1
|
Laha S, Das S, Banerjee U, Ganguly T, Senapati S, Chatterjee G, Chatterjee R. Genome-wide RNA-seq, DNA methylation and small RNA-seq analysis unraveled complex gene regulatory networks in psoriasis pathogenesis. Gene 2024; 933:148903. [PMID: 39233195 DOI: 10.1016/j.gene.2024.148903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 08/12/2024] [Accepted: 08/28/2024] [Indexed: 09/06/2024]
Abstract
Psoriasis is a complex inflammatory skin disease characterized by reversible albeit relapsing red scaly plaques in the skin of a patient. In addition to the genetic predisposition, involvement of epigenetic and non-coding RNAs have also been liked with the disease. Nevertheless, any comprehensive study involving transcriptomic, small-RNA and DNA methylation at the genomic level from same patients is lacking. To investigate the complex regulation of molecular pathways in psoriasis, we carried out multi-omics integrative analysis of RNA-sequencing, small RNA-sequencing and DNA methylation profiling from the psoriatic and adjacent normal skin tissues. Our multi-omics analysis identified the genes and biological processes regulated either independently or in combination by DNA methylation and microRNAs. We identified miRNAs that specifically regulated keratinocyte hyper-proliferation, and cell cycle progression and checkpoint signaling in psoriasis. On contrary, DNA methylation was found to be more predominant in regulating immune and inflammatory responses, another causative factor in psoriasis pathogenesis. Many characteristic pathways in psoriasis e.g., Th17 cell differentiation and JAK-STAT signaling, were found to be regulated by both miRNAs and DNA methylation. We carried out functional characterization of a downregulated miRNA hsa-let-7c-5p, predicted to target upregulated genes in psoriasis involved in cell cycle processes, Th17 cell differentiation and JAK-STAT signaling pathways. Overexpression of hsa-let-7c-5p in keratinocytes caused the downregulation of its target genes, resulting in reduced cell proliferation and migration rates, demonstrating potential of miRNAs in regulating psoriasis pathogenesis. In conclusion, our findings identified distinct and shared gene-networks regulated by DNA methylation and miRNAs of a complex disease with reversible phenotype.
Collapse
Affiliation(s)
- Sayantan Laha
- Human Genetics Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata, West Bengal 700108, India
| | - Shantanab Das
- Human Genetics Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata, West Bengal 700108, India
| | - Urbee Banerjee
- Human Genetics Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata, West Bengal 700108, India
| | - Torsa Ganguly
- Human Genetics Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata, West Bengal 700108, India
| | - Swapan Senapati
- Consultant Dermatologist, Uttarpara, Hooghly, West Bengal 712258, India
| | - Gobinda Chatterjee
- Department of Dermatology, IPGMER/SSKM Hospital, Kolkata, West Bengal, India
| | - Raghunath Chatterjee
- Human Genetics Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata, West Bengal 700108, India.
| |
Collapse
|
2
|
Niu M, Li M, Fan X, Chen F, Wang M, Liu Q, Liang B, Gan S, Mo Z, Gao J. miR-181a/b-5p negatively regulates keratinocytes proliferation by targeting MELK. Arch Dermatol Res 2024; 316:236. [PMID: 38795158 DOI: 10.1007/s00403-024-03081-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 11/10/2023] [Accepted: 04/26/2024] [Indexed: 05/27/2024]
Abstract
Accumulating evidence indicates that microRNAs (miRNAs) have a vital effect on the pathogenesis of psoriasis. This study is conducted to investigate the potential involvement of miR-181a-5p and miR-181b-5p in the proliferation of HaCaT keratinocytes. Cell viability and proliferation were evaluated respectively in this study using the CCK-8 and the 5-ethynyl-2'-deoxyuridine (EdU) assays. The expression of Maternal Embryonic Leucine Zipper Kinase (MELK) and Keratin 16 (KRT16) mRNA and protein in tissues and cells was assessed using quantitative real-time polymerase chain reaction (qRT-PCR) and Western blotting. The Luciferase reporter system analyzes the connection between miR-181a-5p/miR-181b-5p and MELK. The results showed that miR-181a/b-5p expression was downregulated in the psoriasis lesions and negatively regulated the proliferation of keratinocytes. MELK was directly targeted by miR-181a-5p/miR-181b-5p. In addition, HaCaT keratinocytes proliferation was inhibited by knockdown of MELK while promoted dramatically by MELK overexpression. Notably, miR-181a/b-5p mimics could attenuate the effects of MELK in keratinocytes. In conclusion, our research findings suggested miR-181a-5p and miR-181b-5p negatively regulate keratinocyte proliferation by targeting MELK, providing potential diagnostic biomarkers and therapeutic targets for psoriasis.
Collapse
Affiliation(s)
- Mutian Niu
- School of Intelligent Medicine and Biotechnology, Guilin Medical University, Guilin, 541199, Guangxi, P. R. China
- Key Laboratory of Biochemistry and Molecular Biology, Education Department of Guangxi Zhuang Autonomous Region, Guilin Medical University, Guilin, 541199, Guangxi, P. R. China
| | - Mingzhao Li
- School of Intelligent Medicine and Biotechnology, Guilin Medical University, Guilin, 541199, Guangxi, P. R. China
- Key Laboratory of Biochemistry and Molecular Biology, Education Department of Guangxi Zhuang Autonomous Region, Guilin Medical University, Guilin, 541199, Guangxi, P. R. China
| | - Xiaomei Fan
- School of Intelligent Medicine and Biotechnology, Guilin Medical University, Guilin, 541199, Guangxi, P. R. China
- Key Laboratory of Biochemistry and Molecular Biology, Education Department of Guangxi Zhuang Autonomous Region, Guilin Medical University, Guilin, 541199, Guangxi, P. R. China
| | - Fangru Chen
- Department of Dermatology, Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, P. R. China
| | - Mengjiao Wang
- Department of Dermatology, The Second Affiliated Hospital of Guilin Medical University, Guilin, 541199, Guangxi, P. R. China
| | - Qingbo Liu
- School of Intelligent Medicine and Biotechnology, Guilin Medical University, Guilin, 541199, Guangxi, P. R. China
| | - Bin Liang
- School of Intelligent Medicine and Biotechnology, Guilin Medical University, Guilin, 541199, Guangxi, P. R. China
| | - Shaoqin Gan
- School of Intelligent Medicine and Biotechnology, Guilin Medical University, Guilin, 541199, Guangxi, P. R. China
- Key Laboratory of Biochemistry and Molecular Biology, Education Department of Guangxi Zhuang Autonomous Region, Guilin Medical University, Guilin, 541199, Guangxi, P. R. China
| | - Zhijing Mo
- School of Intelligent Medicine and Biotechnology, Guilin Medical University, Guilin, 541199, Guangxi, P. R. China.
- Key Laboratory of Biochemistry and Molecular Biology, Education Department of Guangxi Zhuang Autonomous Region, Guilin Medical University, Guilin, 541199, Guangxi, P. R. China.
| | - Jintao Gao
- School of Intelligent Medicine and Biotechnology, Guilin Medical University, Guilin, 541199, Guangxi, P. R. China.
- Key Laboratory of Biochemistry and Molecular Biology, Education Department of Guangxi Zhuang Autonomous Region, Guilin Medical University, Guilin, 541199, Guangxi, P. R. China.
| |
Collapse
|
3
|
Park YJ, Kim DC, Lee SJ, Kim HS, Pak JY, Kim J, Cheong JY, Lee ES. Keratinocyte-derived circulating microRNAs in extracellular vesicles: a novel biomarker of psoriasis severity and potential therapeutic target. J Transl Med 2024; 22:235. [PMID: 38433211 PMCID: PMC10910723 DOI: 10.1186/s12967-024-05030-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 02/24/2024] [Indexed: 03/05/2024] Open
Abstract
BACKGROUND Psoriasis is a chronic inflammatory disorder characterized by pathogenic hyperproliferation of keratinocytes and immune dysregulation. Currently, objective evaluation tools reflecting the severity of psoriasis are insufficient. MicroRNAs in extracellular vesicles (EV miRNAs) have been shown to be potential biomarkers for various inflammatory diseases. Our objective was to investigate the possibility of plasma-derived EV miRNAs as a marker for the psoriasis disease severity. METHODS EVs were extracted from the plasma of 63 patients with psoriasis and 12 with Behçet's disease. We performed next-generation sequencing of the plasma-derived EV miRNAs from the psoriasis patients. Real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) was used to validate the level of EV miRNA expression. In situ hybridization was used to discern the anatomical location of miRNAs. qRT-PCR, western blotting, and cell counting kits (CCKs) were used to investigate IGF-1 signaling in cells transfected with miRNA mimics. RESULTS We identified 19 differentially expressed EV miRNAs and validated the top three up-and down-regulated EV miRNAs. Among these, miR-625-3p was significantly increased in patients with severe psoriasis in both plasma and skin and most accurately distinguished moderate-to-severe psoriasis from mild-to-moderate psoriasis. It was produced and secreted by keratinocytes upon stimulation. We also observed a significant intensification of IGF-1 signalling and increased cell numbers in the miR-625-3p mimic transfected cells. CONCLUSIONS We propose keratinocyte-derived EV miR-625-3p as a novel and reliable biomarker for estimating the severity of psoriasis. This biomarker could objectively evaluate the severity of psoriasis in the clinical setting and might serve as a potential therapeutic target. Trial registration None.
Collapse
Affiliation(s)
- Young Joon Park
- Department of Dermatology, Ajou University School of Medicine, Ajou University Hospital, 164, World Cup-Ro, Yeongtong-Gu, Suwon-Si, Gyeonggi-Do, 16499, South Korea
| | - Dong Chan Kim
- Department of Dermatology, Ajou University School of Medicine, Ajou University Hospital, 164, World Cup-Ro, Yeongtong-Gu, Suwon-Si, Gyeonggi-Do, 16499, South Korea
| | - Soo-Jin Lee
- Department of Dermatology, Ajou University School of Medicine, Ajou University Hospital, 164, World Cup-Ro, Yeongtong-Gu, Suwon-Si, Gyeonggi-Do, 16499, South Korea
| | - Han Seul Kim
- Department of Dermatology, Ajou University School of Medicine, Ajou University Hospital, 164, World Cup-Ro, Yeongtong-Gu, Suwon-Si, Gyeonggi-Do, 16499, South Korea
| | - Ji Young Pak
- Department of Dermatology, Ajou University School of Medicine, Ajou University Hospital, 164, World Cup-Ro, Yeongtong-Gu, Suwon-Si, Gyeonggi-Do, 16499, South Korea
| | - Junho Kim
- Department of Biomedical Sciences, Graduate School of Ajou University, Suwon, Korea
| | - Jae Youn Cheong
- Ajou Translational Omics Center, Ajou University Medical Center, Suwon, Korea
| | - Eun-So Lee
- Department of Dermatology, Ajou University School of Medicine, Ajou University Hospital, 164, World Cup-Ro, Yeongtong-Gu, Suwon-Si, Gyeonggi-Do, 16499, South Korea.
| |
Collapse
|
4
|
Ganguly T, Laha S, Senapati S, Chatterjee G, Chatterjee R. Serum miRNA profiling identified miRNAs associated with disease severity in psoriasis. Exp Dermatol 2024; 33:e14973. [PMID: 37926911 DOI: 10.1111/exd.14973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/27/2023] [Accepted: 10/21/2023] [Indexed: 11/07/2023]
Abstract
Psoriasis vulgaris is a chronic, autoimmune skin disease involving a complex interplay of epidermal keratinocytes, dermal fibroblast and infiltrating immune cells. Differential expressions of miRNAs are observed in psoriasis and the deregulated miRNAs are sometimes associated with disease severity. This study aims to identify miRNAs altered in the serum of psoriasis patients that are associated with the Psoriasis Area and Severity Index (PASI). In order to assess miRNA levels in the serum of psoriasis patients, we selected 24 differentially expressed miRNAs in the psoriatic skin are possibly derived from the skin and immune cells, as well as five miRNAs that are enriched in other tissues. We identified 16 miRNAs that exhibited significantly (p < 0.05) altered levels in the serum of psoriasis patients compared to healthy individuals. Among these, 13 miRNAs showed similar expression pattern in the serum of psoriasis patients as also observed in the psoriatic skin tissues. Ten miRNAs showed an accuracy of greater than 75% in classifying the psoriasis patients from healthy individuals. Further analysis of differential miRNA levels between the low PASI group and the high PASI group identified three miRNAs (miR-147b, miR-3614-5p, and miR-125a-5p) with significantly altered levels between the low severity and the high severity psoriasis patients. Our systematic investigation of skin and immune cell-derived miRNAs in the serum of psoriasis patients revealed alteration in miRNA levels to be associated with disease severity, which may help in monitoring the disease progression and therapeutic response.
Collapse
Affiliation(s)
- Torsa Ganguly
- Human Genetics Unit, Indian Statistical Institute, Kolkata, West Bengal, India
| | - Sayantan Laha
- Human Genetics Unit, Indian Statistical Institute, Kolkata, West Bengal, India
| | | | - Gobinda Chatterjee
- Department of Dermatology, IPGMER/SSKM Hospital, Kolkata, West Bengal, India
| | | |
Collapse
|
5
|
Sun C, Mahapatra KD, Elton J, Li C, Fernando W, Lohcharoenkal W, Lapins J, Homey B, Sonkoly E, Pivarcsi A. MicroRNA-23b Plays a Tumor-Suppressive Role in Cutaneous Squamous Cell Carcinoma and Targets Ras-Related Protein RRAS2. J Invest Dermatol 2023; 143:2386-2396. [PMID: 37423552 DOI: 10.1016/j.jid.2023.05.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 05/10/2023] [Accepted: 05/16/2023] [Indexed: 07/11/2023]
Abstract
Cutaneous squamous cell carcinoma (cSCC) is one of the most common types of cancer with metastatic potential. MicroRNAs regulate gene expression at the post-transcriptional level. In this study, we report that miR-23b is downregulated in cSCCs and in actinic keratosis and that its expression is regulated by the MAPK signaling pathway. We show that miR-23b suppresses the expression of a gene network associated with key oncogenic pathways and that the miR-23b-gene signature is enriched in human cSCCs. miR-23b decreased the expression of FGF2 both at mRNA and protein levels and impaired the angiogenesis-inducing ability of cSCC cells. miR23b overexpression suppressed the capacity of cSCC cells to form colonies and spheroids, whereas the CRISPR/Cas9-mediated deletion of MIR23B resulted in increased colony and tumor sphere formation in vitro. In accordance with this, miR-23b-overexpressing cSCC cells formed significantly smaller tumors upon injection into immunocompromised mice with decreased cell proliferation and angiogenesis. Mechanistically, we verify RRAS2 as a direct target of miR-23b in cSCC. We show that RRAS2 is overexpressed in cSCC and that interference with its expression impairs angiogenesis and colony and tumorsphere formation. Taken together, our results suggest that miR-23b acts in a tumor-suppressive manner in cSCC, and its expression is decreased during squamous carcinogenesis.
Collapse
Affiliation(s)
- Chengxi Sun
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden; Department of Clinical Laboratory, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Kunal Das Mahapatra
- Unit of Dermatology and Venerology, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Jonathan Elton
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden; Unit of Dermatology and Venerology, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Chen Li
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Winnie Fernando
- Unit of Dermatology and Venerology, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Warangkana Lohcharoenkal
- Unit of Dermatology and Venerology, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Jan Lapins
- Unit of Dermatology, Karolinska University Hospital, Stockholm, Sweden
| | - Bernhard Homey
- Department of Dermatology, University Hospital Duesseldorf, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Enikö Sonkoly
- Unit of Dermatology and Venerology, Department of Medicine, Karolinska Institutet, Stockholm, Sweden; Unit of Dermatology, Karolinska University Hospital, Stockholm, Sweden; Dermatology and Venereology, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Andor Pivarcsi
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden; Unit of Dermatology and Venerology, Department of Medicine, Karolinska Institutet, Stockholm, Sweden; Dermatology and Venereology, Department of Medical Sciences, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
6
|
Wang Y, Zhang Y, Yang Z, Zhang L, Chen X, Yang G, Zhan J, Li S, He F, Fan G. Mesoporous silica-based nanocarriers with dual response to pH and ROS for enhanced anti-inflammation therapy of 5-demethylnobiletin against psoriasis-like lesions. Int J Pharm 2023; 645:123373. [PMID: 37673281 DOI: 10.1016/j.ijpharm.2023.123373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/11/2023] [Accepted: 09/03/2023] [Indexed: 09/08/2023]
Abstract
Psoriasis is an inflammatory skin disease accompanied with chronic papulosquamous lesions and multiple comorbidities that considerably affect patients' quality of life. In order to develop an enhanced therapeutic strategy for psoriasis, 5-demethylnobiletin (5-DN), a kind of polymethoxyflavones (PMFs) with high anti-inflammatory activity, was delivered in vitro and in vivo by the nanocarrier of mesoporous silica nanoparticles (MSNs) both in the human keratinocytes HaCaT cell line and the mouse model with psoriasis-like lesions. The drug-loaded nanocarrier system (MSNs@5-DN) significantly improved the biocompatibility and bioavailability of 5-DN. Investigations at cell biological, histopathological, and molecular levels revealed the pharmacological mechanism of the drug delivery system, including the inhibition of inflammatory responses by downregulating the proinflammatory cytokine levels of tumor necrosis factor α (TNF-α) and interleukin-6 (IL-6). The upregulation of anti‑inflammatory cytokine of transforming growth factor-β1 (TGF-β1) and microRNA-17-5p, a critical regulator of the PTEN/AKT pathway, was also observed. The psoriasis-like lesions were markedly ameliorated in the mouse models treated with MSNs@5-DN. The designed drug-loading system shows an enhanced therapeutic outcome for psoriasis-like lesion compared with free 5-DN. This study revealed the synergistic effect of functionalized MSNs loaded with PMFs on the clinical treatment of human psoriasis.
Collapse
Affiliation(s)
- Yimin Wang
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang 438000, PR China
| | - Yanan Zhang
- College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang 438000, PR China
| | - Zhihui Yang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, PR China
| | - Lei Zhang
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang 438000, PR China
| | - Xiangping Chen
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang 438000, PR China
| | - Guliang Yang
- National Research Center of Rice Deep Process and Byproducts, Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Central South University of Forestry and Technology, Changsha 410004, Hunan, PR China
| | - Jianfeng Zhan
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang 438000, PR China
| | - Shiming Li
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang 438000, PR China; Department of Food Science, Rutgers University, New Brunswick, NJ 08901, USA
| | - Feng He
- Li Shizhen College of Traditional Chinese Medicine, Huanggang Normal University, Huanggang 438000, PR China.
| | - Guanwei Fan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, PR China.
| |
Collapse
|
7
|
Verma D, Kasic NK, Jeppsson F, Eding CB, Łysiak M, Fekri SZ, Das J, Enerbäck C. Differential DNA methylation of miRNA-encoding genes in psoriatic epidermis highlights the Wnt pathway. J Invest Dermatol 2023:S0022-202X(23)00104-5. [PMID: 36858310 DOI: 10.1016/j.jid.2023.01.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 01/26/2023] [Accepted: 01/31/2023] [Indexed: 03/03/2023]
Affiliation(s)
- Deepti Verma
- Ingrid Asp Psoriasis Research Center, Division of Dermatology Linköping University
| | - Nada-Katarina Kasic
- Ingrid Asp Psoriasis Research Center, Division of Dermatology Linköping University
| | - Freja Jeppsson
- Ingrid Asp Psoriasis Research Center, Division of Dermatology Linköping University
| | - Cecilia Bivik Eding
- Ingrid Asp Psoriasis Research Center, Division of Dermatology Linköping University
| | - Małgorzata Łysiak
- Department of Biomedical and Clinical Sciences, Linköping University
| | - Shora Zamani Fekri
- Ingrid Asp Psoriasis Research Center, Division of Dermatology Linköping University
| | - Jyotirmoy Das
- Bioinformatics, Core Facility (KEF), Cell Biology, Faculty of Medical and Health Sciences, Linköping University
| | - Charlotta Enerbäck
- Ingrid Asp Psoriasis Research Center, Division of Dermatology Linköping University.
| |
Collapse
|
8
|
Tokić S, Jirouš M, Plužarić V, Mihalj M, Šola M, Tolušić Levak M, Glavaš K, Balogh P, Štefanić M. The miR-20a/miR-92b Profile Is Associated with Circulating γδ T-Cell Perturbations in Mild Psoriasis. Int J Mol Sci 2023; 24:4323. [PMID: 36901753 PMCID: PMC10001743 DOI: 10.3390/ijms24054323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/17/2023] [Accepted: 02/19/2023] [Indexed: 02/24/2023] Open
Abstract
Psoriasis vulgaris (PV) is an autoinflammatory dermatosis of unknown etiology. Current evidence suggests a pathogenic role of γδT cells, but the growing complexity of this population has made the offending subset difficult to pinpoint. The work on γδTCRint and γδTCRhi subsets, which express intermediate and high levels of γδTCR at their surface, respectively, is particularly scarce, leaving their inner workings in PV essentially unresolved. We have shown here that the γδTCRint/γδTCRhi cell composition and their transcriptom are related to the differential miRNA expression by performing a targeted miRNA and mRNA quantification (RT-qPCR) in multiplexed, flow-sorted γδ blood T cells from healthy controls (n = 14) and patients with PV (n = 13). A significant loss of miR-20a in bulk γδT cells (~fourfold decrease, PV vs. controls) largely mirrored increasing Vδ1-Vδ2- and γδintVδ1-Vδ2- cell densities in the bloodstream, culminating in a relative excess of γδintVδ1-Vδ2- cells for PV. Transcripts encoding DNA-binding factors (ZBTB16), cytokine receptors (IL18R1), and cell adhesion molecules (SELPLG) were depleted in the process, closely tracking miR-20a availability in bulk γδ T-cell RNA. Compared to controls, PV was also associated with enhanced miR-92b expression (~13-fold) in bulk γδT cells that lacked association with the γδT cell composition. The miR-29a and let-7c expressions remained unaltered in case-control comparisons. Overall, our data expand the current landscape of the peripheral γδT cell composition, underlining changes in its mRNA/miRNA transcriptional circuits that may inform PV pathogenesis.
Collapse
Affiliation(s)
- Stana Tokić
- Department of Laboratory Medicine and Pharmacy, Faculty of Medicine, University of Osijek, 31000 Osijek, Croatia
| | - Maja Jirouš
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine, University of Osijek, 31000 Osijek, Croatia
| | - Vera Plužarić
- Department of Dermatology and Venereology, University Hospital Osijek, 31000 Osijek, Croatia
| | - Martina Mihalj
- Department of Dermatology and Venereology, University Hospital Osijek, 31000 Osijek, Croatia
- Department of Physiology and Immunology, Faculty of Medicine, University of Osijek, 31000 Osijek, Croatia
| | - Marija Šola
- Department of Dermatology and Venereology, University Hospital Osijek, 31000 Osijek, Croatia
| | - Maja Tolušić Levak
- Department of Dermatology and Venereology, University Hospital Osijek, 31000 Osijek, Croatia
- Department of Histology and Embryology, Faculty of Medicine, University of Osijek, 31000 Osijek, Croatia
| | - Kristina Glavaš
- Department of Transfusion Medicine, Faculty of Medicine, University of Osijek, 31000 Osijek, Croatia
| | - Peter Balogh
- Department of Immunology and Biotechnology, Faculty of Medicine, University of Pecs, 7622 Pecs, Hungary
| | - Mario Štefanić
- Department of Nuclear Medicine and Oncology, Faculty of Medicine, University of Osijek, 31000 Osijek, Croatia
| |
Collapse
|
9
|
Johansen C. miR-378a: an amplifier of the interleukin-17A response in keratinocytes. Br J Dermatol 2022; 187:137-138. [PMID: 35484836 PMCID: PMC9545390 DOI: 10.1111/bjd.21592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Linked Article: Xia et al. Br J Dermatol 2022; 187:211–222
Collapse
Affiliation(s)
- Claus Johansen
- Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
10
|
Epigenetic Mechanisms of Epidermal Differentiation. Int J Mol Sci 2022; 23:ijms23094874. [PMID: 35563264 PMCID: PMC9102508 DOI: 10.3390/ijms23094874] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/24/2022] [Accepted: 04/27/2022] [Indexed: 12/12/2022] Open
Abstract
Keratinocyte differentiation is an essential process for epidermal stratification and stratum corneum formation. Keratinocytes proliferate in the basal layer of the epidermis and start their differentiation by changing their functional or phenotypical type; this process is regulated via induction or repression of epidermal differentiation complex (EDC) genes that play a pivotal role in epidermal development. Epidermal development and the keratinocyte differentiation program are orchestrated by several transcription factors, signaling pathways, and epigenetic regulators. The latter exhibits both activating and repressive effects on chromatin in keratinocytes via the ATP-dependent chromatin remodelers, histone demethylases, and genome organizers that promote terminal keratinocyte differentiation, and the DNA methyltransferases, histone deacetylases, and Polycomb components that stimulate proliferation of progenitor cells and inhibit premature activation of terminal differentiation-associated genes. In addition, microRNAs are involved in different processes between proliferation and differentiation during the program of epidermal development. Here, we bring together current knowledge of the mechanisms controlling gene expression during keratinocyte differentiation. An awareness of epigenetic mechanisms and their alterations in health and disease will help to bridge the gap between our current knowledge and potential applications for epigenetic regulators in clinical practice to pave the way for promising target therapies.
Collapse
|
11
|
Xia P, Pasquali L, Gao C, Srivastava A, Khera N, Freisenhausen JC, Luo L, Rosén E, van Lierop A, Homey B, Pivarcsi A, Sonkoly E. miR-378a regulates keratinocyte responsiveness to IL-17A in psoriasis. Br J Dermatol 2022; 187:211-222. [PMID: 35257359 PMCID: PMC9545829 DOI: 10.1111/bjd.21232] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 02/15/2022] [Accepted: 02/28/2022] [Indexed: 12/04/2022]
Abstract
Background Psoriasis is an immune‐mediated inflammatory skin disease, in which an interplay between infiltrating immune cells and keratinocytes sustains chronic skin inflammation. Interleukin (IL)‐17A is a key inflammatory cytokine in psoriasis and its main cellular targets are keratinocytes. Objectives To explore the role of miR‐378a in psoriasis. Methods Keratinocytes obtained from psoriatic skin and healthy epidermis were separated by magnetic sorting, and the expression of miR‐378a was analysed by quantitative polymerase chain reaction. The regulation and function of miR‐378a was studied using primary human keratinocytes. The expression of miR‐378a was modulated by synthetic mimics, and nuclear factor kappa B (NF‐κB) activity and transcriptomic changes were studied. Synthetic miR‐378a was delivered to mouse skin in conjunction with induction of psoriasiform skin inflammation by imiquimod. Results We show that miR‐378a is induced by IL‐17A in keratinocytes through NF‐κB, C/EBP‐β and IκBζ and that it is overexpressed in psoriatic epidermis. In cultured keratinocytes, ectopic expression of miR‐378a resulted in the nuclear translocation of p65 and enhanced NF‐κB‐driven promoter activity even in the absence of inflammatory stimuli. Moreover, miR‐378a potentiated the effect of IL‐17A on NF‐κB nuclear translocation and downstream activation of the NF‐κB pathway. Finally, injection of miR‐378a into mouse skin augmented psoriasis‐like skin inflammation with increased epidermal proliferation and induction of inflammatory mediators. Mechanistically, miR‐378a acts as a suppressor of NFKBIA/IκBζ, an important negative regulator of the NF‐κB pathway in keratinocytes. Conclusions Collectively, our findings identify miR‐378a as an amplifier of IL‐17A‐induced NF‐κB signalling in keratinocytes and suggest that increased miR‐378a levels contribute to the amplification of IL‐17A‐driven skin inflammation in psoriasis.
Collapse
Affiliation(s)
- Ping Xia
- Dermatology and Venereology Division, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine (CMM), Karolinska University Hospital, Stockholm, Sweden.,Dermatology Unit, Wuhan No.1 Hospital, Wuhan, China
| | - Lorenzo Pasquali
- Dermatology and Venereology Division, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine (CMM), Karolinska University Hospital, Stockholm, Sweden
| | - Chenying Gao
- Dermatology and Venereology Division, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine (CMM), Karolinska University Hospital, Stockholm, Sweden.,Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
| | - Ankit Srivastava
- Dermatology and Venereology Division, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine (CMM), Karolinska University Hospital, Stockholm, Sweden.,Department of Microbiology, Tumor and Cell Biology, Science for Life Laboratory, Karolinska Institute, Stockholm, Sweden.,The Program in Epithelial Biology, Stanford University School of Medicine, Stanford, California, USA
| | - Nupur Khera
- Dermatology and Venereology Division, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine (CMM), Karolinska University Hospital, Stockholm, Sweden
| | - Jan Cedric Freisenhausen
- Dermatology and Venereology Division, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine (CMM), Karolinska University Hospital, Stockholm, Sweden
| | - Longlong Luo
- Dermatology and Venereology Division, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine (CMM), Karolinska University Hospital, Stockholm, Sweden
| | - Einar Rosén
- Dermatology and Venereology Division, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Anke van Lierop
- Department of Dermatology, University Hospital Düsseldorf, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Bernhard Homey
- Department of Dermatology, University Hospital Düsseldorf, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Andor Pivarcsi
- Dermatology and Venereology Division, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine (CMM), Karolinska University Hospital, Stockholm, Sweden.,Department of Medical Biochemistry and Microbiology (IMBIM), Uppsala University, Uppsala, Sweden
| | - Enikö Sonkoly
- Dermatology and Venereology Division, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine (CMM), Karolinska University Hospital, Stockholm, Sweden.,Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
12
|
Solvin ÅØ, Chawla K, Olsen LC, Hegre SA, Danielsen K, Jenssen M, Furberg AS, Saunes M, Hveem K, Saetrom P, Løset M. MicroRNA profiling of psoriatic skin identifies 11 miRNAs associated with disease severity. Exp Dermatol 2021; 31:535-547. [PMID: 34748247 DOI: 10.1111/exd.14497] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 11/01/2021] [Accepted: 11/03/2021] [Indexed: 12/18/2022]
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that have emerged as central regulators of gene expression and powerful biomarkers of disease. Much is yet unknown about their role in psoriasis pathology. To globally characterize the miRNAome of psoriatic skin, skin biopsies were collected from psoriatic cases (n = 75) and non-psoriatic controls (n = 46) and RNA sequenced. Count data were meta-analysed with a previously published dataset (cases, n = 24, controls, n = 20), increasing the number of psoriatic cases fourfold from previously published studies. Differential gene expression analyses were performed comparing lesional psoriatic (PP), non-lesional psoriatic (PN) and control (NN) skin. Further, functional enrichment and cell-specific analyses were performed. Across all contrasts, we identified 439 significantly differentially expressed miRNAs (DEMs), of which 85 were novel for psoriasis and 11 were related to disease severity. Meta-analyses identified 20 DEMs between PN and NN, suggesting an inherent change in the constitution of all skin in psoriasis. By integrating the miRNA transcriptome with mRNA target interactions, we identified several functionally enriched terms, including "thyroid hormone signalling," "insulin resistance" and various infectious diseases. Cell-specific expression analyses revealed that the upregulated DEMs were enriched in epithelial and immune cells. This study provides the most comprehensive overview of the miRNAome in psoriatic skin to date and identifies a miRNA signature related to psoriasis severity. Our results may represent molecular links between psoriasis and related comorbidities and have outlined potential directions for future functional studies to identify biomarkers and treatment targets.
Collapse
Affiliation(s)
- Åshild Ø Solvin
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Konika Chawla
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.,Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.,Bioinformatics Core Facility, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Lene C Olsen
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.,Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.,Bioinformatics Core Facility, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Siv Anita Hegre
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.,Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.,Bioinformatics Core Facility, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Kjersti Danielsen
- Department of Dermatology, University Hospital of North Norway, Tromsø, Norway
| | - Marita Jenssen
- Department of Dermatology, University Hospital of North Norway, Tromsø, Norway
| | - Anne-Sofie Furberg
- Faculty of Health Sciences and Social Care, Molde University College, Molde, Norway.,Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway
| | - Marit Saunes
- Department of Dermatology, Clinic of Orthopaedy, Rheumatology and Dermatology, St. Olavs Hospital Trondheim University Hospital, Trondheim, Norway
| | - Kristian Hveem
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.,HUNT Research Centre, Department of Public Health and Nursing, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Pål Saetrom
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.,Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.,Bioinformatics Core Facility, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.,Department of Computer Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Mari Løset
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.,Department of Dermatology, Clinic of Orthopaedy, Rheumatology and Dermatology, St. Olavs Hospital Trondheim University Hospital, Trondheim, Norway
| |
Collapse
|
13
|
Huang C, Zhong W, Ren X, Huang X, Li Z, Chen C, Jiang B, Chen Z, Jian X, Yang L, Liu X, Huang H, Shen C, Chen X, Dou X, Yu B. MiR-193b-3p-ERBB4 axis regulates psoriasis pathogenesis via modulating cellular proliferation and inflammatory-mediator production of keratinocytes. Cell Death Dis 2021; 12:963. [PMID: 34667159 PMCID: PMC8526743 DOI: 10.1038/s41419-021-04230-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 09/02/2021] [Accepted: 09/28/2021] [Indexed: 01/01/2023]
Abstract
Psoriasis is an auto-inflammatory skin disease characterized by abnormal activation of epidermal keratinocytes, aberrant neovascularization, and dysregulation of immune cells. MicroRNAs are small non-coding RNAs that mainly function in the post-transcriptional regulation of gene expression. Recently, accumulating evidence has demonstrated that expression of microRNAs is dysregulated in psoriasis patients and microRNAs play key roles in psoriasis pathogenesis. Downregulation of miR-193b-3p has been identified to be associated with psoriasis development. However, the precise functions and action mechanisms of miR-193b-3p in psoriasis pathogenesis remain unclear. In this study, we confirmed the downregulation of miR-193b-3p in psoriasis patients, psoriasis-like inflammatory cellular models, and an imiquimod (IMQ) -induced mouse model. A negative correlation was found between miR-193b-3p level and patient Psoriasis Area and Severity Index (PASI) score. Furthermore, miR-193b-3p suppressed proliferation, inflammatory-factor secretion, and the STAT3 and NF-κB signaling pathways in keratinocytes. Importantly, intradermal injection of agomiR-193b-3p blocked, whereas antagomiR-193b-3p augmented, the psoriasis-like inflammation in the IMQ-induced mouse model. Bioinformatics analysis and the dual-luciferase reporter assay showed that miR-193b-3p targets ERBB4 3' untranslated region (UTR). In addition, ERBB4 induced proliferation, inflammatory-factor production, and the STAT3 and NF-κB pathways in keratinocytes. Most importantly, forced expression of ERBB4 could attenuate the effects of miR-193b-3p in keratinocytes, indicating that miR-193b-3p inhibits keratinocyte activation by directly targeting ERBB4. In conclusion, our findings demonstrated that the miR-193b-3p-ERBB4 axis underlies the hyperproliferation and aberrant inflammatory-factor secretion of psoriatic keratinocytes, providing a novel, microRNA-related causal mechanism and a potential therapeutic target in psoriasis.
Collapse
Affiliation(s)
- Cong Huang
- Department of Dermatology, Skin Research Institute of Peking University Shenzhen Hospital, Peking University Shenzhen Hospital, Shenzhen Peking University - The Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, China
| | - Weilong Zhong
- Department of Dermatology, Skin Research Institute of Peking University Shenzhen Hospital, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Xuanyao Ren
- Biomedical Research Institute, Shenzhen Peking University - The Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, China
| | - Xia Huang
- Department of Dermatology, Skin Research Institute of Peking University Shenzhen Hospital, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Zizhuo Li
- Department of Dermatology, Skin Research Institute of Peking University Shenzhen Hospital, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Chaofeng Chen
- Department of Dermatology, Skin Research Institute of Peking University Shenzhen Hospital, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Bin Jiang
- Department of Dermatology, Skin Research Institute of Peking University Shenzhen Hospital, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Zhenzhen Chen
- Department of Dermatology, Skin Research Institute of Peking University Shenzhen Hospital, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Xingling Jian
- Department of Dermatology, Skin Research Institute of Peking University Shenzhen Hospital, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Lili Yang
- Department of Dermatology, Skin Research Institute of Peking University Shenzhen Hospital, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Xiaoming Liu
- Department of Dermatology, Skin Research Institute of Peking University Shenzhen Hospital, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Haiyan Huang
- Department of Dermatology, Skin Research Institute of Peking University Shenzhen Hospital, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Changbing Shen
- Department of Dermatology, Skin Research Institute of Peking University Shenzhen Hospital, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Xiaofan Chen
- Biomedical Research Institute, Shenzhen Peking University - The Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, China
| | - Xia Dou
- Department of Dermatology, Skin Research Institute of Peking University Shenzhen Hospital, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Bo Yu
- Department of Dermatology, Skin Research Institute of Peking University Shenzhen Hospital, Peking University Shenzhen Hospital, Shenzhen Peking University - The Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, China.
| |
Collapse
|
14
|
Foessl I, Haudum CW, Vidakovic I, Prassl R, Franz J, Mautner SI, Kainz S, Hofmann E, Obermayer-Pietsch B, Birngruber T, Kotzbeck P. miRNAs as Regulators of the Early Local Response to Burn Injuries. Int J Mol Sci 2021; 22:ijms22179209. [PMID: 34502118 PMCID: PMC8430593 DOI: 10.3390/ijms22179209] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/18/2021] [Accepted: 08/20/2021] [Indexed: 12/20/2022] Open
Abstract
In burn injuries, risk factors and limitations to treatment success are difficult to assess clinically. However, local cellular responses are characterized by specific gene-expression patterns. MicroRNAs (miRNAs) are single-stranded, non-coding RNAs that regulate mRNA expression on a posttranscriptional level. Secreted through exosome-like vesicles (ELV), miRNAs are intracellular signalers and epigenetic regulators. To date, their role in the regulation of the early burn response remains unclear. Here, we identified 43 miRNAs as potential regulators of the early burn response through the bioinformatics analysis of an existing dataset. We used an established human ex vivo skin model of a deep partial-thickness burn to characterize ELVs and miRNAs in dermal interstitial fluid (dISF). Moreover, we identified miR-497-5p as stably downregulated in tissue and dISF in the early phase after a burn injury. MiR-218-5p and miR-212-3p were downregulated in dISF, but not in tissue. Target genes of the miRNAs were mainly upregulated in tissue post-burn. The altered levels of miRNAs in dISF of thermally injured skin mark them as new biomarker candidates for burn injuries. To our knowledge, this is the first study to report miRNAs altered in the dISF in the early phase of deep partial-thickness burns.
Collapse
Affiliation(s)
- Ines Foessl
- Department of Internal Medicine, Division of Endocrinology and Diabetology, Medical University of Graz, 8036 Graz, Austria; (C.W.H.); (J.F.); (S.I.M.); (B.O.-P.); (P.K.)
- Correspondence: ; Tel.: +43-316-385-72936
| | - Christoph Walter Haudum
- Department of Internal Medicine, Division of Endocrinology and Diabetology, Medical University of Graz, 8036 Graz, Austria; (C.W.H.); (J.F.); (S.I.M.); (B.O.-P.); (P.K.)
- CBmed GmbH—Center for Biomarker Research in Medicine, 8010 Graz, Austria
| | - Ivan Vidakovic
- Gottfried Schatz Research Center (for Cell Signaling, Metabolism and Aging), Division of Biophysics, Medical University of Graz, 8010 Graz, Austria; (I.V.); (R.P.)
| | - Ruth Prassl
- Gottfried Schatz Research Center (for Cell Signaling, Metabolism and Aging), Division of Biophysics, Medical University of Graz, 8010 Graz, Austria; (I.V.); (R.P.)
| | - Joakim Franz
- Department of Internal Medicine, Division of Endocrinology and Diabetology, Medical University of Graz, 8036 Graz, Austria; (C.W.H.); (J.F.); (S.I.M.); (B.O.-P.); (P.K.)
- CBmed GmbH—Center for Biomarker Research in Medicine, 8010 Graz, Austria
| | - Selma I. Mautner
- Department of Internal Medicine, Division of Endocrinology and Diabetology, Medical University of Graz, 8036 Graz, Austria; (C.W.H.); (J.F.); (S.I.M.); (B.O.-P.); (P.K.)
- HEALTH—Institute for Biomedicine and Health Sciences, JOANNEUM RESEARCH Forschungsgesellschaft mbH, 8010 Graz, Austria; (S.K.); (T.B.)
| | - Sonja Kainz
- HEALTH—Institute for Biomedicine and Health Sciences, JOANNEUM RESEARCH Forschungsgesellschaft mbH, 8010 Graz, Austria; (S.K.); (T.B.)
| | - Elisabeth Hofmann
- Department of Surgery, Division of Plastic, Aesthetic and Reconstructive Surgery, Medical University of Graz, 8036 Graz, Austria;
| | - Barbara Obermayer-Pietsch
- Department of Internal Medicine, Division of Endocrinology and Diabetology, Medical University of Graz, 8036 Graz, Austria; (C.W.H.); (J.F.); (S.I.M.); (B.O.-P.); (P.K.)
| | - Thomas Birngruber
- HEALTH—Institute for Biomedicine and Health Sciences, JOANNEUM RESEARCH Forschungsgesellschaft mbH, 8010 Graz, Austria; (S.K.); (T.B.)
| | - Petra Kotzbeck
- Department of Internal Medicine, Division of Endocrinology and Diabetology, Medical University of Graz, 8036 Graz, Austria; (C.W.H.); (J.F.); (S.I.M.); (B.O.-P.); (P.K.)
- Department of Surgery, Division of Plastic, Aesthetic and Reconstructive Surgery, Medical University of Graz, 8036 Graz, Austria;
- COREMED—Cooperative Centre for Regenerative Medicine, JOANNEUM RESEARCH Forschungsgesellschaft mbH, 8010 Graz, Austria
| |
Collapse
|
15
|
MicroRNA-378a-3p is overexpressed in psoriasis and modulates cell cycle arrest in keratinocytes via targeting BMP2 gene. Sci Rep 2021; 11:14186. [PMID: 34244572 PMCID: PMC8270917 DOI: 10.1038/s41598-021-93616-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 06/28/2021] [Indexed: 02/08/2023] Open
Abstract
Psoriasis is a chronic autoimmune skin disease driven by dysregulations at the cellular, genomic and genetic levels. MicroRNAs are key mediators of gene expression regulation. However, how microRNAs control the pathogenesis of psoriasis is still unclear. Here, we reported a significant up-regulation of miR-378a-3p (miR-378a) in skin biopsies from active psoriatic lesions while it was down-regulated after treatment with methotrexate or narrow-band ultraviolet B phototherapy. Using the keratinocyte in vitro model, we showed that miR-378a disturbed the cell cycle progression, causing cell cycle arrest at G1 phase. Transcriptomic analysis of keratinocytes with miR-378a overexpression and depletion revealed several important biological mechanisms related to inflammation and tight junction. Target mRNA transcript assessed by luciferase assay identified bone morphogenetic protein 2 as a novel target gene of miR-378a. These findings offer a mechanistic model where miR-378a contributes to the pathogenesis of psoriasis.
Collapse
|
16
|
Sileno S, Beji S, D'Agostino M, Carassiti A, Melillo G, Magenta A. microRNAs involved in psoriasis and cardiovascular diseases. VASCULAR BIOLOGY 2021; 3:R49-R68. [PMID: 34291190 PMCID: PMC8284950 DOI: 10.1530/vb-21-0007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 06/03/2021] [Indexed: 12/14/2022]
Abstract
Psoriasis is a chronic inflammatory disease involving the skin. Both genetic and environmental factors play a pathogenic role in psoriasis and contribute to the severity of the disease. Psoriasis, in fact, has been associated with different comorbidities such as diabetes, metabolic syndrome, gastrointestinal or kidney diseases, cardiovascular disease (CVD), and cerebrovascular diseases (CeVD). Indeed, life expectancy in severe psoriasis is reduced by up to 5 years due to CVD and CeVD. Moreover, patients with severe psoriasis have a higher prevalence of traditional cardiovascular (CV) risk factors, including dyslipidemia, diabetes, smoking, and hypertension. Further, systemic inflammation is associated with oxidative stress increase and induces endothelial damage and atherosclerosis progression. Different miRNA have been already described in psoriasis, both in the skin tissues and in the blood flow, to play a role in the progression of disease. In this review, we will summarize and discuss the most important miRNAs that play a role in psoriasis and are also linked to CVD.
Collapse
Affiliation(s)
- Sara Sileno
- Istituto Dermopatico dell'Immacolata, IDI-IRCCS, Experimental Immunology Laboratory Via Monti di Creta, Rome, Italy
| | - Sara Beji
- Istituto Dermopatico dell'Immacolata, IDI-IRCCS, Experimental Immunology Laboratory Via Monti di Creta, Rome, Italy
| | - Marco D'Agostino
- Istituto Dermopatico dell'Immacolata, IDI-IRCCS, Experimental Immunology Laboratory Via Monti di Creta, Rome, Italy
| | - Alessandra Carassiti
- Istituto Dermopatico dell'Immacolata, IDI-IRCCS, Experimental Immunology Laboratory Via Monti di Creta, Rome, Italy
| | - Guido Melillo
- Unit of Cardiology, IDI-IRCCS, Via Monti di Creta, Rome, Italy
| | - Alessandra Magenta
- Institute of Translational Pharmacology (IFT), National Research Council of Italy (CNR), Via Fosso del Cavaliere, Rome, Italy
| |
Collapse
|
17
|
Qu S, Liu Z, Wang B. EZH2 is involved in psoriasis progression by impairing miR-125a-5p inhibition of SFMBT1 and leading to inhibition of the TGFβ/SMAD pathway. Ther Adv Chronic Dis 2021; 12:2040622320987348. [PMID: 33948156 PMCID: PMC8053822 DOI: 10.1177/2040622320987348] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 12/21/2020] [Indexed: 12/13/2022] Open
Abstract
Aims: In this study, we aimed to decipher the impact of enhancer of zeste homolog 2 (EZH2) in psoriasis as well as the underlying mechanism. Methods: A mouse model of psoriasis was developed by means of imiquimod induction, with the expression of EZH2, microRNA-125a-5p (miR-125a-5p), and SFMBT1 determined. The role of EZH2, miR-125a-5p, and SFMBT1 in malignant phenotypes of HaCaT cells and the development of psoriasis in vivo was subsequently investigated through gain- and loss-of-function experiments. Chromatin immunoprecipitation assay and dual-luciferase reporter assay were conducted to explore the relationship between EZH2 or SFMBT1 and miR-125a-5p. Finally, the effects of EZH2 and miR-125a-5p on the transforming growth factor β (TGFβ)/SMAD pathway were analyzed. Results: Overexpressed SFMBT1 and EZH2 was detected while miR-125a-5p were downregulated in psoriasis tissues and human keratinocyte (HaCaT) cells. EZH2 increased the levels of IL-17A-induced cytokines and promoted the malignant phenotypes of HaCaT cells. Functionally, EZH2 reduced miR-125a-5p expression while miR-125a-5p targeted SFMBT1 to activate the TGFβ/SMAD pathway in vitro. Knockdown of EZH2 or up-regulation of miR-125a-5p inhibited cell proliferation and the levels of IL-17A-induced cytokines, but increased the expression of TGFβ1 and the extent of smad2 and smad3 phosphorylation in HaCaT cells. Notably, EZH2 contributed to the development of psoriasis in vivo by inhibiting the TGFβ/SMAD pathway via impairment of miR-125a-5p-mediated SFMBT1 inhibition. Conclusion: Taken together, the results of the current study highlight the ability of EZH2 to potentially inactivate the TGFβ/SMAD pathway via upregulation of miR-125a-5p-dependent SFMBT1during the progression of psoriatic lesions.
Collapse
Affiliation(s)
- Shengming Qu
- Department of Dermatology, The Second Hospital of Jilin University, Changchun, P.R. China
| | - Zhe Liu
- Department of Dermatology, The Second Hospital of Jilin University, Changchun, P.R. China
| | - Bing Wang
- Department of Dermatology, The Second Hospital of Jilin University, No. 218, Ziqiang Road, Changchun, Jilin Province 130041, P.R. China
| |
Collapse
|
18
|
Nagamma T, Konuri A, Bhat KMR, Maheshwari R, Udupa P, Nayak Y. Modulation of inflammatory markers by petroleum ether fraction of Trigonella foenum-graecum L. seed extract in ovariectomized rats. J Food Biochem 2021; 45:e13690. [PMID: 33749834 DOI: 10.1111/jfbc.13690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 02/06/2021] [Accepted: 02/21/2021] [Indexed: 12/30/2022]
Abstract
This study evaluates the modulation of inflammatory markers by petroleum ether fraction of Trigonella foenum-graecum L. (PE-TFG) seed extract in ovariectomized rats. The HPTLC method was used for standardization and to quantify the diosgenin in PE-TFG. For testing PE-TFG in rats, the total duration of treatment was 12-weeks, and the rats were sacrificed on week 12. The tissue samples such as blood, liver, heart, and aorta were isolated for testing inflammatory markers such as adiponectin, leptin, PPAR-γ, TNF-α, lipid profile, hepatic markers, antioxidants, and oxidative stress markers. The PE-TFG treatment decreased the elevation of total cholesterol, triglyceride, AST, and ALT. Upon PE-TFG treatment, there was a significant increase in adiponectin and PPAR-γ mRNA expression. Leptin and TNF-α were normal after treatment with PE-TFG seed extract. Further, micro-steatosis of hepatocytes marked glomerular hypertrophy in the kidney and increased thickness of tunica intima and media of common carotid artery was reversed after treatment with PE-TFG. PRACTICAL APPLICATIONS: Trigonella foenum-graecum L. is a curative plant used to treat inflammatory conditions like diabetes, obesity, dyslipidemia, arthritis, cancer, and digestive disorders. In our study, PE-TFG supplementation has a protective effect on OVX-induced inflammation, oxidative stress, mRNA expression of adiponectin and PPAR-γ, hepatic steatosis, and decreased thickness of tunica intima and media of common carotid artery.
Collapse
Affiliation(s)
- Takkella Nagamma
- Department of Biochemistry, Melaka Manipal Medical College (Manipal Campus), Manipal Academy of Higher Education, Manipal, India
| | - Anjaneyulu Konuri
- Department of Anatomy, Manipal-TATA Medical College, Jamshedpur, Manipal Academy of Higher Education, Manipal, India
| | - Kumar M R Bhat
- Department of Anatomy, Ras Al Khaimah College of Medical Sciences, RAK Medical & Health Science University, Ras Al Khaimah, UAE
| | - Rajalekshmi Maheshwari
- Department of Pharmacognosy, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Padmanabha Udupa
- Department of Biochemistry, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, India
| | - Yogendra Nayak
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
19
|
Srivastava A, Luo L, Lohcharoenkal W, Meisgen F, Pasquali L, Pivarcsi A, Sonkoly E. Cross-talk between IFN-γ and TWEAK through miR-149 amplifies skin inflammation in psoriasis. J Allergy Clin Immunol 2021; 147:2225-2235. [PMID: 33705829 DOI: 10.1016/j.jaci.2020.12.657] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 11/12/2020] [Accepted: 12/23/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND Psoriasis is a chronic inflammatory skin disease with disturbed interplay between immune cells and keratinocytes. A strong IFN-γ signature is characteristic for psoriasis skin, but the role of IFN-γ has been elusive. MicroRNAs are short RNAs regulating gene expression. OBJECTIVE Our aim was to investigate the role of miR-149 in psoriasis and in the inflammatory responses of keratinocytes. METHODS miR-149 expression was measured by quantitative RT-PCR in keratinocytes isolated from healthy skin and lesional and nonlesional psoriasis skin. Synthetic miR-149 was injected intradermally into the back skin of mice, and imiquimod was applied to induce psoriasis-like skin inflammation, which was then evaluated at the morphologic, histologic, and molecular levels. miR-149 was transiently overexpressed or inhibited in keratinocytes in combination with IFN-γ- and/or TNF-related weak inducer of apoptosis (TWEAK)-treatment. RESULTS Here we report a microRNA-mediated mechanism by which IFN-γ primes keratinocytes to inflammatory stimuli. Treatment with IFN-γ results in a rapid and long-lasting suppression of miR-149 in keratinocytes. Depletion of miR-149 in keratinocytes leads to widespread transcriptomic changes and induction of inflammatory mediators with enrichment of the TWEAK pathway. We show that IFN-γ-mediated suppression of miR-149 leads to amplified inflammatory responses to TWEAK. TWEAK receptor (TWEAKR/Fn14) is identified as a novel direct target of miR-149. The in vivo relevance of this pathway is supported by decreased miR-149 expression in psoriasis keratinocytes, as well as by the protective effect of synthetic miR-149 in the imiquimod-induced mouse model of psoriasis. CONCLUSION Our data define a new mechanism, in which IFN-γ primes keratinocytes for TWEAK-induced inflammatory responses through suppression of miR-149, promoting skin inflammation.
Collapse
Affiliation(s)
- Ankit Srivastava
- Dermatology and Venereology Division, Department of Medicine Solna, Karolinska Institutet, Solna, Sweden
| | - Longlong Luo
- Dermatology and Venereology Division, Department of Medicine Solna, Karolinska Institutet, Solna, Sweden
| | - Warangkana Lohcharoenkal
- Dermatology and Venereology Division, Department of Medicine Solna, Karolinska Institutet, Solna, Sweden
| | - Florian Meisgen
- Dermatology and Venereology Division, Department of Medicine Solna, Karolinska Institutet, Solna, Sweden
| | - Lorenzo Pasquali
- Dermatology and Venereology Division, Department of Medicine Solna, Karolinska Institutet, Solna, Sweden
| | - Andor Pivarcsi
- Dermatology and Venereology Division, Department of Medicine Solna, Karolinska Institutet, Solna, Sweden; Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Enikö Sonkoly
- Dermatology and Venereology Division, Department of Medicine Solna, Karolinska Institutet, Solna, Sweden; Unit of Dermatology, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
20
|
Leśniak W. Epigenetic Regulation of Epidermal Differentiation. EPIGENOMES 2021; 5:1. [PMID: 34968254 PMCID: PMC8594726 DOI: 10.3390/epigenomes5010001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/19/2020] [Accepted: 12/23/2020] [Indexed: 01/22/2023] Open
Abstract
The epidermis is the outer part of the skin that protects the organism from dehydration and shields from external insults. Epidermal cells, called keratinocytes, undergo a series of morphological and metabolic changes that allow them to establish the biochemical and structural elements of an effective epidermal barrier. This process, known as epidermal differentiation, is critical for the maintenance of the epidermis under physiological conditions and also under stress or in various skin pathologies. Epidermal differentiation relies on a highly coordinated program of gene expression. Epigenetic mechanisms, which commonly include DNA methylation, covalent histone modifications, and microRNA (miRNA) activity, modulate various stages of gene expression by altering chromatin accessibility and mRNA stability. Their involvement in epidermal differentiation is a matter of intensive studies, and the results obtained thus far show a complex network of epigenetic factors, acting together with transcriptional regulators, to maintain epidermal homeostasis and counteract adverse effects of environmental stressors.
Collapse
Affiliation(s)
- Wiesława Leśniak
- Laboratory of Calcium Binding Proteins, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| |
Collapse
|
21
|
miR-155 Contributes to Normal Keratinocyte Differentiation and Is Upregulated in the Epidermis of Psoriatic Skin Lesions. Int J Mol Sci 2020; 21:ijms21239288. [PMID: 33291448 PMCID: PMC7731132 DOI: 10.3390/ijms21239288] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/19/2020] [Accepted: 12/03/2020] [Indexed: 12/14/2022] Open
Abstract
The role of microRNAs (miRNAs) during keratinocyte (KC) differentiation and in skin diseases with epidermal phenotypes has attracted strong interest over the past few years. However, combined mRNA and miRNA expression analyses to elucidate the intricate mRNA–miRNA networks of KCs at different stages of differentiation have not been performed yet. In the present study, we investigated the dynamics of miRNA and mRNA expression during KC differentiation in vitro and in normal and psoriatic epidermis. While we identified comparable numbers of up- and downregulated mRNAs (49% and 51%, respectively), miRNAs were predominantly upregulated (76% vs 24%) during KC differentiation. Further bioinformatics analyses suggested an important inhibitory role for miR-155 in KC differentiation, as it was repressed during KC differentiation in normal skin but strongly upregulated in the epidermis of psoriatic skin lesions. Mimicking the inflammatory milieu of psoriatic skin in vitro, we could show that the pro-inflammatory cytokines IL17, IL1β and INFγ synergistically upregulated miR-155 expression in KCs. Forced over-expression of miR-155 in human in vitro skin models specifically reduced the expression of loricrin (LOR) in KCs, indicating that miR-155 interferes with the establishment of a normal epidermal barrier. Together, our data indicate that downregulation of miR-155 during KC differentiation is a crucial step for epidermal barrier formation. Furthermore, its strong upregulation in psoriatic lesions suggests a contributing role of miR-155 in the altered keratinocyte differentiation observed in psoriasis. Therefore, miR-155 represents as a potential target for treating psoriatic skin lesions.
Collapse
|