1
|
Schwarz E, Jebbawi F, Keller G, Rhiner T, Fricker A, Waldern N, Canonica F, Schoster A, Fettelschoss-Gabriel A. Phenotypic Shift of an Inflammatory Eosinophil Subset into a Steady-State Resident Phenotype after 2 Years of Vaccination against IL-5 in Equine Insect Bite Hypersensitivity. Vet Sci 2024; 11:476. [PMID: 39453068 PMCID: PMC11512288 DOI: 10.3390/vetsci11100476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/25/2024] [Accepted: 10/02/2024] [Indexed: 10/26/2024] Open
Abstract
Eosinophils play a key role in allergic diseases such as insect bite hypersensitivity (IBH). Together with Th2 cells, they shape the course of inflammation in associated type I/IVb allergies. Therefore, a virus-like particle (VLP)-based vaccine targeting equine interleukin-5 (eIL-5), eIL-5-CuMV-TT, was developed to interfere with the IL-5 dependency of eosinophils by inducing the production of anti-self-IL-5 antibodies and alleviating clinical signs in IBH-affected horses. A previous study highlighted the presence of two eosinophil subsets, steady-state resident eosinophils (rEos) and inflammatory eosinophils (iEos), circulating in the blood of healthy and IBH-affected horses, distinguishable by the expression of integrin CD49f. Furthermore, eIL-5-CuMV-TT 1st year vaccination showed a significant decrease of total eosinophils and, in particular, iEos. Nevertheless, the very few remaining eosinophils still shared an iEos phenotype, reflected by bigger size and higher granularity. The aim of this study was to follow up on the phenotype of eosinophils in the 2nd year of vaccination of IBH-affected horses with eIL-5-CuMV-TT. Using flow cytometry analysis of the blood of healthy, IBH, IBH-placebo, and IBH-vaccinated horses, the percentage and count of cells were compared between groups with a focus on pair analysis of eosinophils in 1st and 2nd year vaccinated horses. Our data showed comparably low levels of iEos and a significant increase of rEos in 2nd year compared to 1st year vaccinated horses, suggesting a phenotypic shift toward a resident-like eosinophil population, primarily associated with the phenotype of healthy horses. The reduction of size, granularity, and expression of integrin CD49f in the 2nd year suggests a benefit of long-term treatment with the eIL-5-CuMV-TT vaccine.
Collapse
Affiliation(s)
- Elio Schwarz
- Evax AG, Im Binz 3, 8357 Guntershausen, Switzerland; (E.S.); (F.J.); (G.K.); (T.R.); (A.F.); (N.W.); (F.C.)
| | - Fadi Jebbawi
- Evax AG, Im Binz 3, 8357 Guntershausen, Switzerland; (E.S.); (F.J.); (G.K.); (T.R.); (A.F.); (N.W.); (F.C.)
- Department of Dermatology, University Hospital Zurich, 8091 Schlieren, Switzerland
- Faculty of Medicine, University of Zurich, 8006 Zurich, Switzerland
| | - Giulia Keller
- Evax AG, Im Binz 3, 8357 Guntershausen, Switzerland; (E.S.); (F.J.); (G.K.); (T.R.); (A.F.); (N.W.); (F.C.)
- Department of Dermatology, University Hospital Zurich, 8091 Schlieren, Switzerland
- Faculty of Medicine, University of Zurich, 8006 Zurich, Switzerland
| | - Tanya Rhiner
- Evax AG, Im Binz 3, 8357 Guntershausen, Switzerland; (E.S.); (F.J.); (G.K.); (T.R.); (A.F.); (N.W.); (F.C.)
- Equine Department, Vetsuisse Faculty, University of Zurich, 8006 Zurich, Switzerland;
| | - Anna Fricker
- Evax AG, Im Binz 3, 8357 Guntershausen, Switzerland; (E.S.); (F.J.); (G.K.); (T.R.); (A.F.); (N.W.); (F.C.)
| | - Nina Waldern
- Evax AG, Im Binz 3, 8357 Guntershausen, Switzerland; (E.S.); (F.J.); (G.K.); (T.R.); (A.F.); (N.W.); (F.C.)
| | - Fabia Canonica
- Evax AG, Im Binz 3, 8357 Guntershausen, Switzerland; (E.S.); (F.J.); (G.K.); (T.R.); (A.F.); (N.W.); (F.C.)
- Department of Dermatology, University Hospital Zurich, 8091 Schlieren, Switzerland
- Faculty of Medicine, University of Zurich, 8006 Zurich, Switzerland
| | - Angelika Schoster
- Equine Department, Vetsuisse Faculty, University of Zurich, 8006 Zurich, Switzerland;
| | - Antonia Fettelschoss-Gabriel
- Evax AG, Im Binz 3, 8357 Guntershausen, Switzerland; (E.S.); (F.J.); (G.K.); (T.R.); (A.F.); (N.W.); (F.C.)
- Department of Dermatology, University Hospital Zurich, 8091 Schlieren, Switzerland
- Faculty of Medicine, University of Zurich, 8006 Zurich, Switzerland
| |
Collapse
|
2
|
Biazus Soares G, Hashimoto T, Yosipovitch G. Atopic Dermatitis Itch: Scratching for an Explanation. J Invest Dermatol 2024; 144:978-988. [PMID: 38363270 DOI: 10.1016/j.jid.2023.10.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/20/2023] [Accepted: 10/31/2023] [Indexed: 02/17/2024]
Abstract
Chronic pruritus is a cardinal symptom of atopic dermatitis (AD). The mechanisms underlying atopic itch involve intricate crosstalk among skin, immune components, and neural components. In this review, we explore these mechanisms, focusing on key players and interactions that induce and exacerbate itch. We discuss the similarities and differences between pruritus and pain in patients with AD as well as the relationship between pruritus and factors such as sweat and the skin microbiome. Furthermore, we explore novel targets that could provide significant itch relief in these patients as well as exciting future research directions to better understand atopic pruritus in darker skin types.
Collapse
Affiliation(s)
- Georgia Biazus Soares
- Miami Itch Center, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Takashi Hashimoto
- Department of Dermatology, National Defense Medical College, Tokorozawa, Japan
| | - Gil Yosipovitch
- Miami Itch Center, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA.
| |
Collapse
|
3
|
Radtke D, Voehringer D. Granulocyte development, tissue recruitment, and function during allergic inflammation. Eur J Immunol 2023; 53:e2249977. [PMID: 36929502 DOI: 10.1002/eji.202249977] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/14/2023] [Accepted: 03/14/2023] [Indexed: 03/18/2023]
Abstract
Granulocytes provide a fast innate response to pathogens and allergens. In allergy and anti-helminth immunity, epithelial cells of damaged barriers release alarmins like IL-25, IL-33, and thymic stromal lymphopoietin (TSLP) but also chemokines like CXCL1 or CCL11 to promote cell recruitment and inflammation. In addition, mast cells positioned at barrier tissue sites also quickly release mediators upon specifically sensing antigens through IgE bound to FcεR1 on their surface. Released mediators induce the recruitment of different granulocytes in a timely ordered manner. First, neutrophils extravasate from the blood vasculature to the side of alarmin release and promote a potent inflammatory response. Alarmins and activated mast cells further promote activation of ILC2s and recruitment of basophils and eosinophils, which inhibit neutrophil recruitment and enhance tissue type 2 immunity. In addition to their potent pro-inflammatory effector functions, granulocytes can also contribute to termination and resolution of inflammation. Here, we summarize the development and tissue recruitment of granulocyte subsets, and describe general effector functions and aspects of their increasingly appreciated role in limiting tissue damage. We further discuss targeting approaches for therapeutic interventions in allergic disorders.
Collapse
Affiliation(s)
- Daniel Radtke
- Department of Infection Biology, Universitätsklinikum Erlangen and Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - David Voehringer
- Department of Infection Biology, Universitätsklinikum Erlangen and Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
4
|
Yan T, Xie Y, Liu Y, Shan Y, Wu X, Wang J, Zuo YG, Zhang Z. Dupilumab effectively and rapidly treats bullous pemphigoid by inhibiting the activities of multiple cell types. Front Immunol 2023; 14:1194088. [PMID: 37575240 PMCID: PMC10421662 DOI: 10.3389/fimmu.2023.1194088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 07/13/2023] [Indexed: 08/15/2023] Open
Abstract
Background Bullous pemphigoid (BP) is an autoimmune skin-blistering disease. Systemic corticosteroids remain the first line treatment for moderate-to-severe BP with the potential for severe adverse events. Dupilumab has emerged as an alternative option for BP patients. Objective We evaluated the efficiency and safety of dupilumab on BP treatment and explored a mode of drug action in depth. Methods and results A multicenter retrospective cohort included 20 BP patients who received dupilumab with or without systemic corticosteroid in dupilumab group, and 20 matched BP patients who received corticosteroid alone in conventional group. Serum samples were collected from 20 patients (10 from dupilumab group and 10 from conventional group) at baseline and week 4. Compared to systemic corticosteroid alone, dupilumab with or without systemic corticosteroid was similarly efficacious in clinical remission at week4 (complete remission plus partial remission: 100%) and week24 (complete remission plus partial remission:100%), but allowing significant decreases in the cumulative doses of corticosteroids with reducing the incidence of adverse events. However, dupilumab did not decrease BP180 antibody despite an obvious clinical improvement. Comparative plasma proteomic analysis performed before and after treatment in 3 BP patients from dupilumab group revealed that drug use was associated with 30 differentially expressed proteins, including 26 down-regulated and 4 up-regulated proteins. The former consisted of immune related proteins involved in T/B cell interactions (inducible T-cell co-stimulator ligand, ICOSL) and in the activation of eosinophils (PRG2), mast cells (S100A12), and complement (CR2). TARC and ICOSL levels correlated with BP severity in patients who received either dupilumab or conventional treatment. Conclusion Dupilumab has similar efficacy in treating BP as conventional drugs, by inhibiting the activities of many types of immune cells and complement, and regulating the interactions between T and B cells.
Collapse
Affiliation(s)
- Tianmeng Yan
- Department of Dermatology, The First Affiliated Hospital of Jinan University, Guangzhou, China
- Department of Dermatology, The University of Hong Kong Shenzhen Hospital, Shenzhen, China
| | - Yinghan Xie
- Department of Dermatology, Peking Union Medical College Hospital, Beijing, China
| | - Yuhua Liu
- Department of Dermatology, The University of Hong Kong Shenzhen Hospital, Shenzhen, China
| | - Ying Shan
- Department of Dermatology, Peking Union Medical College Hospital, Beijing, China
| | - Xiaoyan Wu
- Department of Dermatology, The University of Hong Kong Shenzhen Hospital, Shenzhen, China
| | - Jing Wang
- Department of Dermatology, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Ya-Gang Zuo
- Department of Dermatology, Peking Union Medical College Hospital, Beijing, China
| | - Zhenying Zhang
- Department of Dermatology, The First Affiliated Hospital of Jinan University, Guangzhou, China
- Department of Dermatology, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
5
|
Thuma N, Döhler D, Mielenz D, Sticht H, Radtke D, Reimann L, Warscheid B, Voehringer D. A newly identified secreted larval antigen elicits basophil-dependent protective immunity against N. brasiliensis infection. Front Immunol 2022; 13:979491. [PMID: 36091065 PMCID: PMC9453252 DOI: 10.3389/fimmu.2022.979491] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/08/2022] [Indexed: 11/24/2022] Open
Abstract
Hookworms infect more that 400 million people and cause significant socio-economic burden on endemic countries. The lack of efficient vaccines and the emergence of anthelminthic drug resistance are of major concern. Free-living hookworm larvae infect their hosts via the skin and live as adult worms in the small intestine where they feed on host tissue and blood. Excretory/secretory (E/S) products, released by helminths as they migrate through their host, are thought to play a key role in facilitating infection and successful establishment of parasitism. However, E/S products can also elicit protective immune responses that might be harnessed for vaccine development. By performing Western blots with serum of Nippostrongylus brasiliensis (Nb) infected mice as a model for human hookworm infection, we identified a largely overlapping set of IgG1- and IgE-reactive antigens in E/S from infective L3 stage larvae. Mass spectrometry analysis led to the identification of a new protein family with 6 paralogues in the Nb genome which we termed Nb-LSA1 for “Nippostrongylus brasiliensis larval secreted protein 1”. The recombinantly expressed 17 kDa family member Nb-LSA1a was recognized by antibodies in the serum of Nb immune mice. Immunization of mice with Nb-LSA1a in alum elicited a strong IgG1 response but no detectable antigen-specific IgE. Most importantly, immunized mice were largely protected against a challenge Nb infection. This effect was dependent on the presence of basophils and occurred before the parasites reached the intestine. Therefore, basophils appear to play a critical role for rapid control of infection with L3 stage larvae in mice immunized with a single secreted larval protein. A better understanding of basophil-mediated protective immunity and identification of potent larval antigens of human hookworms could help to develop promising vaccination strategies.
Collapse
Affiliation(s)
- Natalie Thuma
- Department of Infection Biology, University Hospital Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Daniela Döhler
- Department of Infection Biology, University Hospital Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Dirk Mielenz
- Division of Molecular Immunology, Department of Internal Medicine 3, University Hospital Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Heinrich Sticht
- Institute of Biochemistry, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Daniel Radtke
- Department of Infection Biology, University Hospital Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Lena Reimann
- Institute of Biology II, Biochemistry and Functional Proteomics, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Bettina Warscheid
- Institute of Biology II, Biochemistry and Functional Proteomics, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Department of Biochemistry, Theodor Boveri-Institute, University of Würzburg, Würzburg, Germany
| | - David Voehringer
- Department of Infection Biology, University Hospital Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- *Correspondence: David Voehringer,
| |
Collapse
|
6
|
Albrecht M, Schaub B, Gilles S, Köhl J, Altrichter S, Voehringer D, Spillner E, Ehlers M, Jönsson F, Loser K, Mayer JU, Rösner LM, Möbs C, Heine G, Pfützner W. Current research and unmet needs in allergy and immunology in Germany: report presented by the DGfI and DGAKI task force Allergy & Immunology. Eur J Immunol 2022; 52:851-855. [PMID: 35654759 DOI: 10.1002/eji.202270065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Melanie Albrecht
- Molecular Allergology/Vice president´s research group, Paul-Ehrlich-Institut, Langen, Germany
| | - Bianca Schaub
- University Children's Hospital, Dr. von Haunersches Kinderspital, Department of Allergy/Immunology, Lindwurmstr. 4, Germany, LMU Klinikum, Munich, 80337, Germany
| | - Stefanie Gilles
- Chair of Environmental Medicine, Faculty of Medicine, University of Augsburg, Neusäßer Str. 47, Augsburg, 86156, Germany
| | - Jörg Köhl
- Institute for Systemic Inflammation Research, University of Lübeck, Ratzeburger Allee 160, Lübeck, 23562, Germany.,Division of Immunobiology, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA.,Airway Research Center North, German Center for Lung Research (DZL), University of Lübeck, Lübeck, Germany
| | - Sabine Altrichter
- Immunological Biotechnology, Department of Biological and Chemical Engineering, Aarhus University, Aarhus, 8000, Denmark.,Institute for Allergology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - David Voehringer
- Department of Infection Biology, University Hospital Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, 91054
| | - Edzard Spillner
- Immunological Biotechnology, Department of Biological and Chemical Engineering, Aarhus University, Aarhus, 8000, Denmark
| | - Marc Ehlers
- Laboratories of Immunology and Antibody Glycan Analysis, Institute of Nutritional Medicine, University of Lübeck and University Medical Center of Schleswig-Holstein, Lübeck, Germany.,Airway Research Center North, German Center for Lung Research (DZL), University of Lübeck, Lübeck, Germany
| | - Friederike Jönsson
- Institut Pasteur, Université de Paris, Unit of Antibodies in Therapy and Pathology, Inserm UMR1222, Paris, F-75015.,CNRS, Paris, F-75016
| | - Karin Loser
- Institute for Immunology, Carl von Ossietzky Universität, Oldenburg, Germany
| | - Johannes U Mayer
- Department of Dermatology and Allergology, Philipps-Universität Marburg, Marburg, Germany
| | - Lennart M Rösner
- Dpt. of Dermatology and Allergy, Div. of Immunodermatology and Allergy Research, Hannover Medical School (MHH), Hannover, Germany
| | - Christian Möbs
- Clinical & Experimental Allergy, Department of Dermatology and Allergology, Allergy Center Hessen, University Hospital Marburg, Philipps-Universität Marburg, Marburg, Germany
| | - Guido Heine
- Division of Allergy, Department of Dermatology and Allergy, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Wolfgang Pfützner
- Clinical & Experimental Allergy, Department of Dermatology and Allergology, Allergy Center Hessen, University Hospital Marburg, Philipps-Universität Marburg, Marburg, Germany
| |
Collapse
|
7
|
Miyake K, Ito J, Karasuyama H. Role of Basophils in a Broad Spectrum of Disorders. Front Immunol 2022; 13:902494. [PMID: 35693800 PMCID: PMC9186123 DOI: 10.3389/fimmu.2022.902494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/04/2022] [Indexed: 11/13/2022] Open
Abstract
Basophils are the rarest granulocytes and have long been overlooked in immunological research due to their rarity and similarities with tissue-resident mast cells. In the last two decades, non-redundant functions of basophils have been clarified or implicated in a broad spectrum of immune responses, particularly by virtue of the development of novel analytical tools for basophils. Basophils infiltrate inflamed tissues of patients with various disorders, even though they circulate in the bloodstream under homeostatic conditions. Depletion of basophils results in the amelioration or exaggeration of inflammation, depending on models of disease, indicating basophils can play either beneficial or deleterious roles in a context-dependent manner. In this review, we summarize the recent findings of basophil pathophysiology under various conditions in mice and humans, including allergy, autoimmunity, tumors, tissue repair, fibrosis, and COVID-19. Further mechanistic studies on basophil biology could lead to the identification of novel biomarkers or therapeutic targets in a broad range of diseases.
Collapse
|
8
|
Wu T, Tang L, Feng Y, Jia Y, Li F. Eosinophils and associated parameters in different types of skin diseases related to elevated eosinophil levels. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:73. [PMID: 35282056 PMCID: PMC8848371 DOI: 10.21037/atm-22-99] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/14/2022] [Indexed: 11/06/2022]
Abstract
Background Eosinophils, basophils, white blood cells (WBC), and immunoglobulin E (IgE) play major roles in the pathogenesis of atopic dermatitis (AD), bullous pemphigoid (BP), drug reaction with eosinophilia and systemic symptoms (DRESS), and hypereosinophilic syndrome (HES). This study aimed to describe these parameters in different skin diseases and provide further information concerning the underlying pathogenesis. Methods A cross-sectional study of blood test results, including WBC count, peripheral eosinophil count, peripheral basophil/WBC percentage, and IgE level, from 115 cases of AD, 75 cases of BP, 55 cases of DRESS, 119 cases of HES, and 621 healthy volunteers was performed in China. Data from before and after treatment and the population distribution of different diseases were compared and described. Results All participants showed increased peripheral eosinophil counts, eosinophil/WBC ratios, IgE levels, and decreased peripheral basophil counts, with variance among the different disease groups. Peripheral eosinophil counts in HES patients and IgE level in AD patients increased the most prominently. No significant correlation existed among eosinophils, basophils, and IgE. An obvious decrease in eosinophil count was demonstrated after treatment in all 4 diseases. Conclusions Eosinophils, basophils, and IgE exert functions in diverse skin diseases, presenting altered peripheral blood test results. In some cases, these changes are demonstrated only in the skin and not in the blood. Compared with the other parameters considered in this study, eosinophils seemed to be a better biomarker for treatment effects, regardless of the disease type.
Collapse
Affiliation(s)
- Tong Wu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Luyan Tang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yang Feng
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yanjing Jia
- Department of Nursing, Huashan Hospital, Fudan University, Shanghai, China
| | - Fei Li
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China.,Department of Dermatology, Huashan Hospital Baoshan, Fudan University, Shanghai, China
| |
Collapse
|
9
|
Mostmans Y, De Smedt K, Richert B, Elieh Ali Komi D, Maurer M, Michel O. Markers for the involvement of endothelial cells and the coagulation system in chronic urticaria: A systematic review. Allergy 2021; 76:2998-3016. [PMID: 33768540 DOI: 10.1111/all.14828] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 03/13/2021] [Indexed: 12/15/2022]
Abstract
Chronic urticaria (CU) is a chronic inflammatory mast cell-driven disorder. Endothelial cells (ECs) contribute importantly to key features of CU. Several markers of EC (dys)function in CU have been reported, but have not yet been systematically reviewed. In this study, we systematically reviewed and categorized all published markers of EC functions in CU through a comprehensive search in Pubmed, The Cochrane Library, Web of Science, and SCOPUS using the following Mesh terms: CU AND pathogenesis AND (vasculopathy OR microangiopathy OR ECs OR marker). In total, 79 articles were selected and the identified biomarkers were categorized according to EC (dys)function in CU. The most frequent and consistently reported upregulated biomarkers in CU skin were adhesion molecules, TF, and P-selectin. The most frequently reported upregulated and reliable biomarkers in sera of CU patients were F1+2 for coagulation cascade involvement, D-dimers for fibrinolysis, and MMP-9 for vascular permeability. Emerging biomarkers described in the selected articles were endostatin, heat shock proteins, cleaved high molecular weight kininogen, and adipokines. This systematic review contributes to the pool of growing evidence for vascular involvement in CU where EC dysfunction is present in different aspects of cell survival, maintenance of vascular structure, and coagulation/fibrinolysis balance.
Collapse
Affiliation(s)
- Yora Mostmans
- Department of Immunology‐Allergology CHU Brugmann Université Libre de Bruxelles Bruxelles Belgium
- Department of Dermatology CHU Brugmann Université Libre de Bruxelles Bruxelles Belgium
| | | | - Bertrand Richert
- Department of Dermatology CHU Brugmann Université Libre de Bruxelles Bruxelles Belgium
| | - Daniel Elieh Ali Komi
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute Urmia University of Medical Sciences Urmia Iran
| | - Marcus Maurer
- Dermatological Allergology, Allergie‐Centrum‐Charité Department of Dermatology and Allergy Charité‐Universitätsmedizin Berlin Corporate member of Freie Universität Berlin Humboldt‐Universität zu Berlin and Berlin Institute of Health Berlin Germany
| | - Olivier Michel
- Department of Immunology‐Allergology CHU Brugmann Université Libre de Bruxelles Bruxelles Belgium
| |
Collapse
|
10
|
The Impact of Monoclonal Antibodies on Airway Smooth Muscle Contractility in Asthma: A Systematic Review. Biomedicines 2021; 9:biomedicines9091281. [PMID: 34572466 PMCID: PMC8468486 DOI: 10.3390/biomedicines9091281] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/15/2021] [Accepted: 09/17/2021] [Indexed: 12/24/2022] Open
Abstract
Airway hyperresponsiveness (AHR) represents a central pathophysiological hallmark of asthma, with airway smooth muscle (ASM) being the effector tissue implicated in the onset of AHR. ASM also exerts pro-inflammatory and immunomodulatory actions, by secreting a wide range of cytokines and chemokines. In asthma pathogenesis, the overexpression of several type 2 inflammatory mediators including IgE, IL-4, IL-5, IL-13, and TSLP has been associated with ASM hyperreactivity, all of which can be targeted by humanized monoclonal antibodies (mAbs). Therefore, the aim of this review was to systematically assess evidence across the literature on mAbs for the treatment of asthma with respect to their impact on the ASM contractile tone. Omalizumab, mepolizumab, benralizumab, dupilumab, and tezepelumab were found to be effective in modulating the contractility of the ASM and preventing the AHR, but no available studies concerning the impact of reslizumab on the ASM were identified from the literature search. Omalizumab, dupilumab, and tezepelumab can directly modulate the ASM in asthma, by specifically blocking the interaction between IgE, IL-4, and TSLP, and their receptors are located on the surface of ASM cells. Conversely, mepolizumab and benralizumab have prevalently indirect impacts against AHR by targeting eosinophils and other immunomodulatory effector cells promoting inflammatory processes. AHR has been suggested as the main treatable trait towards precision medicine in patients suffering from eosinophilic asthma, therefore, well-designed head-to-head trials are needed to compare the efficacy of those mAbs that directly target ASM contractility specifically against the AHR in severe asthma, namely omalizumab, dupilumab, and tezepelumab.
Collapse
|
11
|
Elmehy DA, Abdelhai DI, Elkholy RA, Elkelany MM, Tahoon DM, Elkholy RA, Soliman NA, Saad MAH, El-Ebiary AA, Gamea GA. Immunoprotective inference of experimental chronic Trichinella spiralis infection on house dust mites induced allergic airway remodeling. Acta Trop 2021; 220:105934. [PMID: 33895144 DOI: 10.1016/j.actatropica.2021.105934] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 04/03/2021] [Accepted: 04/13/2021] [Indexed: 12/18/2022]
Abstract
Allergic bronchial asthma is characterized by chronic inflammation of the respiratory airways mediated by T-helper 2 (Th2), Th17 and their cytokines. Although most asthmatic patients suffer from allergic airway remodeling (AAR), aggressive anti-allergic treatment failed to reverse it. The hygiene hypothesis illuminated the counter relationship between allergy and helminthic infections. The immune system is modulated by Trichinella spiralis (T. spiralis) infection to maintain homeostasis. Therefore, this work aimed to investigate the impact of chronic T. spiralis infection on induced AAR in C57BL/6 mice sensitized by house dust mites (HDM) allergens. Forty mice were divided into 3 groups: I (10 healthy mice), IΙ (15 HDM sensitized mice), and ΙΙI (15 T. spiralis chronically infected mice and sensitized with HDM allergens). The assessment aimed to evaluate the effects of regulatory CD4+CD25+FOXP3+ cells (Tregs) and their cytokines comparative to hypersensitivity mediated cytokines. Chronic T. spiralis infection effectively prevented the host's AAR. This result was evidenced by upregulated Tregs in blood by flow cytometric analysis and increased interleukin-10 (IL-10) levels in bronchoalveolar lavage (BAL) by Enzyme linked immunosorbent assay (ELISA) as well as improved lung histopathological changes. Also, serum HDM specific immunoglobulin E (IgE), BAL eosinophils, BAL IL-5 levels, and IL-17 gene expression in lung tissues were significantly reduced in T. spiralis chronically infected mice. In conclusion, the immune response in chronic T. spiralis infection could provide a promising mechanistic tool for protection against AAR, which paves the way for innovative preventive measures of other immunological disorders.
Collapse
Affiliation(s)
- Dalia A Elmehy
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Tanta, Egypt.
| | - Dina I Abdelhai
- Clinical Pathology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Rasha A Elkholy
- Clinical Pathology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Maram M Elkelany
- Histology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Dina M Tahoon
- Pharmacology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Reem A Elkholy
- Pharmacology Department, Faculty of Medicine, Tanta University, Tanta, Egypt; Pharmacology Department, School of Medicine, Badr University, Cairo, Egypt
| | - Nema A Soliman
- Medical Biochemistry Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Marwa A Hasby Saad
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Ahmad A El-Ebiary
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Ghada A Gamea
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| |
Collapse
|
12
|
Miyake K, Shibata S, Yoshikawa S, Karasuyama H. Basophils and their effector molecules in allergic disorders. Allergy 2021; 76:1693-1706. [PMID: 33205439 DOI: 10.1111/all.14662] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/26/2020] [Accepted: 11/12/2020] [Indexed: 12/20/2022]
Abstract
Basophils are the rarest granulocytes which represent <1% of peripheral blood leukocytes. Basophils bear several phenotypic similarities to tissue-resident mast cells and therefore had been erroneously considered as blood-circulating mast cells. However, recent researches have revealed that basophils play nonredundant roles in allergic inflammation, protective immunity against parasitic infections and regulation of innate and acquired immunity. Basophils are recruited to inflamed tissues and activated in an IgE-dependent or IgE-independent manner to release a variety of effector molecules. Such molecules, including IL-4, act on various types of cells and play versatile roles, including the induction and termination of allergic inflammation and the regulation of immune responses. Recent development of novel therapeutic agents has enabled us to gain further insights into basophil biology in human disorders. In this review, we highlight the recent advances in the field of basophil biology with a particular focus on the role of basophils in allergic inflammation. Further studies on basophils and their effector molecules will help us identify novel therapeutic targets for treating allergic disorders.
Collapse
Affiliation(s)
- Kensuke Miyake
- Inflammation, Infection and Immunity Laboratory TMDU Advanced Research Institute Tokyo Medical and Dental University (TMDU) Tokyo Japan
| | - Sho Shibata
- Department of Respiratory Medicine Graduate School of Medical and Dental Sciences Tokyo Medical and Dental University (TMDU) Tokyo Japan
| | - Soichiro Yoshikawa
- Department of Cell Physiology Graduate School of Medicine, Dentistry and Pharmaceutical Sciences Okayama University Okayama Japan
| | - Hajime Karasuyama
- Inflammation, Infection and Immunity Laboratory TMDU Advanced Research Institute Tokyo Medical and Dental University (TMDU) Tokyo Japan
| |
Collapse
|
13
|
Karasuyama H, Shibata S, Yoshikawa S, Miyake K. Basophils, a neglected minority in the immune system, have come into the limelight at last. Int Immunol 2021; 33:809-813. [PMID: 34038539 DOI: 10.1093/intimm/dxab021] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 04/27/2021] [Indexed: 12/27/2022] Open
Abstract
Basophils, the rarest granulocytes, were identified by Paul Ehrlich more than 140 years ago, much earlier than the discovery of T and B cells. Unfortunately, basophils were often mixed up with tissue-resident mast cells because of some phenotypic similarities between them and considered erroneously as minor relatives or blood-circulating precursors of mast cells. Moreover, basophil research was hindered by the rarity of basophils and the paucity of useful analytical tools, and therefore basophils had often been neglected in immunological studies. A series of studies using newly developed tools, including basophil-depleting antibodies and genetically engineered mice deficient only in basophils, have clearly defined previously unrecognized roles of basophils, that are distinct from those played by tissue-resident mast cells. In this mini-review, we highlight recent advances in our understanding of basophil functions, particularly focusing on their roles in the regulation of innate and acquired immunity, allergic reactions, autoimmunity and protective immunity against parasitic infections, mainly based on animal studies. Further studies on human basophils would facilitate the development of new strategies for the treatment of basophil-associated disorders.
Collapse
Affiliation(s)
- Hajime Karasuyama
- Inflammation, Infection and Immunity Laboratory, TMDU Advanced Research Institute, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Sho Shibata
- Department of Respiratory Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Soichiro Yoshikawa
- Department of Cell Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Kensuke Miyake
- Inflammation, Infection and Immunity Laboratory, TMDU Advanced Research Institute, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| |
Collapse
|
14
|
Marone G, Schroeder JT, Mattei F, Loffredo S, Gambardella AR, Poto R, de Paulis A, Schiavoni G, Varricchi G. Is There a Role for Basophils in Cancer? Front Immunol 2020; 11:2103. [PMID: 33013885 PMCID: PMC7505934 DOI: 10.3389/fimmu.2020.02103] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 08/03/2020] [Indexed: 12/11/2022] Open
Abstract
Basophils were identified in human peripheral blood by Paul Ehrlich over 140 years ago. Human basophils represent <1% of peripheral blood leukocytes. During the last decades, basophils have been described also in mice, guinea pigs, rabbits, and monkeys. There are many similarities, but also several immunological differences between human and mouse basophils. There are currently several strains of mice with profound constitutive or inducible basophil deficiency useful to prove that these cells have specific roles in vivo. However, none of these mice are solely and completely devoid of all basophils. Therefore, the relevance of these findings to humans remains to be established. It has been known for some time that basophils have the propensity to migrate into the site of inflammation. Recent observations indicate that tissue resident basophils contribute to lung development and locally promote M2 polarization of macrophages. Moreover, there is increasing evidence that lung-resident basophils exhibit a specific phenotype, different from circulating basophils. Activated human and mouse basophils synthesize restricted and distinct profiles of cytokines. Human basophils produce several canonical (e.g., VEGFs, angiopoietin 1) and non-canonical (i.e., cysteinyl leukotriene C4) angiogenic factors. Activated human and mouse basophils release extracellular DNA traps that may have multiple effects in cancer. Hyperresponsiveness of basophils has been demonstrated in patients with JAK2V617F-positive polycythemia vera. Basophils are present in the immune landscape of human lung adenocarcinoma and pancreatic cancer and can promote inflammation-driven skin tumor growth. The few studies conducted thus far using different models of basophil-deficient mice have provided informative results on the roles of these cells in tumorigenesis. Much more remains to be discovered before we unravel the hitherto mysterious roles of basophils in human and experimental cancers.
Collapse
Affiliation(s)
- Giancarlo Marone
- Section of Hygiene, Department of Public Health, University of Naples Federico II, Naples, Italy.,Azienda Ospedaliera Ospedali dei Colli, Monaldi Hospital Pharmacy, Naples, Italy
| | - John T Schroeder
- Division of Allergy and Clinical Immunology, Department of Medicine, Johns Hopkins Asthma and Allergy Center, Johns Hopkins University, Baltimore, MD, United States
| | - Fabrizio Mattei
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Stefania Loffredo
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,WAO Center of Excellence, Naples, Italy.,Institute of Experimental Endocrinology and Oncology "G. Salvatore", National Research Council (CNR), Naples, Italy
| | | | - Remo Poto
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| | - Amato de Paulis
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,WAO Center of Excellence, Naples, Italy
| | - Giovanna Schiavoni
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Gilda Varricchi
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,WAO Center of Excellence, Naples, Italy.,Institute of Experimental Endocrinology and Oncology "G. Salvatore", National Research Council (CNR), Naples, Italy
| |
Collapse
|
15
|
Pellefigues C. IgE Autoreactivity in Atopic Dermatitis: Paving the Road for Autoimmune Diseases? Antibodies (Basel) 2020; 9:E47. [PMID: 32911788 PMCID: PMC7551081 DOI: 10.3390/antib9030047] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/02/2020] [Accepted: 09/04/2020] [Indexed: 12/20/2022] Open
Abstract
Atopic dermatitis (AD) is a common skin disease affecting 20% of the population beginning usually before one year of age. It is associated with the emergence of allergen-specific IgE, but also with autoreactive IgE, whose function remain elusive. This review discusses current knowledge relevant to the mechanisms, which leads to the secretion of autoreactive IgE and to the potential function of these antibodies in AD. Multiple autoantigens have been described to elicit an IgE-dependent response in this context. This IgE autoimmunity starts in infancy and is associated with disease severity. Furthermore, the overall prevalence of autoreactive IgE to multiple auto-antigens is high in AD patients. IgE-antigen complexes can promote a facilitated antigen presentation, a skewing of the adaptive response toward type 2 immunity, and a chronic skin barrier dysfunction and inflammation in patients or AD models. In AD, skin barrier defects and the atopic immune environment facilitate allergen sensitization and the development of other IgE-mediated allergic diseases in a process called the atopic march. AD is also associated epidemiologically with several autoimmune diseases showing autoreactive IgE secretion. Thus, a potential outcome of IgE autoreactivity in AD could be the development of further autoimmune diseases.
Collapse
Affiliation(s)
- Christophe Pellefigues
- INSERM UMRS1149-CNRS ERL8252, Team «Basophils and Mast cells in Immunopathology», Centre de recherche sur l'inflammation (CRI), Inflamex, DHU Fire, Université de Paris, 75018 Paris, France
| |
Collapse
|
16
|
Abstract
Eosinophilic dermatoses encompass a broad spectrum of diseases of different etiologies hallmarked by eosinophilic infiltration of the skin and/or mucous membranes, with or without associated blood eosinophilia. The wide range of dermatological manifestations of this spectrum, including nodules and plaques, pustules, blisters, ulcers, and urticarial lesions, is reflected in a non-univocal classification system. We identified six groups of eosinophilic dermatoses based on the predominant anatomic level of involvement: (1) epidermal; (2) of the dermal-epidermal junction; (3) dermal; (4) of the hypodermis and muscle fascia; (5) of the pilosebaceous unit; and (6) vascular/perivascular. We review clinicopathologic features and management of diseases belonging to each group, particularly: (1) pemphigus herpetiformis and atopic dermatitis as prototypes of the epidermal group; (2) bullous pemphigoid as prototypic eosinophilic dermatosis of the dermal-epidermal junction; (3) eosinophilic cellulitis (Wells syndrome), hypereosinophilic syndromes, Drug Reaction with Eosinophilia and Systemic Symptoms (DRESS) syndrome, eosinophilic dermatosis of hematologic malignancy and chronic spontaneous urticaria as paradigmatic dermal eosinophilic dermatoses; (4) eosinophilic fasciitis as an eosinophilic dermatosis with predominant involvement of the hypodermis and muscle fascia; (5) eosinophilic pustular folliculitis as a model of the pilosebaceous unit involvement; and (6) granuloma faciale, angiolymphoid hyperplasia with eosinophilia, and eosinophilic granulomatosis with polyangiitis, belonging to the vascular/perivascular group.
Collapse
|
17
|
Altrichter S, Frischbutter S, Fok JS, Kolkhir P, Jiao Q, Skov PS, Metz M, Church MK, Maurer M. The role of eosinophils in chronic spontaneous urticaria. J Allergy Clin Immunol 2020; 145:1510-1516. [DOI: 10.1016/j.jaci.2020.03.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 02/26/2020] [Accepted: 03/02/2020] [Indexed: 12/21/2022]
|