1
|
Eckhart L, Gruber F, Sukseree S. Autophagy-Mediated Cellular Remodeling during Terminal Differentiation of Keratinocytes in the Epidermis and Skin Appendages. Cells 2024; 13:1675. [PMID: 39451193 PMCID: PMC11506049 DOI: 10.3390/cells13201675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/28/2024] [Accepted: 10/09/2024] [Indexed: 10/26/2024] Open
Abstract
The epidermis of the skin and skin appendages, such as nails, hair and sebaceous glands, depend on a balance of cell proliferation and terminal differentiation in order to fulfill their functions at the interface of the body and the environment. The differentiation of epithelial cells of the skin, commonly referred to as keratinocytes, involves major remodeling processes that generate metabolically inactive cell remnants serving as building blocks of the epidermal stratum corneum, nail plates and hair shafts. Only sebaceous gland differentiation results in cell disintegration and holocrine secretion. A series of studies performed in the past decade have revealed that the lysosome-dependent intracellular degradation mechanism of autophagy is active during keratinocyte differentiation, and the blockade of autophagy significantly alters the properties of the differentiation products. Here, we present a model for the autophagy-mediated degradation of organelles and cytosolic proteins as an important contributor to cellular remodeling in keratinocyte differentiation. The roles of autophagy are discussed in comparison to alternative intracellular degradation mechanisms and in the context of programmed cell death as an integral end point of epithelial differentiation.
Collapse
Affiliation(s)
- Leopold Eckhart
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria
| | - Florian Gruber
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria
- Christian Doppler Laboratory for Skin Multimodal Imaging of Aging and Senescence—SKINMAGINE, 1090 Vienna, Austria
| | - Supawadee Sukseree
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria
- Center for Anatomy and Cell Biology, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
2
|
Vermeer MCSC, Al-Shinnag M, Silljé HHW, Gaytan AE, Murrell DF, McGaughran J, Melbourne W, Cowan T, van den Akker PC, van Spaendonck-Zwarts KY, van der Meer P, Bolling MC. A translation re-initiation variant in KLHL24 also causes epidermolysis bullosa simplex and dilated cardiomyopathy via intermediate filament degradation. Br J Dermatol 2022; 187:1045-1048. [PMID: 35975634 PMCID: PMC10087812 DOI: 10.1111/bjd.21832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/03/2022] [Accepted: 08/14/2022] [Indexed: 12/24/2022]
Abstract
This study shows that gain-of-function variants in KLHL24 causing EBS and DCM, do not only originate in the start-codon and suggest that any nonsense-inducing variant affecting nucleotides c.4_84 will likely cause the same effect on protein level and a similar potential lethal phenotype.
Collapse
Affiliation(s)
- Mathilde C S C Vermeer
- Departments of Cardiology, (Center for Blistering Diseases), University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Mohammad Al-Shinnag
- Genetic Health Queensland, Royal Brisbane and Women's Hospital, Brisbane, Australia.,Faculty of Medicine, University of Queensland, Brisbane, Australia
| | - Herman H W Silljé
- Departments of Cardiology, (Center for Blistering Diseases), University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Antonio Esquivel Gaytan
- Departments of Cardiology, (Center for Blistering Diseases), University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Dedee F Murrell
- Department of Dermatology, St George Hospital, Kogarah, NSW, Australia.,Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Julie McGaughran
- Genetic Health Queensland, Royal Brisbane and Women's Hospital, Brisbane, Australia.,Faculty of Medicine, University of Queensland, Brisbane, Australia
| | - Wei Melbourne
- Department of Dermatology, St George Hospital, Kogarah, NSW, Australia
| | - Timothy Cowan
- Department of Dermatology, St George Hospital, Kogarah, NSW, Australia.,Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Peter C van den Akker
- Department of Genetics (Center for Blistering Diseases), University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Karin Y van Spaendonck-Zwarts
- Genetic Health Queensland, Royal Brisbane and Women's Hospital, Brisbane, Australia.,Faculty of Medicine, University of Queensland, Brisbane, Australia
| | - Peter van der Meer
- Departments of Cardiology, (Center for Blistering Diseases), University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Maria C Bolling
- Department of Dermatology (Center for Blistering Diseases), University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| |
Collapse
|
3
|
Towards a Better Understanding of Genotype-Phenotype Correlations and Therapeutic Targets for Cardiocutaneous Genes: The Importance of Functional Studies above Prediction. Int J Mol Sci 2022; 23:ijms231810765. [PMID: 36142674 PMCID: PMC9503274 DOI: 10.3390/ijms231810765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 11/17/2022] Open
Abstract
Genetic variants in gene-encoding proteins involved in cell−cell connecting structures, such as desmosomes and gap junctions, may cause a skin and/or cardiac phenotype, of which the combination is called cardiocutaneous syndrome. The cardiac phenotype is characterized by cardiomyopathy and/or arrhythmias, while the skin particularly displays phenotypes such as keratoderma, hair abnormalities and skin fragility. The reported variants associated with cardiocutaneous syndrome, in genes DSP, JUP, DSC2, KLHL24, GJA1, are classified by interpretation guidelines from the American College of Medical Genetics and Genomics. The genotype−phenotype correlation, however, remains poorly understood. By providing an overview of variants that are assessed for a functional protein pathology, we show that this number (n = 115) is low compared to the number of variants that are assessed by in silico algorithms (>5000). As expected, there is a mismatch between the prediction of variant pathogenicity and the prediction of the functional effect compared to the real functional evidence. Aiding to improve genotype−phenotype correlations, we separate variants into ‘protein reducing’ or ‘altered protein’ variants and provide general conclusions about the skin and heart phenotype involved. We conclude by stipulating that adequate prognoses can only be given, and targeted therapies can only be designed, upon full knowledge of the protein pathology through functional investigation.
Collapse
|
4
|
Harvey N, Youssefian L, Saeidian AH, Vahidnezhad H, Uitto J. Pathomechanisms of epidermolysis bullosa: Beyond structural proteins. Matrix Biol 2022; 110:91-105. [DOI: 10.1016/j.matbio.2022.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/12/2022] [Accepted: 04/28/2022] [Indexed: 10/18/2022]
|
5
|
Vermeer MCSC, Andrei D, Kramer D, Nijenhuis AM, Hoedemaekers YM, Westers H, Jongbloed JDH, Pas HH, van den Berg MP, Silljé HHW, van der Meer P, Bolling MC. Functional investigation of two simultaneous or separately segregating DSP variants within a single family support the theory of a dose-dependent disease severity. Exp Dermatol 2022; 31:970-979. [PMID: 35325485 PMCID: PMC9322008 DOI: 10.1111/exd.14571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 02/28/2022] [Accepted: 03/22/2022] [Indexed: 11/30/2022]
Abstract
Desmoplakin (DP) is an important component of desmosomes, essential in cell–cell connecting structures in stress‐bearing tissues. Over the years, many hundreds of pathogenic variants in DSP have been associated with different cutaneous and cardiac phenotypes or a combination, known as a cardiocutaneous syndrome. Of less than 5% of the reported DSP variants, the effect on the protein has been investigated. Here, we describe and have performed RNA, protein and tissue analysis in a large family where DSPc.273+5G>A/c.6687delA segregated with palmoplantar keratoderma (PPK), woolly hair and lethal cardiomyopathy, while DSPWT/c.6687delA segregated with PPK and milder cardiomyopathy. hiPSC‐derived cardiomyocytes and primary keratinocytes from carriers were obtained for analysis. Unlike the previously reported nonsense variants in the last exon of DSP that bypassed the nonsense‐mediated mRNA surveillance system leading to protein truncation, variant c.6687delA was shown to cause the loss of protein expression. Patients carrying both variants and having a considerably more severe phenotype were shown to have 70% DP protein reduction, while patients carrying only c.6687delA had 50% protein reduction and a milder phenotype. The analysis of RNA from patient cells did not show any splicing effect of the c.273+5G>A variant. However, a minigene splicing assay clearly showed alternative spliced transcripts originating from this variant. This study shows the importance of RNA and protein analyses to pinpoint the exact effect of DSP variants instead of solely relying on predictions. In addition, the particular pattern of inheritance, with simultaneous or separately segregating DSP variants within the same family, strongly supports the theory of a dose‐dependent disease severity.
Collapse
Affiliation(s)
- Mathilde C S C Vermeer
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Daniela Andrei
- Department of Dermatology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Duco Kramer
- Department of Dermatology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Albertine M Nijenhuis
- Department of Dermatology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Yvonne M Hoedemaekers
- Department of Genetics, Radboud University Nijmegen, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Helga Westers
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Jan D H Jongbloed
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Hendri H Pas
- Department of Dermatology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Maarten P van den Berg
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Herman H W Silljé
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Peter van der Meer
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Maria C Bolling
- Department of Dermatology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|