1
|
Luo X, Ni X, Zhi J, Jiang X, Bai R. Small molecule agents against alopecia: Potential targets and related pathways. Eur J Med Chem 2024; 276:116666. [PMID: 39002436 DOI: 10.1016/j.ejmech.2024.116666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/28/2024] [Accepted: 07/08/2024] [Indexed: 07/15/2024]
Abstract
Alopecia has emerged as a global concern, extending beyond the middle-aged and elderly population and increasingly affecting younger individuals. Despite its growing prevalence, the treatment options and effective drugs for alopecia remain limited due to the incomplete understanding of its underlying mechanisms. Therefore, it is urgent to explore the pathogenesis of alopecia and discover novel and safer therapeutic agents. This review provided an overview of the prevailing clinical disorders of alopecia, and the key pathways and targets involved in hair growth process. Additionally, it discusses FDA-approved drugs and clinical candidates for the treatment of alopecia, and explores small molecule compounds with anti-alopecia potential in the drug discovery phase. These endeavors are expected to provide researchers with valuable scientific insights and practical information for anti-alopecia drug discovery.
Collapse
Affiliation(s)
- Xinyu Luo
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Xinhua Ni
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Jia Zhi
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Xiaoying Jiang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Renren Bai
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China.
| |
Collapse
|
2
|
Perez AM, Haberland NI, Miteva M, Wikramanayake TC. Chemotherapy-Induced Alopecia by Docetaxel: Prevalence, Treatment and Prevention. Curr Oncol 2024; 31:5709-5721. [PMID: 39330051 PMCID: PMC11431623 DOI: 10.3390/curroncol31090423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 09/28/2024] Open
Abstract
Docetaxel is a commonly used taxane chemotherapeutic agent in the treatment of a variety of cancers, including breast cancer, ovarian cancer, prostate cancer, non-small cell lung cancer, gastric cancer, and head and neck cancer. Docetaxel exerts its anti-cancer effects through inhibition of the cell cycle and induction of proapoptotic activity. However, docetaxel also impacts rapidly proliferating normal cells in the scalp hair follicles (HFs), rendering the HFs vulnerable to docetaxel-induced cell death and leading to chemotherapy-induced alopecia (CIA). In severe cases, docetaxel causes persistent or permanent CIA (pCIA) when hair does not grow back completely six months after chemotherapy cessation. Hair loss has severe negative impacts on patients' quality of life and may even compromise their compliance with treatment. This review discusses the notable prevalence of docetaxel-induced CIA and pCIA, as well as their prevention and management. At this moment, scalp cooling is the standard of care to prevent CIA. Treatment options to promote hair regrowth include but are not limited to minoxidil, photobiomodulation (PBMT), and platelet-rich plasma (PRP). In addition, a handful of current clinical trials are exploring additional agents to treat or prevent CIA. Research models of CIA, particularly ex vivo human scalp HF organ culture and in vivo mouse models with human scalp xenografts, will help expedite the translation of bench findings of CIA prevention and/or amelioration to the clinic.
Collapse
Affiliation(s)
- Aleymi M Perez
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Nicole I Haberland
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Mariya Miteva
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Tongyu C Wikramanayake
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Cancer Control Program, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| |
Collapse
|
3
|
Xiang H, Zhang Y, Li J, Li L, Li Z, Ni R, Peng D, Jiang L, Chen J, Liu Y. Terminalia bellirica (Gaertn.) Roxb. Extracts reshape the perifollicular microenvironment and regulate the MAPK pathway for androgenetic alopecia treatment. JOURNAL OF ETHNOPHARMACOLOGY 2024; 337:118778. [PMID: 39236776 DOI: 10.1016/j.jep.2024.118778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/09/2024] [Accepted: 08/31/2024] [Indexed: 09/07/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Terminalia bellirica (Gaertn.) Roxb. (TBR), a popular herbal remedy in India and Southeast Asia, has been demonstrated to possess multiple pharmacological activities. However, systematic studies on the medicinal effects and mechanism of TBR for the androgenetic alopecia (AGA) treatment are deficient. MATERIALS AND METHODS Human Umbilical Vein Endothelial Cells (HUVECs) and testosterone-induced AGA mice were used to evaluate the hair regrowth activity of TBR extracts. Chemical constituents and potential active components of TBR extracts were analyed by UPLC-Q-TOF-MS in vitro/vivo. The hair regrowth mechanisms of TBR were elucidated through network pharmacology and experimental validation. RESULTS Totally 28 chemical constituents in TBR were identified, of which 15 were predicted as potential active components for AGA therapy. TBR could significantly scavenge ROS, promote VEGF level/cell migration of HUVECs, and inhibiting type II 5α-reductase activity (the inhibit rate: 82.35 ± 1.02 %). Pharmacodynamic evaluation suggested that TBR effectively led to hair regrowth in C57BL6 mice compared to minoxidil. TBR promoted the hair follicle (HF) transition from the telogen phase to anagen phase by decreasing MDA levels, increasing VEFG expression and up-regulating phosphorylated P38/ERK protein levels in the MAPK signalling pathway. CONCLUSIONS TBR reversed AGA via inhibiting SRD5A2 activity and stimulating the MAPK pathway. Meantime, TBR could remodel the follicle microenvironment by reducing oxidative stress and increasing angiogenesis.
Collapse
Affiliation(s)
- Hong Xiang
- Department of Pharmacy, Daping Hospital, Army Medical University, Chongqing, China
| | - Yu Zhang
- Department of Pharmacy, Daping Hospital, Army Medical University, Chongqing, China; School of Medicine, Tibet University, Lhasa, China
| | - Jiaming Li
- Department of Pharmacy, Daping Hospital, Army Medical University, Chongqing, China
| | - Li Li
- Department of Pharmacy, Daping Hospital, Army Medical University, Chongqing, China
| | - Ziwei Li
- Department of Pharmacy, Daping Hospital, Army Medical University, Chongqing, China
| | - Rui Ni
- Department of Pharmacy, Daping Hospital, Army Medical University, Chongqing, China
| | - Dan Peng
- Department of Pharmacy, Daping Hospital, Army Medical University, Chongqing, China
| | - Lining Jiang
- Department of Pharmacy, Daping Hospital, Army Medical University, Chongqing, China
| | - Jianhong Chen
- Department of Pharmacy, Daping Hospital, Army Medical University, Chongqing, China
| | - Yao Liu
- Department of Pharmacy, Daping Hospital, Army Medical University, Chongqing, China.
| |
Collapse
|
4
|
Hassan YF, Shabaan DA. Effect of N-acetylcysteine on hair follicle changes in mouse model of cyclophosphamide-induced alopecia: histological and biochemical study. Histochem Cell Biol 2024; 161:477-491. [PMID: 38641701 PMCID: PMC11162382 DOI: 10.1007/s00418-024-02282-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/20/2024] [Indexed: 04/21/2024]
Abstract
Chemotherapy-induced alopecia (CIA) represents one of the most severe side effects of chemotherapy, which forces some patients to reject cancer treatment. The exact pathophysiological mechanisms of CIA are not clearly understood, which makes it difficult to discover efficient preventive or therapeutic procedures for this adverse effect. N-acetylcysteine (NAC) has a strong antioxidant activity as it stimulates glutathione synthesis and acts as an oxygen radical scavenger. The current study tried to investigate the efficacy of NAC in preserving biochemical parameters and hair follicle structure against cyclophosphamide (CYP) administration. In total, 40 adult female C57BL/6 mice were induced to enter anagen by depilation (day 0) and divided into four groups: group I (control), group II (CYP) received a single dose of CYP [150 mg/kg body weight (B.W.)/intraperitoneal injection (IP)] at day 9, group III (CYP & NAC) received a single dose of CYP at day 9 as well as NAC (500 mg/kg B.W./day/IP) from day 6-16, and group IV (NAC) received NAC from day 6-16. CYP administration in group II induced an increase in malondialdehyde (MDA), decrease in superoxide dismutase (SOD), histological hair follicle dystrophy, disruption of follicular melanogenesis, overexpression of p53, and loss of ki67 immunoreactivity. NAC coadministration in group III reversed CYP-induced alterations in the biochemical parameters and preserved hair follicle structure, typical follicular melanin distribution as well as normal pattern of p53 and ki67 expression. These findings indicated that NAC could be used as an efficient and safe therapeutic option for hair loss induced by chemotherapy.
Collapse
Affiliation(s)
- Yomna F Hassan
- Medical Histology and Cell Biology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt.
| | - Dalia A Shabaan
- Medical Histology and Cell Biology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
5
|
He Z, Zhang Y, Liu Z, Guo T, Ai X, He Y, Hou X, Feng N. Synergistic treatment of androgenetic alopecia with follicular co-delivery of minoxidil and cedrol in metal-organic frameworks stabilized by covalently cross-linked cyclodextrins. Int J Pharm 2024; 654:123948. [PMID: 38417724 DOI: 10.1016/j.ijpharm.2024.123948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/03/2024] [Accepted: 02/25/2024] [Indexed: 03/01/2024]
Abstract
Androgenetic alopecia seriously affects the physical and mental health of patients. The main clinical therapeutic agent, minoxidil tincture, is challenged by solvent irritation and dose-dependent side effects. Our recent work has identified a biosafety natural product, cedrol, that is synergistic in combination with minoxidil, thereby improving medication safety by substantially reducing the clinical dose of minoxidil. In addition, ccross-linked CD-MOF were designed as carriers for hair follicle delivery, and γ-CD in the carriers was cross-linked by diphenyl carbonate with covalent bonds to protect the CD-MOF from rapid disintegration in an aqueous environment. This improved nanocarrier has a drug loading of 25%, whereas nanocarriers increased drug delivery to the hair follicles through ratchet effect, and increased human dermal papilla cells uptake of drugs via endocytosis pathways mainly mediated by lattice proteins, energy-dependent active transport, and lipid raft-dependent, thus improved cell viability, proliferation, and migration, followed by significantly enhancing the anti-androgenetic alopecia effect, with cedrol focusing on inhibiting 5α-reductase and activating Shh/Gli pathway, and minoxidil, which up-regulated VEGF, down-regulated TGF-β, and activated ERK/AKT pathway. This drug combination provides a new therapeutic strategy for androgenetic alopecia, while the newly developed cross-linked CD-MOF has been shown to serve as a promising follicular delivery vehicle.
Collapse
Affiliation(s)
- Zehui He
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Yongtai Zhang
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhenda Liu
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Teng Guo
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xinyi Ai
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yuanzhi He
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xiaolin Hou
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Nianping Feng
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
6
|
Chen H, Yamaguchi S, Wang Y, Kaminogo K, Sakai K, Hibi H. Cytoprotective role of human dental pulp stem cell-conditioned medium in chemotherapy-induced alopecia. Stem Cell Res Ther 2024; 15:84. [PMID: 38500206 PMCID: PMC10949570 DOI: 10.1186/s13287-024-03695-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 03/12/2024] [Indexed: 03/20/2024] Open
Abstract
BACKGROUND Chemotherapy-induced alopecia (CIA) is a distressing adverse effect of chemotherapy, with an estimated incidence of 65% and limited treatment options. Cyclophosphamide (CYP) is a common alopecia-inducing chemotherapy agent. Human dental pulp stem cells (DPSCs) secrete several paracrine factors that up-regulate hair growth. Conditioned medium (CM) collected from DPSCs (DPSC-CM) promotes hair growth; culturing mesenchymal stem cells under hypoxic conditions can enhance this effect. METHODS The effect of DPSC-CM cultured under normoxic (N-) and hypoxic (H-) conditions against CYP-mediated cytotoxicity in keratinocytes was examined using cell viability assay, lactate dehydrogenase (LDH) cytotoxicity assay, and apoptosis detection. The damage-response pathway was determined in a well-established CIA mouse model by analyzing macroscopic effects, histology, and apoptosis. Reverse transcription-quantitative PCR and Caspase-3/7 activity assay were used to investigate the impact of DPSC-CM on the molecular damage-response pathways in CYP-treated mice. The effect of post-CIA DPSC-CM application on post-CIA hair regrowth was analyzed by macroscopic effects and microstructure observation of the hair surface. Furthermore, to investigate the safety of DPSC-CM as a viable treatment option, the effect of DPSC-CM on carcinoma cell lines was examined by cell viability assay and a subcutaneous tumor model. RESULTS In the cell viability assay, DPSC-CM was observed to increase the number of keratinocytes over varying CYP concentrations. Furthermore, it reduced the LDH activity level and suppressed apoptosis in CYP-treated keratinocytes. DPSC-CM exhibited the cytoprotective role in vivo via the dystrophic anagen damage-response pathway. While both N-CM and H-CM downregulated the Caspase-3/7 activity level, H-CM downregulated Caspase-3 mRNA expression. The proportion of post-CIA H-CM-treated mice with > 90% normal hair was nearly twice that of vehicle- or N-CM-treated mice between days 50 and 59 post-depilation, suggesting that post-CIA H-CM application may accelerate hair regrowth and improve hair quality. Furthermore, DPSC-CM suppressed proliferation in vitro in certain carcinoma cell lines and did not promote the squamous cell carcinoma (SCC-VII) tumor growth rate in mice. CONCLUSIONS The potentiality of DPSC-CM and H-CM as a promising cytoprotective agent and hair regrowth stimulant, respectively, for CIA needs in-depth exploration.
Collapse
Affiliation(s)
- Hui Chen
- Department of Oral and Maxillofacial Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Satoshi Yamaguchi
- Department of Oral and Maxillofacial Surgery, Nagoya University Hospital, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan.
| | - Yilin Wang
- Department of Oral and Maxillofacial Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kento Kaminogo
- Department of Oral and Maxillofacial Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kiyoshi Sakai
- Department of Oral and Maxillofacial Surgery, Nagoya University Hospital, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Hideharu Hibi
- Department of Oral and Maxillofacial Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Oral and Maxillofacial Surgery, Nagoya University Hospital, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| |
Collapse
|
7
|
Samra T, Chéret J, Gherardini J, Verling S, Kassir R, Paus R. Melatonin Protects K15 + Human Hair Follicle Stem Cells and Hair Matrix Keratinocytes against Paclitaxel-Induced Damage Ex Vivo. J Invest Dermatol 2024; 144:697-701.e6. [PMID: 37775037 DOI: 10.1016/j.jid.2023.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/18/2023] [Accepted: 09/01/2023] [Indexed: 10/01/2023]
Affiliation(s)
- Tara Samra
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Jérémy Chéret
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Jennifer Gherardini
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Samantha Verling
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | | | - Ralf Paus
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA; CUTANEON - Skin and Hair Innovations, Hamburg, Germany.
| |
Collapse
|
8
|
Wang W, Wang H, Long Y, Li Z, Li J. Controlling Hair Loss by Regulating Apoptosis in Hair Follicles: A Comprehensive Overview. Biomolecules 2023; 14:20. [PMID: 38254620 PMCID: PMC10813359 DOI: 10.3390/biom14010020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/16/2023] [Accepted: 12/18/2023] [Indexed: 01/24/2024] Open
Abstract
Apoptosis is a physiological process that occurs in all cell types of the human body, and it profoundly changes the fate of hair by affecting hair follicle cells. This review outlines the cellular changes, intrinsic biochemical characteristics, and mechanisms underlying apoptosis and summarizes the hair follicle life cycle, including development, cycle stages, and corresponding cellular changes. Finally, the relationship between apoptosis and the hair cycle is discussed and the significance of apoptosis in hair loss conditions and drug treatments is highlighted. Apoptosis induces cellular changes and exhibits distinctive properties through intricate signaling pathways. Hair follicles undergo cyclic periods of growth, regression, and dormancy. Apoptosis is closely correlated with the regression phase by triggering hair follicle cell death and shedding. Regulation of apoptosis in hair follicles plays an essential role in hair loss due to maladies and drug treatments. Mitigating apoptosis can enhance hair growth and minimize hair loss. A comprehensive understanding of the correlation between apoptosis and the hair cycle can facilitate the development of novel treatments to prevent hair loss and stimulate hair regeneration.
Collapse
Affiliation(s)
- Wuji Wang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China; (W.W.); (H.W.); (Y.L.); (Z.L.)
- Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi 563006, China
- Department of Pharmacology, School of Pharmacy, Zunyi Medical University, Zunyi 563006, China
| | - Honglan Wang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China; (W.W.); (H.W.); (Y.L.); (Z.L.)
- Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi 563006, China
- Department of Pharmacology, School of Pharmacy, Zunyi Medical University, Zunyi 563006, China
| | - Yunluan Long
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China; (W.W.); (H.W.); (Y.L.); (Z.L.)
- Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi 563006, China
- Department of Pharmacology, School of Pharmacy, Zunyi Medical University, Zunyi 563006, China
| | - Zheng Li
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China; (W.W.); (H.W.); (Y.L.); (Z.L.)
- Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi 563006, China
- Department of Pharmacology, School of Pharmacy, Zunyi Medical University, Zunyi 563006, China
| | - Jingjie Li
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China; (W.W.); (H.W.); (Y.L.); (Z.L.)
- Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi 563006, China
- Department of Pharmacology, School of Pharmacy, Zunyi Medical University, Zunyi 563006, China
| |
Collapse
|
9
|
Lin SJ, Yue Z, Paus R. Clinical Pathobiology of Radiotherapy-Induced Alopecia: A Guide toward More Effective Prevention and Hair Follicle Repair. J Invest Dermatol 2023; 143:1646-1656. [PMID: 37294241 DOI: 10.1016/j.jid.2023.02.041] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 01/19/2023] [Accepted: 02/08/2023] [Indexed: 06/10/2023]
Abstract
Because hair follicles (HFs) are highly sensitive to ionizing radiation, radiotherapy-induced alopecia (RIA) is a core adverse effect of oncological radiotherapy. Yet, effective RIA-preventive therapy is unavailable because the underlying pathobiology remains underinvestigated. Aiming to revitalize interest in pathomechanism-tailored RIA management, we describe the clinical RIA spectrum (transient, persistent, progressive alopecia) and our current understanding of RIA pathobiology as an excellent model for studying principles of human organ and stem cell repair, regeneration, and loss. We explain that HFs respond to radiotherapy through two distinct pathways (dystrophic anagen or catagen) and why this makes RIA management so challenging. We discuss the responses of different HF cell populations and extrafollicular cells to radiation, their roles in HF repair and regeneration, and how they might contribute to HF miniaturization or even loss in persistent RIA. Finally, we highlight the potential of targeting p53-, Wnt-, mTOR-, prostaglandin E2-, FGF7-, peroxisome proliferator-activated receptor-γ-, and melatonin-associated pathways in future RIA management.
Collapse
Affiliation(s)
- Sung-Jan Lin
- Department of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan; Department of Dermatology, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan; Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan; Center for Frontier Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Zhicao Yue
- Department of Cell Biology and Medical Genetics, Shenzhen University Medical School, Shenzhen, China; International Cancer Center, Shenzhen University Medical School, Shenzhen, China; Guangdong Key Laboratory for Genome Stability and Disease Prevention, Shenzhen University Medical School, Shenzhen, China
| | - Ralf Paus
- Dr Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA; Monasterium Laboratory, Münster, Germany; Cutaneon, Hamburg, Germany.
| |
Collapse
|
10
|
Cheret J, Samra T, Verling SD, Gherardini J, Rodriguez-Feliz J, Bauman AJ, Sanchez CA, Wikramanayake TC, Xu XX, Paus R. Low-Intensity Ultrasound as a Potential Intervention Strategy to Protect Human Scalp Hair Follicles from Taxane-Induced Toxicity. J Invest Dermatol 2023; 143:1809-1813.e2. [PMID: 36990174 DOI: 10.1016/j.jid.2023.02.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/09/2023] [Accepted: 02/22/2023] [Indexed: 03/30/2023]
Affiliation(s)
- Jeremy Cheret
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, Miller School of Medicine, University of Miami, Florida, USA
| | - Tara Samra
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, Miller School of Medicine, University of Miami, Florida, USA
| | - Samantha D Verling
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, Miller School of Medicine, University of Miami, Florida, USA
| | - Jennifer Gherardini
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, Miller School of Medicine, University of Miami, Florida, USA
| | | | - Alan J Bauman
- Bauman Medical Hair Transplant & Hair Loss Treatment Center, Boca Raton, Florida, USA
| | - Celina Amaya Sanchez
- Department of Radiation Oncology, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Tongyu C Wikramanayake
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, Miller School of Medicine, University of Miami, Florida, USA
| | - Xiang-Xi Xu
- Department of Radiation Oncology, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Ralf Paus
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, Miller School of Medicine, University of Miami, Florida, USA; Monasterium Laboratory, Münster, Germany; CUTANEON, Hamburg, Germany.
| |
Collapse
|
11
|
Chemotherapy suppresses SHH gene expression via a specific enhancer. J Genet Genomics 2023; 50:27-37. [PMID: 35998878 DOI: 10.1016/j.jgg.2022.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 08/12/2022] [Accepted: 08/16/2022] [Indexed: 02/06/2023]
Abstract
Sonic hedgehog (SHH) signaling is a key regulator of embryonic development and tissue homeostasis that is involved in gastrointestinal (GI) cancer progression. Regulation of SHH gene expression is a paradigm of long-range enhancer function. Using the classical chemotherapy drug 5-fluorouracil (5FU) as an example, here we show that SHH gene expression is suppressed by chemotherapy. SHH is downstream of immediate early genes (IEGs), including Early growth response 1 (Egr1). A specific 139 kb upstream enhancer is responsible for its down-regulation. Knocking down EGR1 expression or blocking its binding to this enhancer renders SHH unresponsive to chemotherapy. We further demonstrate that down-regulation of SHH expression does not depend on 5FU's impact on nucleotide metabolism or DNA damage; rather, a sustained oxidative stress response mediates this rapid suppression. This enhancer is present in a wide range of tumors and normal tissues, thus providing a target for cancer chemotherapy and its adverse effects on normal tissues. We propose that SHH is a stress-responsive gene downstream of IEGs, and that traditional chemotherapy targets a specific enhancer to suppress its expression.
Collapse
|
12
|
Duran C, Barcenas M, Wang Q. Modeling of ionizing radiation induced hair follicle regenerative dynamics. J Theor Biol 2022; 555:111283. [PMID: 36181867 PMCID: PMC10151310 DOI: 10.1016/j.jtbi.2022.111283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 07/27/2022] [Accepted: 09/16/2022] [Indexed: 01/14/2023]
Abstract
Hair follicles (HFs) are stem-cell-rich mammalian mini-organs that can undergo cyclic regenerations over the life span of the organism. The cycle of a HF consists of three consecutive phases: anagen-the active proliferation phase, catagen-the degeneration phase, and telogen-the resting phase. While HFs undergo irreversible degeneration during catagen, recent experimental research on mice shows that when anagen HFs are subject to ionizing radiation (IR), they undergo a transient degeneration, followed by a nearly full regeneration that makes the HFs return to homeostatic state. The mechanisms underlying these IR-induced HF regenerative dynamics and the catagen degenerative dynamics, remain unknown. In this work, we develop an ODE type cell differentiation population model to study the control mechanisms of HF regeneration. The model is built based on current theoretical knowledge in biology and mathematically formulated using feedback mechanisms. Model parameters are calibrated to IR experimental data, and we then provide modeling results with both deterministic ODE simulations and corresponding stochastic simulations. We perform stability and bifurcation analyses on the ODE model, which reveal that for anagen HFs, a low spontaneous apoptosis rate secures the stability of the HF homeostatic steady state, allowing the HF to regenerate even when subject to strong IR. On the other hand, the irreversible degeneration during catagen results from both strong spontaneous apoptosis rate and strong apoptosis feedback. Lastly, we perform sensitivity analysis to identify key parameters in the model to validate these hypotheses.
Collapse
Affiliation(s)
- Cecilia Duran
- Department of Mathematics, University of California, Riverside, CA, USA; Interdisciplinary Center for Quantitative Modeling in Biology, University of California, Riverside, CA, USA
| | - Manuel Barcenas
- Department of Mathematics, University of California, Riverside, CA, USA
| | - Qixuan Wang
- Department of Mathematics, University of California, Riverside, CA, USA; Interdisciplinary Center for Quantitative Modeling in Biology, University of California, Riverside, CA, USA.
| |
Collapse
|
13
|
Yue Z, Yang F, Zhang J, Li J, Chuong CM. Regulation and dysregulation of hair regeneration: aiming for clinical application. CELL REGENERATION (LONDON, ENGLAND) 2022; 11:22. [PMID: 35773427 PMCID: PMC9247129 DOI: 10.1186/s13619-022-00122-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
Hair growth and regeneration represents a remarkable example of stem cell function. Recent progress emphasizes the micro- and macro- environment that controls the regeneration process. There is a shift from a stem cell-centered view toward the various layers of regulatory mechanisms that control hair regeneration, which include local growth factors, immune and neuroendocrine signals, and dietary and environmental factors. This is better suited for clinical application in multiple forms of hair disorders: in male pattern hair loss, the stem cells are largely preserved, but androgen signaling diminishes hair growth; in alopecia areata, an immune attack is targeted toward the growing hair follicle without abrogating its regeneration capability. Genome-wide association studies further revealed the genetic bases of these disorders, although the precise pathological mechanisms of the identified loci remain largely unknown. By analyzing the dysregulation of hair regeneration under pathological conditions, we can better address the complex interactions among stem cells, the differentiated progeny, and mesenchymal components, and highlight the critical role of macroenvironment adjustment that is essential for hair growth and regeneration. The poly-genetic origin of these disorders makes the study of hair regeneration an interesting and challenging field.
Collapse
Affiliation(s)
- Zhicao Yue
- Department of Cell Biology and Medical Genetics, International Cancer Center, and Guangdong Key Laboratory for Genome Instability and Disease Prevention, Shenzhen University, A7-455 XiLi Campus, Shenzhen, 518060, Guangdong, China.
| | - Fang Yang
- Department of Dermatology, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Jianglin Zhang
- Department of Dermatology, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Ji Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
| | - Cheng-Ming Chuong
- Department of Pathology, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
14
|
Andjelkov K, Eremin II, Korac A. Different levels of EGF, VEGF, IL-6, MCP-1, MCP-3, IP-10, Eotaxin and MIP-1α in the adipose-derived stem cell secretome in androgenetic alopecia. Exp Dermatol 2022; 31:936-942. [PMID: 35226772 DOI: 10.1111/exd.14548] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/15/2022] [Accepted: 02/20/2022] [Indexed: 11/29/2022]
Abstract
Hair folliculogenesis and hair growth mediated by the secretory properties of white adipocytes may pave the way for the adipose-derived (AD) regenerative therapy for androgenetic alopecia (AGA). Quantitative and qualitative secretome profiling of AD stem cells (ADSCs) from different zones of hair growth in patients with AGA were analysed. 1mm punch samples of adipose tissue associated with hair follicles, of three scalp areas (balding, non-balding and transition zone) and one periumbilical sample, were used for ADCS isolation. The ADCS secretome was analysed in conditioned media using a 41plex assay. Among the thirty-five signalling proteins analysed, the levels of VEGF, EGF, IL-6, Eotaxin, MCP-3, IFNγ-inducible Protein-10 and MIP-1α were higher in the balding zone compared with the non-balding and periumbilical zones. In contrast, MCP-1 was lowest in the balding zone in comparison to the other zones. The observed differences in the secretome suggest crosstalk between angiogenic and inflammatory processes underlying AGA etiology and may prove relevant in both the diagnosis of AGA and the application of ADSC secretome for AGA treatment.
Collapse
Affiliation(s)
- Katarina Andjelkov
- University of Belgrade, Faculty of Medicine and BelPrime Clinic, Belgrade, Serbia
| | - Ilya I Eremin
- Laboratory of Cell Biology and Developmental Pathology FSBSI, Moscow, Russia
| | | |
Collapse
|
15
|
Yang K, Song S, Zhang Y, Shen S, Xu X, Yue Z. Programmed gene expression change in mouse skin after ultraviolet radiation damage. Exp Dermatol 2021; 31:862-868. [PMID: 34951733 DOI: 10.1111/exd.14519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/24/2021] [Accepted: 12/21/2021] [Indexed: 11/29/2022]
Abstract
Ultraviolet (UV) radiation is a major cause of skin damage and carcinogenesis. Here, we systematically analyse the acute gene expression change in skin in vivo after UV exposure, aiming to establish the common C57BL/6 mouse strain as a convenient model for future pathological research and drug discovery. The back fur of C57BL/6 mice was depilated, and a mixed UV light source was used to irradiate the skin. Full-thickness skin samples were collected at 0, 0.5, 2, 6, 12 and 24 h. Total RNAs were extracted and subjected to RNA sequencing analysis. We found that the gene expression change in mouse skin is highly similar to previous reports in human skin. These include down-regulation of differentiation-related genes and extracellular matrix genes, and up-regulation of cytokine/chemokine genes. An early wave of activator protein 1 (AP-1) expression is induced, whereas activation of the p53 pathway is not significant. The impact of the AP-1 transcription factors and the antioxidant tea polyphenols is discussed. The analysis of acute gene expression change in skin after UV irradiation provides a starting point to investigate how the skin responds to genotoxic stress.
Collapse
Affiliation(s)
- Kaibin Yang
- Guangdong Key Laboratory for Genome Stability and Disease Prevention, Carson International Cancer Center, Department of Cell Biology and Medical Genetics, Shenzhen University School of Medicine, Shenzhen, China
| | - Shiting Song
- Guangdong Key Laboratory for Genome Stability and Disease Prevention, Carson International Cancer Center, Department of Cell Biology and Medical Genetics, Shenzhen University School of Medicine, Shenzhen, China
| | - Yafei Zhang
- Guangdong Key Laboratory for Genome Stability and Disease Prevention, Carson International Cancer Center, Department of Cell Biology and Medical Genetics, Shenzhen University School of Medicine, Shenzhen, China
| | - Siting Shen
- Guangdong Key Laboratory for Genome Stability and Disease Prevention, Carson International Cancer Center, Department of Cell Biology and Medical Genetics, Shenzhen University School of Medicine, Shenzhen, China
| | - Xingzhi Xu
- Guangdong Key Laboratory for Genome Stability and Disease Prevention, Carson International Cancer Center, Department of Cell Biology and Medical Genetics, Shenzhen University School of Medicine, Shenzhen, China
| | - Zhicao Yue
- Guangdong Key Laboratory for Genome Stability and Disease Prevention, Carson International Cancer Center, Department of Cell Biology and Medical Genetics, Shenzhen University School of Medicine, Shenzhen, China
| |
Collapse
|
16
|
Yue Z, Lei M, Paus R, Chuong CM. The global regulatory logic of organ regeneration: circuitry lessons from skin and its appendages. Biol Rev Camb Philos Soc 2021; 96:2573-2583. [PMID: 34145718 PMCID: PMC10874616 DOI: 10.1111/brv.12767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 06/09/2021] [Accepted: 06/11/2021] [Indexed: 12/17/2022]
Abstract
In organ regeneration, the regulatory logic at a systems level remains largely unclear. For example, what defines the quantitative threshold to initiate regeneration, and when does the regeneration process come to an end? What leads to the qualitatively different responses of regeneration, which restore the original structure, or to repair which only heals a wound? Here we discuss three examples in skin regeneration: epidermal recovery after radiation damage, hair follicle fate choice after chemotherapy damage, and wound-induced feather regeneration. We propose that the molecular regulatory circuitry is of paramount significance in organ regeneration. It is conceivable that defects in these controlling pathways may lead to failed regeneration and/or organ renewal, and understanding the underlying logic could help to identify novel therapeutic strategies.
Collapse
Affiliation(s)
- ZhiCao Yue
- Department of Cell Biology and Medical Genetics, Carson International Cancer Center, Guangdong Key Laboratory for Genome Stability and Disease Prevention, Shenzhen University School of Medicine, Shenzhen, Guangdong, 518060, China
| | - Mingxing Lei
- 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, 400038, China
| | - Ralf Paus
- Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, 33136, U.S.A
| | - Cheng-Ming Chuong
- Department of Pathology, University of Southern California, Los Angeles, CA, 90033, U.S.A
| |
Collapse
|
17
|
Piccini I, Brunken L, Chéret J, Ghatak S, Ramot Y, Alam M, Purba TS, Hardman J, Erdmann H, Jimenez F, Paus R, Bertolini M. PPARγ signaling protects hair follicle stem cells from chemotherapy-induced apoptosis and epithelial-mesenchymal transition. Br J Dermatol 2021; 186:129-141. [PMID: 34496034 DOI: 10.1111/bjd.20745] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND Permanent chemotherapy-induced alopecia (pCIA), for which preventive interventions remain limited, can manifest with scarring. While the underlying pathomechanisms of pCIA are unclear, depletion of epithelial hair follicle (HF) stem cells (eHFSCs) is likely to play a role. OBJECTIVES To explore the hypothesis that eHFSCs undergo pathological epithelial-mesenchymal transition (EMT) besides apoptosis in pCIA, thus explaining the scarring phenotype. Furthermore, we tested whether a PPARγ modulator can prevent pCIA-associated pathomechanisms. METHODS Organ-cultured human scalp HFs were treated with the cyclophosphamide metabolite, 4-hydroperoxycyclophosphamide (4-HC). Additionally, HFs were pre-treated with the agnostic PPARγ modulator, N-Acetyl-GED-0507-34-Levo (NAGED), which we had previously shown to promote K15 expression and antagonize EMT in eHFSCs. RESULTS In accordance with anticipated hair bulb cytotoxicity, dystrophy and catagen induction, 4-HC promoted apoptosis along with increased p53 expression, DNA damage and pathological EMT in keratin 15+ (K15) bulge eHFSCs, as evidenced by decreased E-cadherin expression and the appearance of fibronectin- and vimentin-positive cells in the bulge. Pre-treatment with NAGED protected from 4-HC-induced hair bulb cytotoxicity/dystrophy, and halted apoptosis, p53 up-regulation, and EMT in the bulge, thereby significantly preventing the depletion of K15+ human eHFSCs ex vivo. CONCLUSIONS A cyclophosphamide metabolite alone suffices to damage and deplete human scalp eHFSCs by promoting apoptosis, DNA damage, and EMT ex vivo. Therefore, pCIA-therapeutic strategies need to target these pathological processes. Our data introduce the stimulation of PPARγ signaling as a novel intervention strategy for the prevention of pCIA, given the ability of NAGED to prevent chemotherapy-induced eHFSCs damage ex vivo.
Collapse
Affiliation(s)
- I Piccini
- Monasterium Laboratory, Münster, Germany
| | - L Brunken
- Monasterium Laboratory, Münster, Germany
| | - J Chéret
- Monasterium Laboratory, Münster, Germany.,Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - S Ghatak
- Monasterium Laboratory, Münster, Germany
| | - Y Ramot
- Department of Dermatology, Hadassah Medical Center, Hebrew University of Jerusalem, Jerusalem, Israel
| | - M Alam
- Monasterium Laboratory, Münster, Germany.,Universidad Fernando Pessoa Canarias, Las Palmas de Gran Canaria, Spain.,Dept. of Dermatology & Venereology, Hamad Medical Corporation, Doha, Qatar.,Translational Research Institute, Academic Health System, Doha, Qatar
| | - T S Purba
- Centre for Dermatology Research, University of Manchester, NIHR Biomedical Research Centre, Manchester, UK
| | - J Hardman
- Centre for Dermatology Research, University of Manchester, NIHR Biomedical Research Centre, Manchester, UK.,St John's Institute of Dermatology, King's College London, London, United Kingdom
| | | | - F Jimenez
- Universidad Fernando Pessoa Canarias, Las Palmas de Gran Canaria, Spain.,Mediteknia Dermatology Clinic, Las Palmas de Gran Canaria, Spain
| | - R Paus
- Monasterium Laboratory, Münster, Germany.,Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA.,Centre for Dermatology Research, University of Manchester, NIHR Biomedical Research Centre, Manchester, UK
| | | |
Collapse
|