1
|
Yang Y, Wang J, Wanasathop A, Niu M, Ghosh P, Zidan A, Gu J, Hunt R, Faustino P, Ashraf M, Xu X. Evaluation of in vitro Skin Permeation of Clascoterone From Clascoterone Topical Cream, 1% (w/w). AAPS PharmSciTech 2024; 25:186. [PMID: 39138712 DOI: 10.1208/s12249-024-02887-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 07/07/2024] [Indexed: 08/15/2024] Open
Abstract
Winlevi® (clascoterone) topical cream (1%, w/w) was approved by the U.S. FDA for the treatment of acne vulgaris in patients 12 years of age and older. The active ingredient, clascoterone, is not stable in physiological solutions and can hydrolyze to cortexolone at body temperature. Instability of clascoterone poses a significant challenge in accurately assessing the rate and extent of clascoterone permeation in vitro. Therefore, the purpose of this study was to develop an in vitro skin permeation test (IVPT) method, and a robust analytical method, that can minimize hydrolyzation of clascoterone during the study for quantification of clascoterone. Two IVPT methods, using either vertical diffusion cells or flow-through cells, were developed and compared to evaluate in vitro permeation of clascoterone from Winlevi. A liquid chromatography with tandem mass spectrometry (LC-MS/MS) method was developed to monitor the level of clascoterone and cortexolone in the IVPT samples. The analytical method features a 2-min high-throughput analysis with good linearity, selectivity, and showed a lower limit of quantitation (LLOQ) of 0.5 ng/mL for both clascoterone and cortexolone. The in vitro skin permeation of clascoterone and cortexolone was observed as early as 2 h in both IVPT methods. A substantive amount of clascoterone was found to hydrolyze to cortexolone when using the vertical static diffusion cells with aliquot sampling. Conversely, degradation of clascoterone was significantly minimized when using the flow-through diffusion cells with fractional sampling. The data enhanced our understanding of in vitro permeation of clascoterone following topical application of the Winlevi topical cream, 1% and underscores the importance of IVPT method development and optimization during product development.
Collapse
Affiliation(s)
- Yang Yang
- Office of Pharmaceutical Quality Research, CDER, U.S. FDA, 10903 New Hampshire Avenue, WO64-Rm1032, Silver Spring, MD, 20993, USA.
| | - Jiang Wang
- Office of Pharmaceutical Quality Research, CDER, U.S. FDA, 10903 New Hampshire Avenue, WO64-Rm1032, Silver Spring, MD, 20993, USA
- Division of Bioequivalence III, Office of Bioequivalence, Office of Generic Drugs, CDER, U.S. FDA, Silver Spring, MD, USA
| | - Apipa Wanasathop
- Office of Pharmaceutical Quality Research, CDER, U.S. FDA, 10903 New Hampshire Avenue, WO64-Rm1032, Silver Spring, MD, 20993, USA
| | - Mengmeng Niu
- Division of Therapeutic Performance I, Office of Research and Standards, Office of Generic Drugs, CDER, U.S. FDA, Silver Spring, MD, USA
| | - Priyanka Ghosh
- Division of Therapeutic Performance I, Office of Research and Standards, Office of Generic Drugs, CDER, U.S. FDA, Silver Spring, MD, USA
| | - Ahmed Zidan
- Office of Pharmaceutical Quality Research, CDER, U.S. FDA, 10903 New Hampshire Avenue, WO64-Rm1032, Silver Spring, MD, 20993, USA
| | - Jianghong Gu
- Office of Pharmaceutical Quality Research, CDER, U.S. FDA, 10903 New Hampshire Avenue, WO64-Rm1032, Silver Spring, MD, 20993, USA
| | - Robert Hunt
- Office of Pharmaceutical Quality Research, CDER, U.S. FDA, 10903 New Hampshire Avenue, WO64-Rm1032, Silver Spring, MD, 20993, USA
| | - Patrick Faustino
- Office of Pharmaceutical Quality Research, CDER, U.S. FDA, 10903 New Hampshire Avenue, WO64-Rm1032, Silver Spring, MD, 20993, USA
| | - Muhammad Ashraf
- Office of Pharmaceutical Quality Research, CDER, U.S. FDA, 10903 New Hampshire Avenue, WO64-Rm1032, Silver Spring, MD, 20993, USA
| | - Xiaoming Xu
- Office of Pharmaceutical Quality Research, CDER, U.S. FDA, 10903 New Hampshire Avenue, WO64-Rm1032, Silver Spring, MD, 20993, USA
| |
Collapse
|
2
|
Hamadeh A, Nash JF, Bialk H, Styczynski P, Troutman J, Edginton A. Mechanistic Skin Modeling of Plasma Concentrations of Sunscreen Active Ingredients Following Facial Application. J Pharm Sci 2024; 113:806-825. [PMID: 37769994 DOI: 10.1016/j.xphs.2023.09.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 10/03/2023]
Abstract
Sunscreen products constitute two distinct categories. Recreational sunscreens protect against high-intensity, episodic sun exposure, often applied over the entire body. In contrast, facial sunscreen products are designed for sub-erythemal, low-intensity daily sun exposure. Such different exposures necessitate distinctive product safety assessments. Building on earlier methods for predicting dermal disposition, a mechanistic model was developed to simulate plasma concentrations of seven organic sunscreen active ingredients: avobenzone, ensulizole, homosalate, octinoxate, octisalate, octocrylene, and oxybenzone, following facial application. In vitro permeation testing (IVPT) was performed with two different vehicles using a subset of the UV filters. These IVPT results, in addition to previously published IVPT data and published in vivo Maximal Usage Trial (MUsT) data for the UV filters, were used to train the mechanistic dermal model via a Bayesian Markov chain Monte Carlo (MCMC) method. An external validation of the trained model with real-world in vivo datasets demonstrated that the model's predicted UV filter plasma concentrations align well with experimental measurements and capture the observed inter-individual variability. Predictions of steady-state UV filter plasma concentrations under facial application scenarios at 5% concentration and at the maximal allowable concentrations were then generated by the trained model. Oxybenzone had the greatest predicted plasma concentration following facial application. Homosalate and octisalate predictions had high uncertainty associated with the absence of data. Several application scenarios pertaining to avobenzone, ensulizole, octocrylene and octinoxate were identified in which median plasma concentration levels were at 0.5 ng/ml or below when applied in the recreational or facial product. Model limitations include uncertainty in vehicle/water partitioning, formulation metamorphosis, and UV filter systemic clearance, all of which can be refined with additional data. For UV filters, limiting exposure to facial application reduces human safety concerns based on FDA established thresholds.
Collapse
Affiliation(s)
- Abdullah Hamadeh
- School of Pharmacy, University of Waterloo, Kitchener, ON N2G 1C5, Canada; Systems In Silico Ltd., Waterloo, ON, Canada
| | - J F Nash
- The Procter & Gamble Company, Mason, OH 45040, USA
| | - Heidi Bialk
- The Estée Lauder Companies Inc., Melville, NY 11747, USA
| | | | | | - Andrea Edginton
- School of Pharmacy, University of Waterloo, Kitchener, ON N2G 1C5, Canada; Design2Code Inc., Waterloo, ON, Canada.
| |
Collapse
|
3
|
Sarnthiratch M, Alsheddi L, Nimmansophon P, Wanasathop A, Li SK. Effect of Receptor Solution in Studies of In Vitro Permeation Test (IVPT). J Pharm Sci 2024; 113:407-418. [PMID: 37972891 DOI: 10.1016/j.xphs.2023.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/08/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023]
Abstract
In Vitro Permeation Test (IVPT) is commonly used to evaluate skin penetration of chemicals and performance of dermatological products. For a permeant with low aqueous solubility, an additive that is expected not to alter the skin barrier can be used in the receptor solution to improve permeant solubility. The objective of this study was to (a) evaluate the effects of these additives in IVPT receptor solution on skin permeability of model permeants and skin electrical resistance and (b) determine the solubility of the permeants in these receptor solutions. Bovine serum albumin (BSA), 2-hydroxypropyl-beta-cyclodextrin (HPCD), ethanol, nonionic surfactant Brij-98, and propylene glycol were the additives, and phosphate buffered saline (PBS) was the control. Steady-state skin permeability coefficients and resistances were determined. The receptor solutions examined in this study did not cause a significant increase in skin permeability or decrease in resistance (less than 40 % changes) except 25 % ethanol. The receptor solution containing 25 % ethanol induced an approximately twofold average increase in skin permeability and reduced skin electrical resistance by approximately threefold. The receptor solution of 2.5 % HPCD provided the highest levels of solubility for the model lipophilic permeants, while 0.2 % Brij-98 and 5 % ethanol showed the lowest solubility enhancement from those in PBS.
Collapse
Affiliation(s)
- Minthira Sarnthiratch
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH 45267, United States
| | - Lama Alsheddi
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH 45267, United States
| | - Patcharawan Nimmansophon
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH 45267, United States
| | - Apipa Wanasathop
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH 45267, United States
| | - S Kevin Li
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH 45267, United States.
| |
Collapse
|
4
|
Williams FM. New approaches build upon historical studies in dermal toxicology. Toxicol Res (Camb) 2023; 12:1007-1013. [PMID: 38145096 PMCID: PMC10734571 DOI: 10.1093/toxres/tfad101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 08/31/2023] [Accepted: 10/12/2023] [Indexed: 12/26/2023] Open
Abstract
These are my personal reflections on the history of approaches to understanding dermal toxicology brought together for the Paton Prize Award. This is not a comprehensive account of all publications from in vivo studies in humans to development of in vitro and in silico approaches but highlghts important progress. I will consider what is needed now to influence approaches to understanding dermal exposure with the current development and use of NAMs (new approach methodologies).
Collapse
Affiliation(s)
- Faith M Williams
- Translational and Clinical Research Institute, Medical School, Newcastle University, Newcastle NE24HH, United Kingdom
| |
Collapse
|
5
|
D'Ruiz CD, Plautz JR, Schuetz R, Sanabria C, Hammonds J, Erato C, Klock J, Vollhardt J, Mesaros S. Preliminary clinical pharmacokinetic evaluation of bemotrizinol - A new sunscreen active ingredient being considered for inclusion under FDA's over-the-counter (OTC) sunscreen monograph. Regul Toxicol Pharmacol 2023; 139:105344. [PMID: 36738872 DOI: 10.1016/j.yrtph.2023.105344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 01/20/2023] [Accepted: 01/28/2023] [Indexed: 02/05/2023]
Abstract
Protection against sunburn, skin damage and the carcinogenic effects of ultraviolet light are the primary health benefits associated with UV filters used in topical sunscreen drug products. Countries such as Europe have 30+ UV filters approved for sunscreen products while the US has about 10, greatly reducing the options to provide diverse, effective sun protection products. Bemotrizinol (BEMT) is the first new sunscreen active ingredient to be evaluated for inclusion in the Over-The-Counter (OTC) sunscreen monograph using FDA's new Generally Recognized as Safe and Effective (GRASE) testing guidelines. An in vitro skin permeation test (IVPT) and clinical pilot pharmacokinetic Maximum Usage Trial (MUsT) were completed to support the GRASE determination for 6% BEMT. IVPT results indicated an oil +10% ethanol as the model sunscreen intervention for the pilot MUsT. The open-label trial revealed: BEMT concentrations rarely exceeded FDA's defined threshold (0.5 ng/mL) in plasma; no evidence for BEMT accumulation or steady-state concentrations above threshold; only one moderate and few mild treatment emergent adverse events (TEAEs). Therefore, maximal topical applications of 6% BEMT in a model sunscreen formulation did not contribute to meaningful systemic exposure. These results support the safety of BEMT 6% for human sunscreen use.
Collapse
Affiliation(s)
- Carl D D'Ruiz
- DSM Nutritional Products LLC, 45 Waterview Boulevard, Parsippany, NJ, 07054-1298, USA.
| | - James R Plautz
- CHRYSALIS Services AG, Baeumleingasse 10, 4051, Basel, Switzerland
| | - Rolf Schuetz
- DSM Nutritional Products AG, Wurmisweg 576, 4303, Kaiseraugst, Switzerland
| | - Carlos Sanabria
- Spaulding Clinical Research, 525 S. Silverbrook Drive, West Bend, WI, USA
| | - Jody Hammonds
- Spaulding Clinical Research, 525 S. Silverbrook Drive, West Bend, WI, USA
| | - Cassandra Erato
- Spaulding Clinical Research, 525 S. Silverbrook Drive, West Bend, WI, USA
| | - Jochen Klock
- DSM Nutritional Products AG, Wurmisweg 576, 4303, Kaiseraugst, Switzerland
| | - Juergen Vollhardt
- DSM Nutritional Products AG, Wurmisweg 576, 4303, Kaiseraugst, Switzerland
| | - Szilvia Mesaros
- DSM Nutritional Products AG, Wurmisweg 576, 4303, Kaiseraugst, Switzerland
| |
Collapse
|
6
|
Najjar A, Ellison CA, Gregoire S, Hewitt NJ. Practical application of the interim internal threshold of toxicological concern (iTTC): a case study based on clinical data. Arch Toxicol 2023; 97:155-164. [PMID: 36149470 PMCID: PMC9816204 DOI: 10.1007/s00204-022-03371-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 08/25/2022] [Indexed: 01/19/2023]
Abstract
We present a case study that provides a practical step-by-step example of how the internal Threshold of Toxicological Concern (iTTC) can be used as a tool to refine a TTC-based assessment for dermal exposures to consumer products. The case study uses a theoretical scenario where there are no systemic toxicity data for the case study chemicals (avobenzone, oxybenzone, octocrylene, homosalate, octisalate, octinoxate, and ecamsule). Human dermal pharmacokinetic data following single and repeat dermal exposure to products containing the case study chemicals were obtained from data published by the US FDA. The clinical studies utilized an application procedure that followed maximal use conditions (product applied as 2 mg/cm2 to 75% of the body surface area, 4 times a day). The case study chemicals were first reviewed to determine if they were in the applicability domain of the iTTC, and then, the human plasma concentrations were compared to an iTTC limit of 1 µM. When assessed under maximum usage, the external exposure of all chemicals exceeded the external dose TTC limits. By contrast, the internal exposure to all chemicals, except oxybenzone, was an order of magnitude lower than the 1 µM interim iTTC threshold. This work highlights the importance of understanding internal exposure relative to external dose and how the iTTC can be a valuable tool for assessing low-level internal exposures; additionally, the work demonstrates how to use an iTTC, and highlights considerations and refinement opportunities for the approach.
Collapse
Affiliation(s)
| | - Corie A Ellison
- The Procter & Gamble Company, 8700 Mason Montgomery Road, Cincinnati, OH, 45040, USA.
| | - Sebastien Gregoire
- L'Oreal Research & Innovation, 1, Avenue Eugène Schueller, 93601, Aulnay-sous-Bois, France
| | - Nicola J Hewitt
- Cosmetics Europe, Avenue Herrmann-Debroux 40, 1160, Brussels, Belgium
| |
Collapse
|
7
|
Alalaiwe A, Lin YC, Lin CF, Huang CC, Wang PW, Fang JY. TiO 2-embedded mesoporous silica with lower porosity is beneficial to adsorb the pollutants and retard UV filter absorption: A possible application for outdoor skin protection. Eur J Pharm Sci 2023; 180:106344. [PMID: 36455708 DOI: 10.1016/j.ejps.2022.106344] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/27/2022] [Accepted: 11/28/2022] [Indexed: 12/04/2022]
Abstract
The purpose of the current investigation was to develop multifunctional TiO2-embedded mesoporous silica incorporating avobenzone to protect against environmental stress through pollutant adsorption and UVA protection. We sought to explore the effect of the mesoporous porosity on the capability of contaminant capture and the suppression of avobenzone skin penetration. The porosity of the mesoporous silica was tuned by adjusting the ratio of template triblock copolymers (Pluronic P123 and F68). The Pluronic P123:F68 ratios of 3:1, 2:2, and 1:3 produced mesoporous silica with pore volumes of 0.66 (TiO2/SBA-L), 0.47 (TiO2/SBA-M), and 0.25 (TiO2/SBA-S) cm3/g, respectively. X-ray scattering and electron microscopy confirmed the SBA-15 structure of the as-prepared material had a size of 3-5 μm. The maximum adsorbability of fluoranthene and methylene blue was found to be 43% and 53% for the TiO2/SBA-S under UVA light, respectively. The avobenzone loaded into the mesoporous silica demonstrated the synergistic effect of in vitro UVA protection, reaching an UVA/UVB absorbance ratio of near 1.5 (Boots star rating = 5). The encapsulation of avobenzone into the TiO2/SBA-S lessened cutaneous avobenzone absorption from 0.76 to 0.50 nmol/mg, whereas no reduction was detected for the TiO2/SBA-L. The avobenzone-loaded TiO2/SBA-S hydrogel exhibited a greater improvement in skin barrier recovery and proinflammatory mediator mitigation compared to the SBA-S hydrogel (without TiO2). The cytokines/chemokines in the photoaged skin were reduced by two- to three-fold after TiO2/SBA-S treatment compared to the non-treatment control. Our data suggested that the mesoporous formulation with low porosity and a specific surface area showed effective adsorbability and UVA protection, with reduced UVA filter absorption. The versatility of the developed mesoporous system indicated a promising potential for outdoor skin protection.
Collapse
Affiliation(s)
- Ahmed Alalaiwe
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj, Saudi Arabia
| | - Yu-Chih Lin
- Department of Environmental Engineering and Health, Yuanpei University of Medical Technology, Hsinchu, Taiwan
| | - Chwan-Fwu Lin
- Department of Cosmetic Science, Chang Gung University of Science and Technology, Kweishan, Taoyuan, Taiwan; Research Center for Food and Cosmetic Safety and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Kweishan, Taoyuan, Taiwan; Department of Anesthesiology, Chang Gung Memorial Hospital, Kweishan,, Taoyuan, Taiwan
| | - Chih-Chi Huang
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | - Pei-Wen Wang
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Jia-You Fang
- Research Center for Food and Cosmetic Safety and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Kweishan, Taoyuan, Taiwan; Department of Anesthesiology, Chang Gung Memorial Hospital, Kweishan,, Taoyuan, Taiwan; Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Kweishan, Taoyuan, Taiwan.
| |
Collapse
|
8
|
Krumpholz L, Clarke JF, Polak S, Wiśniowska B. An open-access data set of pig skin anatomy and physiology for modelling purposes. Database (Oxford) 2022; 2022:6754191. [PMID: 36208224 PMCID: PMC9547536 DOI: 10.1093/database/baac091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/13/2022] [Accepted: 09/26/2022] [Indexed: 11/17/2022]
Abstract
The use of animal as opposed to human skin for in vitro permeation testing (IVPT) is an alternative, which can reduce logistical and economic issues. However, this surrogate also has ethical considerations and may not provide an accurate estimation of dermal absorption in humans due to physiological differences. The current project aimed to provide a detailed repository for the anatomical and physiological parameters of porcine skin, with the aim of parametrizing the Multi-phase Multi-layer Mechanistic Dermal Absorption (MPML MechDermA) Model in the Simcyp Simulator. The MPML MechDermA Model is a physiologically based pharmacokinetic (PBPK) model that accounts for the physiology and geometry of skin in a mechanistic mathematical modelling framework. The database provided herein contains information on 14 parameters related to porcine skin anatomy and physiology, namely, skin surface pH, number of stratum corneum (SC) layers, SC thickness, corneocyte thickness, corneocyte dimensions (length and width), volume fraction of water in corneocyte (where SC is divided into four parts with different water contents), intercellular lipid thickness, viable epidermis thickness, dermis thickness, hair follicle and hair shaft diameter, hair follicle depth and hair follicle density. The collected parameters can be used to parameterize PBPK models, which could be further utilized to bridge the gap between animal and human studies with interspecies extrapolation or to predict dermatokinetic properties typically assessed in IVPT experiments. Database URL: https://data.mendeley.com/datasets/mwz9xv4cpd/1.
Collapse
Affiliation(s)
- Laura Krumpholz
- Pharmacoepidemiology and Pharmacoeconomics Unit, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, str., Kraków 30-688, Poland,Doctoral School in Medical and Health Sciences, Jagiellonian University Medical College, Łazarza Str. 16, Kraków 31-530, Poland
| | - James F Clarke
- Pharmacoepidemiology and Pharmacoeconomics Unit, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, str., Kraków 30-688, Poland,Certara UK Ltd. (Simcyp Division), 1 Concourse Way, Sheffield S1 2BJ, UK
| | - Sebastian Polak
- Pharmacoepidemiology and Pharmacoeconomics Unit, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, str., Kraków 30-688, Poland,Certara UK Ltd. (Simcyp Division), 1 Concourse Way, Sheffield S1 2BJ, UK
| | | |
Collapse
|
9
|
Zhang J, Yang Y, Ashraf M, Cruz CN, Lee S, Faustino PJ. An advanced automation platform coupled with mass spectrometry for investigating in vitro human skin permeation of UV filters and excipients in sunscreen products. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2022; 36:e9273. [PMID: 35178789 DOI: 10.1002/rcm.9273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Abstract
RATIONALE Systemic absorption of UV-filtering chemicals following topical application of sunscreens may present a safety concern. The Food and Drug Administration (FDA) had recommended an in vitro skin permeation test (IVPT) to evaluate the potential of this safety risk for the evaluation of sunscreens prior to clinical studies. Therefore, a sensitive and robust bioanalytical method(s) were required for IVPT studies of different topical sunscreen products. METHODS An analytical procedure to quantitate sunscreen UV-filtering components and excipients in IVPT samples including avobenzone, octocrylene, oxybenzone, ecamsule, methylparaben and propylparaben was developed employing a RapidFire 360 robotic sample delivery system coupled with a triple quadrupole mass spectrometer. The analytical procedure was developed and validated according to the requirements of the FDA Bioanalytical Method Validation Guidance for Industry (2018). RESULTS The analytical method provided a turnaround time of 12 seconds per sample and was determined to be accurate, precise, specific, and linear over the corresponding analytical ranges. The validated method was successfully applied for two IVPT studies for evaluating the skin permeation potential of UV-filtering chemicals and assisting with the selection of the sunscreen products for the clinical study conducted by the FDA. CONCLUSIONS This work highlights the first analytical procedure that has applied a non-chromatographic-MS/MS automation platform to an in vitro biopharmaceutics study. The analytical platform simultaneously quantitated four UV filters and two excipients in complex media to evaluate their permeation in IVPT studies. The sample throughput and analytical performance of advanced automation platforms indicate their analytical procedure has the potential to significantly advance the efficiency of IVPT studies to evaluate permeation of a wide variety of UV chemical filters and excipients for topical OTC sunscreen products.
Collapse
Affiliation(s)
- Jinhui Zhang
- Division of Product Quality Research, Food and Drug Administration, Center for Drug Evaluation and Research, Office of Testing and Research, Silver Spring, MD, USA
| | - Yang Yang
- Division of Product Quality Research, Food and Drug Administration, Center for Drug Evaluation and Research, Office of Testing and Research, Silver Spring, MD, USA
| | - Muhammad Ashraf
- Division of Product Quality Research, Food and Drug Administration, Center for Drug Evaluation and Research, Office of Testing and Research, Silver Spring, MD, USA
| | - Celia N Cruz
- Division of Product Quality Research, Food and Drug Administration, Center for Drug Evaluation and Research, Office of Testing and Research, Silver Spring, MD, USA
| | - Sau Lee
- Office of Pharmaceutical Quality, Food and Drug Administration, Center for Drug Evaluation and Research, Silver Spring, MD, USA
| | - Patrick J Faustino
- Division of Product Quality Research, Food and Drug Administration, Center for Drug Evaluation and Research, Office of Testing and Research, Silver Spring, MD, USA
| |
Collapse
|
10
|
Yang Y, Ako-Adounvo AM, Wang J, Coelho SG, Adah SA, Matta MK, Strauss D, Michele TM, Wang J, Faustino PJ, O’Connor T, Ashraf M. In Vitro Testing of Sunscreens for Dermal Absorption: Method Comparison and Rank Order Correlation with In Vivo Absorption. AAPS PharmSciTech 2022; 23:121. [PMID: 35459978 DOI: 10.1208/s12249-022-02275-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/05/2022] [Indexed: 11/30/2022] Open
Abstract
Evaluating the dermal absorption of sunscreen UV filters requires the development of a bio-predictable in vitro permeation test (IVPT). This work describes the comparison of two IVPT methods and rank order correlations of in vitro absorption (skin permeation and retention) with the in vivo absorption (AUC and skin retention) of sunscreens. The IVPT was compared regarding the following elements: (1) application of a single finite dose vs. an infinite dose and (2) the use of heat-separated human epidermis vs. dermatomed skin models. The IVPT was used to evaluate dermal absorption of six UV filters (avobenzone, homosalate, octinoxate, octisalate, octocrylene, and oxybenzone) in commercial sunscreens. Both the in vivo and in vitro permeation studies demonstrated that all UV filters were absorbed following a single-dose application. Sunscreens were rank ordered by the amount of the UV filters absorbed. Data obtained from the IVPT method using a single finite dose and heat-separated human epidermis was found to correlate with the clinical data. Rank orders of the cumulative in vitro skin permeation and the in vivo AUC were found comparable for oxybenzone, homosalate, octisalate, and octinoxate. Rank orders of the in vitro and in vivo skin retention of oxybenzone and octinoxate were also comparable. Additional IVPT parameters may be optimized to enhance the discriminatory power for UV filters with low skin permeation potential (e.g., avobenzone and octocrylene).
Collapse
|
11
|
DeLeo PC, Tu V, Fuls J. Systemic absorption of benzalkonium chloride after maximal use of a consumer antiseptic wash product. Regul Toxicol Pharmacol 2021; 124:104978. [PMID: 34174381 DOI: 10.1016/j.yrtph.2021.104978] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 06/12/2021] [Accepted: 06/21/2021] [Indexed: 11/16/2022]
Abstract
An in vivo pharmacokinetic study was conducted using consumer antiseptic wash containing 0.13% benzalkonium chloride (BAC) to assess the effect of dermal absorption on long-term systemic exposure to BAC. The objective of the study was to determine blood levels of BAC under maximal use conditions. Subjects were enlisted to wash their hands 60 s with soap containing 0.13% BAC 30 times per day over an 8-9 h time period for 5 consecutive days. The test product with the highest absorption potential was selected based on market share and results from in vitro permeation testing. Blood plasma was collected from subjects on 32 occasions over the 6-day study period. Plasma samples were analyzed for the C12 and C14 homologs of BAC using LC-MS/MS with a lower limit of quantitation (LLOQ) of 106.9 and 32.6 ng/L, respectively. For the 32 subjects, C12 homolog was detected above the LLOQ in only four of 1,024 plasma samples at 117.8-191.7 ng/L, and C14 homolog was detected in only one sample at 59.5 ng/L. Consequently, systemic exposure to BAC in antimicrobial soap is very low and below the level of concern identified by the U.S. Food and Drug Administration (500 ng/L) even under maximal use conditions.
Collapse
Affiliation(s)
- Paul C DeLeo
- Integral Consulting Inc., 200 Harry S. Truman Parkway, Suite 330, Annapolis, MD, 21401, USA.
| | - Victoria Tu
- Lonza LLC, 412 Mount Kemble Avenue, Morristown, NJ, 07960, USA.
| | - Janice Fuls
- Henkel Corporation, Inc., 200 Elm Street, Stamford, CT, 06902, USA.
| |
Collapse
|
12
|
Xu C, Zeng X, Yang Z, Ji H. Sunscreen Enhancement of Octyl Methoxycinnamate Microcapsules by Using Two Biopolymers as Wall Materials. Polymers (Basel) 2021; 13:polym13060866. [PMID: 33799764 PMCID: PMC8001204 DOI: 10.3390/polym13060866] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/06/2021] [Accepted: 03/08/2021] [Indexed: 12/22/2022] Open
Abstract
Octyl methoxycinnamate (OMC) is widely used as a chemical sunscreen in sunscreen cosmetics. However, its direct contact with the skin would bring certain risks, such as skin photosensitive reaction. How to improve the effect of skin photodamage protection has become a current research hotspot. Encapsulating ultraviolet (UV) filters into microcapsules is an interesting method to increase the photostability of filters. In this study, sodium caseinate (SC) and arabic gum (GA) are chosen as wall materials to prepare synergistic sunscreen microcapsules by complex coacervation technology. A series of experiments are conducted to investigate the effects of pH, wall material concentration, and wall/core ratio on the formation of OMC microcapsules. The morphology, composition, and stability of OMC microcapsules are characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA). The OMC microcapsule is uniform in size distribution, smooth in surface morphology, and has good thermal stability. The results show that the ultraviolet absorption of the OMC microcapsules is better than that of the uncoated OMC for the ultraviolet-B (280–320 nm). Moreover, the OMC microcapsule released 40% in 12 h, while OMC released 65%, but the sun protection factor (SPF) of the OMC microcapsule sunscreen is 18.75% higher than that of OMC. This phenomenon may be attributed to the hydrophobic interaction between SC and OMC and the electrostatic interaction between SC and GA.
Collapse
Affiliation(s)
- Chuntao Xu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China;
- School of Information Engineering, Zhongshan Polytechnic, Zhongshan 528400, China
| | - Xuemin Zeng
- Fine Chemical Industry Research Institute, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China;
| | - Zujin Yang
- Fine Chemical Industry Research Institute, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China;
- Correspondence: (Z.Y.); (H.J.)
| | - Hongbing Ji
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China;
- Fine Chemical Industry Research Institute, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China;
- School of Chemical Engineering and Technology, Sun Yat-Sen University, Zhuhai 519082, China
- School of Chemical Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
- Correspondence: (Z.Y.); (H.J.)
| |
Collapse
|