1
|
Weiner DM, Rook AH. Cutaneous T-cell Lymphoma. Hematol Oncol Clin North Am 2024; 38:1087-1110. [PMID: 39079789 DOI: 10.1016/j.hoc.2024.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/03/2024]
Abstract
Cutaneous T-cell lymphoma is a group of non-Hodgkin T-cell lymphomas that develop in and affect the skin but can potentially spread to other organs. There are many subtypes, the most common of which are mycosis fungoides, Sezary syndrome, lymphomatoid papulosis, and primary cutaneous anaplastic large cell lymphoma. Cutaneous lymphoma is a common cause of recalcitrant chronic skin rash and notoriously mimics other dermatologic and hematologic conditions, often resulting in diagnostic delays of months to years. This review provides an introduction to cutaneous T-cell lymphoma, with a primary focus on the clinical presentation, diagnosis, immunopathogenesis, and management of the condition.
Collapse
Affiliation(s)
- David M Weiner
- Department of Dermatology, Johns Hopkins University School of Medicine, 601 North Caroline Street, 8th Floor, Baltimore, MD 21287, USA.
| | - Alain H Rook
- Department of Dermatology, Cutaneous Lymphoma Program, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Boulevard, 1st Floor, Philadelphia, PA 19104, USA
| |
Collapse
|
2
|
Shi M, Weybright MJ, Otteson GE, Jevremovic D, Olteanu H, Horna P. Appropriate interpretation of TRBC1-dim positive subsets in T-cell immunophenotyping by flow cytometry. CYTOMETRY. PART B, CLINICAL CYTOMETRY 2024. [PMID: 39221577 DOI: 10.1002/cyto.b.22204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/26/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Affiliation(s)
- Min Shi
- Division of Hematopathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Matthew J Weybright
- Division of Hematopathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Gregory E Otteson
- Division of Hematopathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Dragan Jevremovic
- Division of Hematopathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Horatiu Olteanu
- Division of Hematopathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Pedro Horna
- Division of Hematopathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
3
|
Wadsworth P, Zhang J, Miller T, Menke J, Oak J, Fernandez-Pol S. Prevalence and clinicopathological features of incidentally detected TRBC1-dim populations in peripheral blood flow cytometry. Leuk Lymphoma 2024; 65:1374-1377. [PMID: 38747176 DOI: 10.1080/10428194.2024.2354527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 08/31/2024]
Affiliation(s)
- Paul Wadsworth
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Jingjing Zhang
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Timothy Miller
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Joshua Menke
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Jean Oak
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | | |
Collapse
|
4
|
Fei F, Brar N, Herring MB, Menke JR, Oak J, Fernandez-Pol S. Quantification of the median fluorescence intensity of CD3 and CD4 in mycosis fungoides/Sezary syndrome versus non-neoplastic control cases in peripheral blood. J Hematop 2024:10.1007/s12308-024-00599-2. [PMID: 39093388 DOI: 10.1007/s12308-024-00599-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 07/22/2024] [Indexed: 08/04/2024] Open
Abstract
Peripheral blood involvement by MF/SS has significant implications for prognosis and treatment. Flow cytometry is commonly used to assess MF/SS by analyzing the ratio of CD26- and/or CD7-CD4 + T cells and assessment of immunophenotypic abnormalities. However, distinguishing normal from abnormal cells is not always easy. In this study, we aimed to establish quantitative thresholds to better distinguish normal CD4 + T cells from neoplastic CD4 + T cells. A retrospective analysis of flow cytometry data was performed on 30 MF/SS patients with a detectable abnormal T cell population (positive), 63 patients with suspected or confirmed cutaneous involvement without a detectable abnormal T cell population (negative), and 60 healthy controls (control). CD3 and CD4 median fluorescence intensity (MFI) was normalized to internal control subsets. Among the positive cases, 50% had CD3 expression outside ± 2 SD from the mean of the negative and control group in the CD4 + CD26- subset. The corresponding specificity of this threshold was 94%. The ± 2 SD threshold showed a sensitivity of 57% and a specificity of 94% for the CD3 intensity among the CD7-negative subset. For CD4 intensity, the ± 2 SD threshold had a sensitivity of 33.3% and specificity of 95% for the CD26-negative subset and a sensitivity of 37% and specificity of 95% for the CD7-negative subset. In our study, although changes in CD3 and CD4 intensity greater than ± 2 SD were specific for MF/SS, more subtle differences in the intensity of CD3 and CD4 should not be used as the sole abnormality to make a diagnosis of circulating MF/SS.
Collapse
Affiliation(s)
- Fei Fei
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Pathology, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Nivaz Brar
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Melissa Beth Herring
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Joshua R Menke
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Jean Oak
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | | |
Collapse
|
5
|
Seheult JN, Weybright MJ, Jevremovic D, Shi M, Olteanu H, Horna P. Computational Flow Cytometry Accurately Identifies Sezary Cells Based on Simplified Aberrancy and Clonality Features. J Invest Dermatol 2024; 144:1590-1599.e3. [PMID: 38237727 DOI: 10.1016/j.jid.2023.12.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/21/2023] [Accepted: 12/24/2023] [Indexed: 03/09/2024]
Abstract
Flow cytometric identification of circulating neoplastic cells (Sezary cells) in patients with mycosis fungoides and Sezary syndrome is essential for diagnosis, staging, and prognosis. Although recent advances have improved the performance of this laboratory assay, the complex immunophenotype of Sezary cells and overlap with reactive T cells demand a high level of analytic expertise. We utilized machine learning to simplify this analysis using only 2 predefined Sezary cell-gating plots. We studied 114 samples from 59 patients with Sezary syndrome/mycosis fungoides and 66 samples from unique patients with inflammatory dermatoses. A single dimensionality reduction plot highlighted all TCR constant β chain-restricted (clonal) CD3+/CD4+ T cells detected by expert analysis. On receiver operator curve analysis, an aberrancy scale feature computed by comparison with controls (area under the curve = 0.98) outperformed loss of CD2 (0.76), CD3 (0.83), CD7 (0.77), and CD26 (0.82) in discriminating Sezary cells from reactive CD4+ T cells. Our results closely mirrored those obtained by exhaustive expert analysis for event classification (positive percentage agreement = 100%, negative percentage agreement = 99%) and Sezary cell quantitation (regression slope = 1.003, R squared = 0.9996). We demonstrate the potential of machine learning to simplify the accurate identification of Sezary cells.
Collapse
Affiliation(s)
- Jansen N Seheult
- Division of Hematopathology, Mayo Clinic, Rochester, Minnesota, USA
| | | | | | - Min Shi
- Division of Hematopathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Horatiu Olteanu
- Division of Hematopathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Pedro Horna
- Division of Hematopathology, Mayo Clinic, Rochester, Minnesota, USA.
| |
Collapse
|
6
|
Lu C, Li M, Fu J, Fan X, Zhong L, Li Y, Xi Q. cyTRBC1 evaluation rapidly identifies sCD3-negative peripheral T-cell lymphomas and reveals a novel type of sCD3-negative T-cell clone with uncertain significance. CYTOMETRY. PART B, CLINICAL CYTOMETRY 2024. [PMID: 38818861 DOI: 10.1002/cyto.b.22182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/19/2024] [Accepted: 05/13/2024] [Indexed: 06/01/2024]
Abstract
The flow cytometry-based evaluation of TRBC1 expression has been demonstrated as a rapid and specific method for detecting T-cell clones in sCD3-positive TCRαβ+ mature T-cell lymphoma. The aim of the study was to validate the utility of surface (s) TRBC1 and cytoplastic (cy) TRBC1 assessment in detecting clonality of sCD3-negative peripheral T-cell lymphomas (PTCLs), as well as exploring the existence and characteristics of sCD3-negative clonal T-cell populations with uncertain significance (T-CUS). Evaluation of sTRBC1 and cyTRBC1 were assessed on 61 samples from 37 patients with sCD3-negative PTCLs, including 26 angioimmunoblastic T-cell lymphoma (AITL) patients and 11 non-AITL patients. The sCD3-negative T-CUS were screened from 1602 patients without T-cell malignancy and 100 healthy individuals. Additionally, the clonality of cells was further detected through T-cell gene rearrangement analysis. We demonstrated the monotypic expression patterns of cyTRBC1 in all sCD3-negative PTCLs. Utilizing the cyTRBC1 evaluation assay, we identified a novel and rare subtype of sCD3-negative T-CUS for the first time among 13 out of 1602 (0.8%) patients without T-cell malignancy. The clonality of these cells was further confirmed through T-cell gene rearrangement analysis. This subset exhibited characteristics such as sCD3-cyCD3 + CD4 + CD45RO+, closely resembling AITL rather than non-AITL. Further analysis revealed that sCD3-negative T-CUS exhibited a smaller clone size in the lymph node and mass specimens compared to AITL patients. However, the clone size of sCD3-negative T-CUS was significantly lower than that of non-AITL patients in both specimen groups. In conclusion, we validated the diagnostic utility of cyTRBC1 in detecting sCD3-negative T-cell clonality, provided a comprehensive analysis of sCD3-negative T-CUS, and established a framework and provided valuable insights for distinguishing sCD3-negative T-CUS from sCD3-negative PTCLs based on their phenotypic properties and clone size.
Collapse
Affiliation(s)
- Cong Lu
- Department of Cardiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Mingyong Li
- Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Jun Fu
- Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaoming Fan
- Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Ling Zhong
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yanxin Li
- Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Qian Xi
- Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
7
|
Devitt KA, Kern W, Li W, Wang X, Wong AJ, Furtado FM, Oak JS, Illingworth A. TRBC1 in flow cytometry: Assay development, validation, and reporting considerations. CYTOMETRY. PART B, CLINICAL CYTOMETRY 2024; 106:192-202. [PMID: 38700195 DOI: 10.1002/cyto.b.22175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/01/2024] [Accepted: 04/11/2024] [Indexed: 05/05/2024]
Abstract
The assessment of T-cell clonality by flow cytometry has long been suboptimal, relying on aberrant marker expression and/or intensity. The introduction of TRBC1 shows much promise for improving the diagnosis of T-cell neoplasms in the clinical flow laboratory. Most laboratories considering this marker already have existing panels designed for T-cell workups and will be determining how best to incorporate TRBC1. We present this comprehensive summary of TRBC1 and supplemental case examples to familiarize the flow cytometry community with its potential for routine application, provide examples of how to incorporate it into T-cell panels, and signal caution in interpreting the results in certain diagnostic scenarios where appropriate.
Collapse
Affiliation(s)
- Katherine A Devitt
- Department of Pathology and Laboratory Medicine, University of Vermont Medical Center, Burlington, Vermont, USA
- Larner College of Medicine at the University of Vermont, Burlington, Vermont, USA
| | - Wolfgang Kern
- Department of Flow Cytometry, MLL Munich Leukemia Laboratory, Munich, Germany
| | - Weijie Li
- Department of Pathology and Laboratory Medicine, Children's Mercy Hospital, University of Missouri-Kansas City School of Medicine, Kansas City, Missouri, USA
| | - Xuehai Wang
- Division of Hematopathology, Vancouver General Hospital, Vancouver, British Columbia, Canada
| | - Allyson J Wong
- Pathology and Laboratory Medicine, Lahey Hospital and Medical Center, Burlington, Massachusetts, USA
| | - Felipe M Furtado
- Hematology Department, Sabin Diagnostico e Saude, Brasília, Brazil
- Oncohematology Department, Hospital da Criança de Brasília, Brasília, Brazil
| | - Jean S Oak
- Department of Pathology, Stanford University, Stanford, California, USA
| | - Andrea Illingworth
- Department of Flow Cytometry, Dahl-Chase Diagnostic Services/Versant Diagnostics, Bangor, Maine, USA
| |
Collapse
|
8
|
Nocco SE, Ewalt MD, Moy AP, Lewis NE, Zhu M, Lezcano C, Busam K, Pulitzer M. TRBC1 immunohistochemistry distinguishes cutaneous T-cell lymphoma from inflammatory dermatitis: A retrospective analysis of 39 cases. J Am Acad Dermatol 2024; 90:839-841. [PMID: 38061444 PMCID: PMC10960695 DOI: 10.1016/j.jaad.2023.11.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 10/20/2023] [Accepted: 11/17/2023] [Indexed: 01/03/2024]
Affiliation(s)
- Sarah E Nocco
- Department of Dermatology, Weill Cornell Medicine, New York, New York
| | - Mark D Ewalt
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Andrea P Moy
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Natasha E Lewis
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Menglei Zhu
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Cecilia Lezcano
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Klaus Busam
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Melissa Pulitzer
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York.
| |
Collapse
|
9
|
Nguyen PC, Nguyen T, Wilson C, Tiong IS, Baldwin K, Nguyen V, Came N, Blombery P, Westerman DA. Evaluation of T-cell clonality by anti-TRBC1 antibody-based flow cytometry and correlation with T-cell receptor sequencing. Br J Haematol 2024; 204:910-920. [PMID: 38098188 DOI: 10.1111/bjh.19252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/08/2023] [Accepted: 11/28/2023] [Indexed: 03/14/2024]
Abstract
Flow cytometry (FC) incorporating the T-cell receptor β constant chain-1 (TRBC1) has been recently proposed as a new standard in T-cell clonality assessment. While early studies demonstrated high sensitivity in samples with conspicuous tumour burden, performance in real-world samples, including those with low tumour burden and correlation with molecular methods has been limited. We evaluated TRBC1-FC performance and correlated the results with high-throughput TRB sequencing and a targeted next-generation sequencing gene panel. Our cohort consisted of 90 evaluable samples from 57 patients. TRBC1-FC confirmed T-cell clonality in 37 out of 38 samples (97%) that were involved in a mature T-cell neoplasm (MTCN). T-cell clonality was also identified in nine samples from patients lacking a current or prior diagnosis of MTCN, consistent with the emerging entity T-cell clonality of uncertain significance. TRBC-FC was polyclonal in all samples and negative for disease involvement by standard pathology assessment. However, correlation with TRB sequencing in 17 of these samples identified two cases that harboured the known clonal sequence from index testing, indicating the presence of measurable residual disease not otherwise detected. Our study provides real-world correlative validation of TRBC1-FC, highlighting the strengths and limitations pertinent to its increasing implementation by general diagnostic laboratories.
Collapse
Affiliation(s)
- Phillip C Nguyen
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Tamia Nguyen
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Clarissa Wilson
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Ing Soo Tiong
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Kylie Baldwin
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Vuong Nguyen
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Neil Came
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
| | - Piers Blombery
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
- Department of Clinical Haematology, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - David A Westerman
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
- Department of Clinical Haematology, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, Victoria, Australia
| |
Collapse
|
10
|
Horna P, Weybright MJ, Ferrari M, Jungherz D, Peng Y, Akbar Z, Tudor Ilca F, Otteson GE, Seheult JN, Ortmann J, Shi M, Maciocia PM, Herling M, Pule MA, Olteanu H. Dual T-cell constant β chain (TRBC)1 and TRBC2 staining for the identification of T-cell neoplasms by flow cytometry. Blood Cancer J 2024; 14:34. [PMID: 38424120 PMCID: PMC10904869 DOI: 10.1038/s41408-024-01002-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/07/2024] [Accepted: 02/09/2024] [Indexed: 03/02/2024] Open
Abstract
The diagnosis of leukemic T-cell malignancies is often challenging, due to overlapping features with reactive T-cells and limitations of currently available T-cell clonality assays. Recently developed therapeutic antibodies specific for the mutually exclusive T-cell receptor constant β chain (TRBC)1 and TRBC2 isoforms provide a unique opportunity to assess for TRBC-restriction as a surrogate of clonality in the flow cytometric analysis of T-cell neoplasms. To demonstrate the diagnostic utility of this approach, we studied 164 clinical specimens with (60) or without (104) T-cell neoplasia, in addition to 39 blood samples from healthy donors. Dual TRBC1 and TRBC2 expression was studied within a comprehensive T-cell panel, in a fashion similar to the routine evaluation of kappa and lambda immunoglobulin light chains for the detection of clonal B-cells. Polytypic TRBC expression was demonstrated on total, CD4+ and CD8+ T-cells from all healthy donors; and by intracellular staining on benign T-cell precursors. All neoplastic T-cells were TRBC-restricted, except for 8 cases (13%) lacking TRBC expression. T-cell clones of uncertain significance were identified in 17 samples without T-cell malignancy (13%) and accounted for smaller subsets than neoplastic clones (median: 4.7 vs. 69% of lymphocytes, p < 0.0001). Single staining for TRBC1 produced spurious TRBC1-dim subsets in 24 clinical specimens (15%), all of which resolved with dual TRBC1/2 staining. Assessment of TRBC restriction by flow cytometry provides a rapid diagnostic method to detect clonal T-cells, and to accurately determine the targetable TRBC isoform expressed by T-cell malignancies.
Collapse
Affiliation(s)
- Pedro Horna
- Division of Hematopathology, Mayo Clinic, Rochester, MN, USA.
| | | | | | - Dennis Jungherz
- Department of Internal Medicine, University of Cologne, Cologne, Germany
| | - YaYi Peng
- Department of Internal Medicine, University of Cologne, Cologne, Germany
| | | | | | | | | | - Janosch Ortmann
- Centre de Recherches Mathematiques, Universite du Quebec a Montreal, Montreal, Canada
| | - Min Shi
- Division of Hematopathology, Mayo Clinic, Rochester, MN, USA
| | | | - Marco Herling
- Department of Internal Medicine, University of Cologne, Cologne, Germany
| | - Martin A Pule
- Autolus Ltd, London, UK
- Cancer Institute, University College London, London, UK
| | - Horatiu Olteanu
- Division of Hematopathology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
11
|
Liu J, Li M, Fu J, Dong M, Fan X, Zhong L, Xu G, Li Y, Xi Q. sTRBC1 and cyTRBC1 Expression Distinguishes Indolent T-Lymphoblastic Proliferations From T-Lymphoblastic Leukemia/Lymphoma. Am J Surg Pathol 2023; 47:1325-1331. [PMID: 37515427 DOI: 10.1097/pas.0000000000002103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
Indolent T-lymphoblastic proliferation (iT-LBP) consists of a proliferation of non-neoplastic TdT + T cells in extrathymic tissues, requiring no treatment. However, due to overlapping clinical and histologic features, distinguishing iT-LBP from T-cell acute lymphoblastic leukemia/lymphoblastic lymphoma (T-ALL/LBL) can be challenging. Recently, flow cytometry-based evaluation of TRBC1 has been used to detect of T-cell clonality in TCRαβ + mature T-cell lymphomas and aid in the differential diagnosis between T-ALL and normal thymocytes. We present a case of iT-LBP with high-grade serous ovarian carcinoma (HGSOC). To investigate the potential utility of TRBC1 expression in distinguishing iT-LBP from T-ALL/LBL, we assessed both surface (s) and cytoplasmic (cy) TRBC1 expression patterns on blast cells from the patient with iT-LBP and HGSOC as well as 11 patients diagnosed with T-ALL/LBL. The results revealed that sTRBC1 and cyTRBC1 exhibited polytypic expression patterns in patient with iT-LBP and HGSOC, while cyTRBC1 showed monotypic expression in those with T-ALL/LBL. This suggests that evaluation of sTRBC1 and cyTRBC1 expression can serve as a simple, rapid, and effective approach to differentiate between iT-LBP and T-ALL/LBL.
Collapse
Affiliation(s)
| | | | | | | | | | - Ling Zhong
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan Province, China
| | | | | | | |
Collapse
|
12
|
Akilov OE. What Does the Future Hold for Biomarkers of Response to Extracorporeal Photopheresis for Mycosis Fungoides and Sézary Syndrome? Cells 2023; 12:2321. [PMID: 37759543 PMCID: PMC10527589 DOI: 10.3390/cells12182321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/14/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023] Open
Abstract
Extracorporeal photopheresis (ECP) is an FDA-approved immunotherapy for cutaneous T-cell lymphoma, which can provide a complete response in some patients. However, it is still being determined who will respond well, and predictive biomarkers are urgently needed to target patients for timely treatment and to monitor their response over time. The aim of this review is to analyze the current state of the diagnostic, prognostic, and disease state-monitoring biomarkers of ECP, and outline the future direction of the ECP biomarker discovery. Specifically, we focus on biomarkers of response to ECP in mycosis fungoides and Sézary syndrome. The review summarizes the current knowledge of ECP biomarkers, including their limitations and potential applications, and identifies key challenges in ECP biomarker discovery. In addition, we discuss emerging technologies that could revolutionize ECP biomarker discovery and accelerate the translation of biomarker research into clinical practice. This review will interest researchers and clinicians seeking to optimize ECP therapy for cutaneous T-cell lymphoma.
Collapse
Affiliation(s)
- Oleg E Akilov
- Cutaneous Lymphoma Program, University of Pittsburgh, Pittsburgh, PA 15213, USA
| |
Collapse
|
13
|
Singh AP, Courville EL. Advances in Monitoring and Prognostication for Lymphoma by Flow Cytometry. Clin Lab Med 2023; 43:351-361. [PMID: 37481316 DOI: 10.1016/j.cll.2023.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2023]
Abstract
Flow cytometry (FC) is a well-established method important in the diagnosis and subclassification of lymphoma. In this article, the role of FC in lymphoma prognostication will be explored, and the clinical role for FC minimal/measurable residual disease testing as a monitoring tool for mature lymphoma will be introduced. Potential pitfalls of monitoring for residual/recurrent disease following immunotherapy will be presented.
Collapse
Affiliation(s)
- Amrit P Singh
- Department of Pathology, University of Virginia Health, PO Box 800214, Charlottesville, VA 22908, USA
| | - Elizabeth L Courville
- Department of Pathology, University of Virginia Health, PO Box 800214, Charlottesville, VA 22908, USA.
| |
Collapse
|
14
|
Lee H. Mycosis fungoides and Sézary syndrome. Blood Res 2023; 58:66-82. [PMID: 37105561 PMCID: PMC10133849 DOI: 10.5045/br.2023.2023023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/16/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
Mycosis fungoides (MF) and Sézary syndrome (SS) are a distinct disease entity of cutaneous T-cell lymphoma with heterogenous clinical features and prognosis. MF mainly involves skin and usually shows an indolent and favorable clinical course. In patients with advanced-stage disease, extracutaneous involvement including lymph nodes, viscera, and blood, or large cell transformation may be observed. SS is a leukemic form of advanced-stage MF, characterized by generalized erythroderma. Early-stage MF can be treated with skin-directed therapy. However, patients with refractory or advanced-stage disease are associated with severe symptoms or poor prognosis, requiring systemic therapy. Recent progress in understanding the pathogenesis of MF/SS has contributed to advances in the management of these rare diseases. This review aims to describe the clinical manifestations, diagnosis, risk stratification, and treatment strategy of MF/SS, focusing on the recent updates in the management of these diseases.
Collapse
Affiliation(s)
- Hyewon Lee
- Division of Hemato-Oncology, Department of Internal Medicine, and Center for Hematologic Malignancy, Research Institute and Hospital, National Cancer Center, Goyang, Korea
| |
Collapse
|
15
|
Improved semiautomated detection of TRBC-restricted Sézary cells unveils a spectrum of clonal cluster immunophenotypes. Blood 2022; 140:2852-2856. [PMID: 36037427 DOI: 10.1182/blood.2022017548] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/15/2022] [Accepted: 08/21/2022] [Indexed: 01/05/2023] Open
|
16
|
Martin-Moro F, Martin-Rubio I, Garcia-Vela JA. TRBC1 expression assessed by flow cytometry as a novel marker of clonality in cutaneous αβ T-cell lymphomas with peripheral blood involvement. Br J Dermatol 2022; 187:623-625. [PMID: 35606929 DOI: 10.1111/bjd.21678] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/18/2022] [Accepted: 05/21/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Fernando Martin-Moro
- Hematology Department, Ramon y Cajal University Hospital, Madrid, Spain.,University of Alcala, Alcala de Henares, Madrid, Spain
| | - Isaac Martin-Rubio
- Hematology Department, Getafe University Hospital, Getafe, Madrid, Spain
| | - Jose A Garcia-Vela
- Hematology Department, Getafe University Hospital, Getafe, Madrid, Spain
| |
Collapse
|
17
|
Lewis NE, Gao Q, Petrova-Drus K, Pulitzer M, Sigler A, Baik J, Moskowitz AJ, Horwitz SM, Dogan A, Roshal M. PD-1 improves accurate detection of Sezary cells by flow cytometry in peripheral blood in mycosis fungoides/Sezary syndrome. CYTOMETRY. PART B, CLINICAL CYTOMETRY 2022; 102:189-198. [PMID: 35451196 PMCID: PMC9162159 DOI: 10.1002/cyto.b.22070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/27/2022] [Accepted: 04/07/2022] [Indexed: 05/03/2023]
Abstract
BACKGROUND Accurate Sezary cell detection in peripheral blood of mycosis fungoides/Sezary syndrome (MF/SS) patients by flow cytometry can be difficult due to overlapping immunophenotypes with normal T cells using standard markers. We assessed the utility of programmed death-1 (PD-1/CD279), a transmembrane protein expressed in some hematopoietic cells, for identification and quantitation of circulating Sezary cells among established markers using flow cytometry. METHODS 50 MF/SS and 20 control blood samples were immunophenotyped by flow cytometry. Principal component analysis (PCA) assessed contributions of antigens to separation of abnormal from normal T cell populations. PD-1 was assessed over time in blood and bone marrow of available MF/SS cases. RESULTS Normal CD4+ T cells showed dim/intermediate to absent PD-1 expression. PD-1 in Sezary cells was informatively brighter (≥1/3 log) than internal normal CD4+ T cells in 39/50 (78%) cases. By PCA, PD-1 ranked 3rd behind CD7 and CD26 in population separation as a whole; it ranked in the top 3 markers in 32/50 (64%) cases and 1st in 4/50 (8%) cases when individual abnormal populations were compared to total normal CD4+ T cells. PD-1 clearly separated Sezary from normal CD4+ T cells in 15/26 (58%, 30% of total) cases with few and subtle alterations of pan-T cell antigens/CD26 and was critical in 6 (12% of total), without which identification and quantification were significantly affected or nearly impossible. PD-1 remained informative in blood/bone marrow over time in most patients. CONCLUSIONS PD-1 significantly contributes to accurate flow cytometric Sezary cell assessment in a routine Sezary panel.
Collapse
Affiliation(s)
- Natasha E Lewis
- Hematopathology Service, Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Qi Gao
- Hematopathology Service, Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kseniya Petrova-Drus
- Hematopathology Service, Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Diagnostic Molecular Pathology Service, Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Melissa Pulitzer
- Dermatopathology Service, Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Allison Sigler
- Hematopathology Service, Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jeeyeon Baik
- Hematopathology Service, Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alison J Moskowitz
- Lymphoma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Steven M Horwitz
- Lymphoma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ahmet Dogan
- Hematopathology Service, Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mikhail Roshal
- Hematopathology Service, Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
18
|
Horna P, Otteson GE, Shi M, Jevremovic D, Yuan J, Olteanu H. Flow Cytometric Evaluation of Surface and Cytoplasmic TRBC1 Expression in the Differential Diagnosis of Immature T-Cell Proliferations. Am J Clin Pathol 2022; 157:64-72. [PMID: 34302330 DOI: 10.1093/ajcp/aqab098] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 05/06/2021] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVES Flow cytometric detection of T-cell clonality is challenging, particularly in differential diagnosis of immature T-cell proliferations. Studies have shown utility of TRBC1, in conjunction with other T-cell markers, as reliable means to identify T-cell clonality by flow cytometry. One limitation of surface TRBC1 (sTRBC1) evaluation is it cannot be detected in surface CD3 (sCD3)-negative T cells, such as normal or abnormal immature T-cell precursors. Here, we assess surface and cytoplasmic TRBC1 expression patterns in the differential diagnosis of T-lymphoblastic leukemia/lymphoma (T-ALL) vs normal thymocyte expansions. METHODS Forty-three samples containing T-ALL, thymoma, normal thymus, and/or indolent T-lymphoblastic proliferation (i-TLBP), were evaluated. RESULTS All 24 cases with normal thymocytes or i-TLBPs revealed a characteristic and reproducible sCD3/sTRBC1 expression pattern indicative of polytypic T-cell maturation. In contrast, all 19 T-ALLs lacked this polytypic maturation pattern and were either completely negative for sCD3/sTRBC1 or showed a minor sCD3-positive subset with a monotypic TRBC1 expression pattern. Cytoplasmic TRBC1 evaluation in 9 T-ALLs demonstrated a monotypic intracellular TRBC1-positive (n = 4) or TRBC1-negative (n = 5) expression, indicative of clonality. CONCLUSIONS Our findings demonstrate flow cytometric evaluation of surface and cytoplasmic TRBC1 expression can aid detection of T-cell clonality and differential diagnosis of immature T-cell proliferations.
Collapse
Affiliation(s)
- Pedro Horna
- Division of Hematopathology, Department of Pathology and Laboratory Medicine, Mayo Clinic, Rochester, MN, USA
| | - Gregory E Otteson
- Division of Hematopathology, Department of Pathology and Laboratory Medicine, Mayo Clinic, Rochester, MN, USA
| | - Min Shi
- Division of Hematopathology, Department of Pathology and Laboratory Medicine, Mayo Clinic, Rochester, MN, USA
| | - Dragan Jevremovic
- Division of Hematopathology, Department of Pathology and Laboratory Medicine, Mayo Clinic, Rochester, MN, USA
| | - Ji Yuan
- Division of Hematopathology, Department of Pathology and Laboratory Medicine, Mayo Clinic, Rochester, MN, USA
| | - Horatiu Olteanu
- Division of Hematopathology, Department of Pathology and Laboratory Medicine, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
19
|
Muñoz-García N, Lima M, Villamor N, Morán-Plata FJ, Barrena S, Mateos S, Caldas C, Balanzategui A, Alcoceba M, Domínguez A, Gómez F, Langerak AW, van Dongen JJM, Orfao A, Almeida J. Anti-TRBC1 Antibody-Based Flow Cytometric Detection of T-Cell Clonality: Standardization of Sample Preparation and Diagnostic Implementation. Cancers (Basel) 2021; 13:cancers13174379. [PMID: 34503189 PMCID: PMC8430560 DOI: 10.3390/cancers13174379] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/17/2021] [Accepted: 08/23/2021] [Indexed: 11/16/2022] Open
Abstract
A single antibody (anti-TRBC1; JOVI-1 antibody clone) against one of the two mutually exclusive T-cell receptor β-chain constant domains was identified as a potentially useful flow-cytometry (FCM) marker to assess Tαβ-cell clonality. We optimized the TRBC1-FCM approach for detecting clonal Tαβ-cells and validated the method in 211 normal, reactive and pathological samples. TRBC1 labeling significantly improved in the presence of CD3. Purified TRBC1+ and TRBC1- monoclonal and polyclonal Tαβ-cells rearranged TRBJ1 in 44/47 (94%) and TRBJ1+TRBJ2 in 48 of 48 (100%) populations, respectively, which confirmed the high specificity of this assay. Additionally, TRBC1+/TRBC1- ratios within different Tαβ-cell subsets are provided as reference for polyclonal cells, among which a bimodal pattern of TRBC1-expression profile was found for all TCRVβ families, whereas highly-variable TRBC1+/TRBC1- ratios were observed in more mature vs. naïve Tαβ-cell subsets (vs. total T-cells). In 112/117 (96%) samples containing clonal Tαβ-cells in which the approach was validated, monotypic expression of TRBC1 was confirmed. Dilutional experiments showed a level of detection for detecting clonal Tαβ-cells of ≤10-4 in seven out of eight pathological samples. These results support implementation of the optimized TRBC1-FCM approach as a fast, specific and accurate method for assessing T-cell clonality in diagnostic-FCM panels, and for minimal (residual) disease detection in mature Tαβ+ leukemia/lymphoma patients.
Collapse
Affiliation(s)
- Noemí Muñoz-García
- Translational and Clinical Research Program, Centro de Investigación del Cáncer and IBMCC (CSIC-University of Salamanca), Cytometry Service, NUCLEUS, Department of Medicine, University of Salamanca (USAL) and Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain; (N.M.-G.); (F.J.M.-P.); (S.B.); (S.M.); (C.C.); (A.O.)
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain; (N.V.); (A.B.); (M.A.)
| | - Margarida Lima
- Department of Hematology, Laboratory of Cytometry, Hospital de Santo António, Centro Hospitalar do Porto, 4099-001 Porto, Portugal;
- Unit for Multidisciplinary Research in Biomedicine (UMIB), Abel Salazar Institute of Biomedical Sciences (ICBAS), University of Porto, 4050-313 Porto, Portugal
| | - Neus Villamor
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain; (N.V.); (A.B.); (M.A.)
- Department of Pathology, Hematopathology Unit, Hospital Clínic, IDIBAPS, 08036 Barcelona, Spain
| | - F. Javier Morán-Plata
- Translational and Clinical Research Program, Centro de Investigación del Cáncer and IBMCC (CSIC-University of Salamanca), Cytometry Service, NUCLEUS, Department of Medicine, University of Salamanca (USAL) and Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain; (N.M.-G.); (F.J.M.-P.); (S.B.); (S.M.); (C.C.); (A.O.)
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain; (N.V.); (A.B.); (M.A.)
| | - Susana Barrena
- Translational and Clinical Research Program, Centro de Investigación del Cáncer and IBMCC (CSIC-University of Salamanca), Cytometry Service, NUCLEUS, Department of Medicine, University of Salamanca (USAL) and Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain; (N.M.-G.); (F.J.M.-P.); (S.B.); (S.M.); (C.C.); (A.O.)
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain; (N.V.); (A.B.); (M.A.)
| | - Sheila Mateos
- Translational and Clinical Research Program, Centro de Investigación del Cáncer and IBMCC (CSIC-University of Salamanca), Cytometry Service, NUCLEUS, Department of Medicine, University of Salamanca (USAL) and Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain; (N.M.-G.); (F.J.M.-P.); (S.B.); (S.M.); (C.C.); (A.O.)
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain; (N.V.); (A.B.); (M.A.)
| | - Carolina Caldas
- Translational and Clinical Research Program, Centro de Investigación del Cáncer and IBMCC (CSIC-University of Salamanca), Cytometry Service, NUCLEUS, Department of Medicine, University of Salamanca (USAL) and Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain; (N.M.-G.); (F.J.M.-P.); (S.B.); (S.M.); (C.C.); (A.O.)
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain; (N.V.); (A.B.); (M.A.)
| | - Ana Balanzategui
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain; (N.V.); (A.B.); (M.A.)
- Hematology Service, University Hospital of Salamanca, Translational and Clinical Research Program, Centro de Investigación del Cáncer/IBMCC and IBSAL, 37007 Salamanca, Spain
| | - Miguel Alcoceba
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain; (N.V.); (A.B.); (M.A.)
- Hematology Service, University Hospital of Salamanca, Translational and Clinical Research Program, Centro de Investigación del Cáncer/IBMCC and IBSAL, 37007 Salamanca, Spain
| | - Alejandro Domínguez
- Centro de Salud Miguel Armijo, Sanidad de Castilla y León (SACYL), 37007 Salamanca, Spain; (A.D.); (F.G.)
| | - Fabio Gómez
- Centro de Salud Miguel Armijo, Sanidad de Castilla y León (SACYL), 37007 Salamanca, Spain; (A.D.); (F.G.)
| | - Anton W. Langerak
- Department of Immunology, Laboratory Medical immunology, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands;
| | - Jacques J. M. van Dongen
- Department of Immunology, Leiden University Medical Center (LUMC), 2333 ZA Leiden, The Netherlands;
| | - Alberto Orfao
- Translational and Clinical Research Program, Centro de Investigación del Cáncer and IBMCC (CSIC-University of Salamanca), Cytometry Service, NUCLEUS, Department of Medicine, University of Salamanca (USAL) and Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain; (N.M.-G.); (F.J.M.-P.); (S.B.); (S.M.); (C.C.); (A.O.)
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain; (N.V.); (A.B.); (M.A.)
| | - Julia Almeida
- Translational and Clinical Research Program, Centro de Investigación del Cáncer and IBMCC (CSIC-University of Salamanca), Cytometry Service, NUCLEUS, Department of Medicine, University of Salamanca (USAL) and Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain; (N.M.-G.); (F.J.M.-P.); (S.B.); (S.M.); (C.C.); (A.O.)
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain; (N.V.); (A.B.); (M.A.)
- Correspondence:
| |
Collapse
|
20
|
Horna P, Shi M, Olteanu H, Johansson U. Emerging Role of T-cell Receptor Constant β Chain-1 (TRBC1) Expression in the Flow Cytometric Diagnosis of T-cell Malignancies. Int J Mol Sci 2021; 22:ijms22041817. [PMID: 33673033 PMCID: PMC7918842 DOI: 10.3390/ijms22041817] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/09/2021] [Accepted: 02/09/2021] [Indexed: 02/07/2023] Open
Abstract
T-cell clonality testing is integral to the diagnostic work-up of T-cell malignancies; however, current methods lack specificity and sensitivity, which can make the diagnostic process difficult. The recent discovery of a monoclonal antibody (mAb) specific for human TRBC1 will greatly improve the outlook for T-cell malignancy diagnostics. The anti-TRBC1 mAb can be used in flow cytometry immunophenotyping assays to provide a low-cost, robust, and highly specific test that detects clonality of immunophenotypically distinct T-cell populations. Recent studies demonstrate the clinical utility of this approach in several contexts; use of this antibody in appropriately designed flow cytometry panels improves detection of circulating disease in patients with cutaneous T-cell lymphoma, eliminates the need for molecular clonality testing in the context of large granular lymphocyte leukemia, and provides more conclusive results in the context of many other T-cell disorders. It is worth noting that the increased ability to detect discrete clonal T-cell populations means that identification of T-cell clones of uncertain clinical significance (T-CUS) will become more common. This review discusses this new antibody and describes how it defines clonal T-cells. We present and discuss assay design and summarize findings to date about the use of flow cytometry TRBC1 analysis in the field of diagnostics, including lymph node and fluid sample investigations. We also make suggestions about how to apply the assay results in clinical work-ups, including how to interpret and report findings of T-CUS. Finally, we highlight areas that we think will benefit from further research.
Collapse
Affiliation(s)
- Pedro Horna
- Division of Hematopathology, Mayo Clinic, Rochester, MN 55905, USA; (P.H.); (M.S.); (H.O.)
| | - Min Shi
- Division of Hematopathology, Mayo Clinic, Rochester, MN 55905, USA; (P.H.); (M.S.); (H.O.)
| | - Horatiu Olteanu
- Division of Hematopathology, Mayo Clinic, Rochester, MN 55905, USA; (P.H.); (M.S.); (H.O.)
| | - Ulrika Johansson
- SI-HMDS, University Hospitals Bristol and Weston NHS Foundation Trust, Bristol BS1 3NU, UK
- Correspondence:
| |
Collapse
|