also nicht nur eine mechanische, sondern möglicherweise auch immunologische Schutzfunktion, die darin besteht, überschießende Immun- sowie Entzündungsreaktionen zu verhindern oder zumindest abzumildern.
Collapse
Affiliation(s)
- Marie-Charlotte Brüggen
- Medizinische Fakultät, University of Zurich, Zürich, Schweiz.,Dermatologische Klinik, Universitätsspital Zürich, Zürich, Schweiz.,Christine Kühne-Center for Allergy Research and Education, Davos, Schweiz
| | - Georg Stingl
- Dermatologie, Universitätskliniken der MedUni Wien, Wien, Österreich
| |
Collapse
|
11
|
Strobl J, Pandey RV, Krausgruber T, Bayer N, Kleissl L, Reininger B, Vieyra-Garcia P, Wolf P, Jentus MM, Mitterbauer M, Wohlfarth P, Rabitsch W, Stingl G, Bock C, Stary G. Long-term skin-resident memory T cells proliferate in situ and are involved in human graft-versus-host disease. Sci Transl Med 2020; 12:eabb7028. [PMID: 33208504 PMCID: PMC7615006 DOI: 10.1126/scitranslmed.abb7028] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 06/03/2020] [Accepted: 10/21/2020] [Indexed: 12/11/2022]
Abstract
The skin contains a population of tissue-resident memory T cells (Trm) that is thought to contribute to local tissue homeostasis and protection against environmental injuries. Although information about the regulation, survival program, and pathophysiological roles of Trm has been obtained from murine studies, little is known about the biology of human cutaneous Trm Here, we showed that host-derived CD69+ αβ memory T cell clones in the epidermis and dermis remain stable and functionally competent for at least 10 years in patients with allogeneic hematopoietic stem cell transplantation. Single-cell RNA sequencing revealed low expression of genes encoding tissue egress molecules by long-term persisting Trm in the skin, whereas tissue retention molecules and stem cell markers were displayed by Trm The transcription factor RUNX3 and the surface molecule galectin-3 were preferentially expressed by host T cells at the RNA and protein levels, suggesting two new markers for human skin Trm Furthermore, skin lesions from patients developing graft-versus-host disease (GVHD) showed a large number of cytokine-producing host-derived Trm, suggesting a contribution of these cells to the pathogenesis of GVHD. Together, our studies highlighted the relationship between the local human skin environment and long-term persisting Trm, which differs from murine skin. Our results also indicated that local tissue inflammation occurs through host-derived Trm after allogeneic hematopoietic stem cell transplantation.
Collapse
Affiliation(s)
- Johanna Strobl
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria
| | - Ram Vinay Pandey
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria
| | - Thomas Krausgruber
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Nadine Bayer
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria
| | - Lisa Kleissl
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, 1090 Vienna, Austria
| | - Bärbel Reininger
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria
| | - Pablo Vieyra-Garcia
- Department of Dermatology and Venereology, Medical University of Graz, 8036 Graz, Austria
| | - Peter Wolf
- Department of Dermatology and Venereology, Medical University of Graz, 8036 Graz, Austria
| | - Maaia-Margo Jentus
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria
| | - Margit Mitterbauer
- Department of Internal Medicine I, Hematopoietic Stem Cell Transplantation Unit, Medical University of Vienna, 1090 Vienna, Austria
| | - Philipp Wohlfarth
- Department of Internal Medicine I, Hematopoietic Stem Cell Transplantation Unit, Medical University of Vienna, 1090 Vienna, Austria
| | - Werner Rabitsch
- Department of Internal Medicine I, Hematopoietic Stem Cell Transplantation Unit, Medical University of Vienna, 1090 Vienna, Austria
| | - Georg Stingl
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria
| | - Christoph Bock
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, 1090 Vienna, Austria
- Department of Laboratory Medicine, Medical University of Vienna, 1090 Vienna, Austria
| | - Georg Stary
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria.
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, 1090 Vienna, Austria
| |
Collapse
|
12
|
Brüggen MC, Stingl G. Subcutaneous white adipose tissue: The deepest layer of the cutaneous immune barrier. J Dtsch Dermatol Ges 2020; 18:1225-1227. [PMID: 33197138 DOI: 10.1111/ddg.14335] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 09/19/2020] [Indexed: 11/27/2022]
Abstract
Mammalian skin, the outer covering of the body, is composed of three layers, i.e. the epidermis, the dermis and the subcutaneous white adipose tissue (SWAT). While the contribution of epidermis and dermis to the skin's immune function is well established, the role, if any, of SWAT in this regard has yet to be determined. Human SWAT is made up of lobules which consist mainly of adipocytes and are subdivided and separated from each other by vascularized septae of connective tissue. An immunophenotypic analysis of liposuction-derived SWAT demonstrated that healthy subcutaneous fat tissue, although showing no overt signs of inflammation, harbors an indigenous system of immunocytes. As opposed to epidermis and dermis, they belong mainly to the mononuclear phagocyte lineage and, to a lesser extent, represent T-lymphocytes. Their phenotype indicates that these two major subsets of SWAT leukocytes are primarily concerned with ant-inflammatory and/or regulatory functions. It thus appears that SWAT is more than a cushion protecting against mechanical trauma, and may subserve immunomodulatory functions aimed at preventing or, at least, mitigating exaggerated immune and/or inflammatory reactions..
Collapse
Affiliation(s)
- Marie-Charlotte Brüggen
- Faculty of Medicine, University of Zurich, Zurich, Switzerland.,Department of Dermatology, University Hospital Zurich, Zurich, Switzerland.,Christine Kühne-Center for Allergy Research and Education, Davos, Switzerland
| | - Georg Stingl
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|