1
|
Li J, Hou Y, Ding H, Wang P, Li B. 1α,25-hydroxyvitamin D/VDR suppresses stem-like properties of ovarian cancer cells by restraining nuclear translocation of β-catenin. Steroids 2024; 211:109488. [PMID: 39151767 DOI: 10.1016/j.steroids.2024.109488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/30/2024] [Accepted: 08/05/2024] [Indexed: 08/19/2024]
Abstract
Several studies have indicated that 1α,25-hydroxyvitamin D [1α,25(OH)2D3] inhibits the proliferation and metastasis of cancer cells through suppressing epithelial-mesenchymal transition. However, its influence on the translocation of β-catenin remains unclear. In the present study, ovarian cancer stem-like cells (CSCs), including side population (SP) and CD44+/CD117+, were isolated from mouse ovarian surface epithelial (MOSE) cells with malignant transformation. The findings revealed that 1α,25(OH)2D3 obviously reduced the sphere-forming ability, as well as Notch1 and Klf levels. Moreover, the limiting dilution assay demonstrated that 1α,25(OH)2D3 effectively hindered the tumorigenesis of ovarian CSCs in vitro. Notably, treatment with 1α,25(OH)2D3 led to a substantial increase in the cell population of CD44+/CD117+ forming one tumor from ≤ 100 to 445 in orthotopic transplanted model, indicating a pronounced suppression of stemness of ovarian CSCs. Additionally, 1α,25(OH)2D3 robustly promoted the translocation of β-catenin from the nuclear to the cytoplasm through directly binding to VDR, which resulted in decreased levels of c-Myc and CyclinD1 within late MOSE cells. Taken together, these results strongly supported the role of 1α,25(OH)2D3 in inhibiting stem-like properties in ovarian cancer cells by restraining nuclear translocation of β-catenin, thereby offering a promising target for cancer therapeutics.
Collapse
Affiliation(s)
- Jie Li
- Deparment of Nutrition and Food Hygiene, School of Public Health, Suzhou Medical College of Soochow University, Suzhou 215123, China
| | - Yongfeng Hou
- Deparment of Nutrition and Food Hygiene, School of Public Health, Suzhou Medical College of Soochow University, Suzhou 215123, China; State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Beijing 100037, China
| | - Hongmei Ding
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Soochow University, Suzhou 215123, China.
| | - Ping Wang
- Deparment of Nutrition and Food Hygiene, School of Public Health, Suzhou Medical College of Soochow University, Suzhou 215123, China.
| | - Bingyan Li
- Deparment of Nutrition and Food Hygiene, School of Public Health, Suzhou Medical College of Soochow University, Suzhou 215123, China.
| |
Collapse
|
2
|
Slominski AT, Kim TK, Janjetovic Z, Slominski RM, Li W, Jetten AM, Indra AK, Mason RS, Tuckey RC. Biological Effects of CYP11A1-Derived Vitamin D and Lumisterol Metabolites in the Skin. J Invest Dermatol 2024; 144:2145-2161. [PMID: 39001720 PMCID: PMC11416330 DOI: 10.1016/j.jid.2024.04.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/06/2024] [Accepted: 04/29/2024] [Indexed: 07/15/2024]
Abstract
Novel pathways of vitamin D3, lumisterol 3 (L3), and tachysterol 3 (T3) activation have been discovered, initiated by CYP11A1 and/or CYP27A1 in the case of L3 and T3. The resulting hydroxymetabolites enhance protection of skin against DNA damage and oxidative stress; stimulate keratinocyte differentiation; exert anti-inflammatory, antifibrogenic, and anticancer activities; and inhibit cell proliferation in a structure-dependent manner. They act on nuclear receptors, including vitamin D receptor, aryl hydrocarbon receptor, LXRα/β, RAR-related orphan receptor α/γ, and peroxisome proliferator-activated receptor-γ, with selectivity defined by their core structure and distribution of hydroxyl groups. They can activate NRF2 and p53 and inhibit NF-κB, IL-17, Shh, and Wnt/β-catenin signaling. Thus, they protect skin integrity and physiology.
Collapse
Affiliation(s)
- Andrzej T Slominski
- Department of Dermatology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA; Cancer Chemoprevention Program, Comprehensive Cancer Center, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA; Veterans Administration Medical Center, Birmingham, Alabama, USA.
| | - Tae-Kang Kim
- Department of Dermatology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Zorica Janjetovic
- Department of Dermatology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Radomir M Slominski
- Department of Genetics, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Wei Li
- Drug Discovery Center, Department of Pharmaceutical Sciences, University of Tennessee Health Science Center College of Pharmacy, Memphis, Tennessee, USA
| | - Anton M Jetten
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - Arup K Indra
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon, USA; Department of Dermatology, Oregon Health and Science University, Portland, Oregon, USA; Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon; USA
| | - Rebecca S Mason
- School of Life and Environmental Sciences, The University of Sydney, Australia; Charles Perkins Centre, The University of Sydney, Australia
| | - Robert C Tuckey
- School of Molecular Sciences, The University of Western Australia, Perth, Australia
| |
Collapse
|
3
|
Kim TK, Slominski RM, Pyza E, Kleszczynski K, Tuckey RC, Reiter RJ, Holick MF, Slominski AT. Evolutionary formation of melatonin and vitamin D in early life forms: insects take centre stage. Biol Rev Camb Philos Soc 2024; 99:1772-1790. [PMID: 38686544 PMCID: PMC11368659 DOI: 10.1111/brv.13091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 04/11/2024] [Accepted: 04/17/2024] [Indexed: 05/02/2024]
Abstract
Melatonin, a product of tryptophan metabolism via serotonin, is a molecule with an indole backbone that is widely produced by bacteria, unicellular eukaryotic organisms, plants, fungi and all animal taxa. Aside from its role in the regulation of circadian rhythms, it has diverse biological actions including regulation of cytoprotective responses and other functions crucial for survival across different species. The latter properties are also shared by its metabolites including kynuric products generated by reactive oxygen species or phototransfomation induced by ultraviolet radiation. Vitamins D and related photoproducts originate from phototransformation of ∆5,7 sterols, of which 7-dehydrocholesterol and ergosterol are examples. Their ∆5,7 bonds in the B ring absorb solar ultraviolet radiation [290-315 nm, ultraviolet B (UVB) radiation] resulting in B ring opening to produce previtamin D, also referred to as a secosteroid. Once formed, previtamin D can either undergo thermal-induced isomerization to vitamin D or absorb UVB radiation to be transformed into photoproducts including lumisterol and tachysterol. Vitamin D, as well as the previtamin D photoproducts lumisterol and tachysterol, are hydroxylated by cyochrome P450 (CYP) enzymes to produce biologically active hydroxyderivatives. The best known of these is 1,25-dihydroxyvitamin D (1,25(OH)2D) for which the major function in vertebrates is regulation of calcium and phosphorus metabolism. Herein we review data on melatonin production and metabolism and discuss their functions in insects. We discuss production of previtamin D and vitamin D, and their photoproducts in fungi, plants and insects, as well as mechanisms for their enzymatic activation and suggest possible biological functions for them in these groups of organisms. For the detection of these secosteroids and their precursors and photoderivatives, as well as melatonin metabolites, we focus on honey produced by bees and on body extracts of Drosophila melanogaster. Common biological functions for melatonin derivatives and secosteroids such as cytoprotective and photoprotective actions in insects are discussed. We provide hypotheses for the photoproduction of other secosteroids and of kynuric metabolites of melatonin, based on the known photobiology of ∆5,7 sterols and of the indole ring, respectively. We also offer possible mechanisms of actions for these unique molecules and summarise differences and similarities of melatoninergic and secosteroidogenic pathways in diverse organisms including insects.
Collapse
Affiliation(s)
- Tae-Kang Kim
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Radomir M Slominski
- Department of Genetics, Genomics, Bioinformatics and Informatics Institute, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Elzbieta Pyza
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, Kraków, 30-387, Poland
| | - Konrad Kleszczynski
- Department of Dermatology, Münster, Von-Esmarch-Str. 58, Münster, 48161, Germany
| | - Robert C Tuckey
- School of Molecular Sciences, The University of Western Australia, Perth, WA, 6009, Australia
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health, Long School of Medicine, San Antonio, TX, 78229, USA
| | | | - Andrzej T Slominski
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
- Comprehensive Cancer Center, Cancer Chemoprevention Program, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
- VA Medical Center, Birmingham, AL, 35294, USA
| |
Collapse
|
4
|
Ho LJ, Wu CH, Luo SF, Lai JH. Vitamin D and systemic lupus erythematosus: Causality and association with disease activity and therapeutics. Biochem Pharmacol 2024; 227:116417. [PMID: 38996931 DOI: 10.1016/j.bcp.2024.116417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/25/2024] [Accepted: 07/08/2024] [Indexed: 07/14/2024]
Abstract
The major role of bioactive vitamin 1,25-dihydroxyvitamin D3 (1,25(OH)2D or calcitriol) is to maintain the levels of calcium and phosphorus to achieve bone and mineral homeostasis. Dietary intake and adequate natural light exposure are the main contributors to normal vitamin D status. In addition to regulating metabolism, vitamin D exerts various immunomodulatory effects that regulate innate and adaptive immunity through immune effector cells such as monocytes, macrophages, T and B lymphocytes, and natural killer cells and nonimmune cells that express vitamin D receptors. Systemic lupus erythematosus (SLE) is an autoimmune disease with an unknown etiology, and the association between vitamin D and SLE remains incompletely understood. Given that the current treatment for SLE relies heavily on corticosteroids and that SLE patients tend to have low vitamin D status, vitamin D supplementation may help to reduce the dosage of corticosteroids and/or attenuate disease severity. In this review, we address the associations between vitamin D and several clinical aspects of SLE. In addition, the underlying immunomodulatory mechanisms accounting for the potential vitamin D-mediated therapeutic effects are discussed. Finally, several confounding factors in data interpretation and the execution of clinical trials and perspectives targeting vitamin D supplementation in patients with SLE are also addressed.
Collapse
Affiliation(s)
- Ling-Jun Ho
- Institute of Cellular and System Medicine, National Health Research Institute, Zhunan, Taiwan
| | - Chien-Hsiang Wu
- Division of Allergy, Immunology, and Rheumatology, Department of Internal Medicine, Chang Gung Memorial Hospital, Tao-Yuan 333, Taiwan
| | - Shue-Fen Luo
- Division of Allergy, Immunology, and Rheumatology, Department of Internal Medicine, Chang Gung Memorial Hospital, Tao-Yuan 333, Taiwan
| | - Jenn-Haung Lai
- Division of Allergy, Immunology, and Rheumatology, Department of Internal Medicine, Chang Gung Memorial Hospital, Tao-Yuan 333, Taiwan; Graduate Institute of Medical Science, National Defense Medical Center, Taipei, Taiwan.
| |
Collapse
|
5
|
Kühn J, Brandsch C, Bailer AC, Kiourtzidis M, Hirche F, Chen CY, Markó L, Bartolomaeus TUP, Löber U, Michel S, Wensch-Dorendorf M, Forslund-Startceva SK, Stangl GI. UV light exposure versus vitamin D supplementation: A comparison of health benefits and vitamin D metabolism in a pig model. J Nutr Biochem 2024; 134:109746. [PMID: 39178919 DOI: 10.1016/j.jnutbio.2024.109746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 08/12/2024] [Accepted: 08/16/2024] [Indexed: 08/26/2024]
Abstract
There is limited data on the effect of UV light exposure versus orally ingested vitamin D3 on vitamin D metabolism and health. A 4-week study with 16 pigs (as a model for human physiology) was conducted. The pigs were either supplemented with 20 µg/d vitamin D3 or exposed to UV light for 19 min/d to standardize plasma 25-hydroxyvitamin D3 levels. Important differences were higher levels of stored vitamin D3 in skin and subcutaneous fat, higher plasma concentrations of 3-epi-25-hydroxyvitamin D3 and increases of cutaneous lumisterol3 in UV-exposed pigs compared to supplemented pigs. UV light exposure compared to vitamin D3 supplementation resulted in lower hepatic cholesterol, higher circulating plasma nitrite, a marker of the blood pressure-lowering nitric oxide, and a reduction in the release of pro- and anti-inflammatory cytokines from stimulated peripheral blood mononuclear cells. However, plasma metabolome and stool microbiome analyses did not reveal any differences between the two groups. To conclude, the current data show important health relevant differences between oral vitamin D3 supplementation and UV light exposure. The findings may also partly explain the different vitamin D effects on health parameters obtained from association and intervention studies.
Collapse
Affiliation(s)
- Julia Kühn
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle, Saale, Germany.
| | - Corinna Brandsch
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle, Saale, Germany
| | - Anja C Bailer
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle, Saale, Germany; Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD), Halle-Jena-Leipzig, Germany
| | - Mikis Kiourtzidis
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle, Saale, Germany; Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD), Halle-Jena-Leipzig, Germany
| | - Frank Hirche
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle, Saale, Germany
| | - Chia-Yu Chen
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Berlin, Germany; Charité-Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany; DZHK, German Centre for Cardiovascular Research, Berlin, Germany
| | - Lajos Markó
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Berlin, Germany; Charité-Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany; DZHK, German Centre for Cardiovascular Research, Berlin, Germany
| | - Theda U P Bartolomaeus
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Berlin, Germany; Charité-Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany; DZHK, German Centre for Cardiovascular Research, Berlin, Germany
| | - Ulrike Löber
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Berlin, Germany; Charité-Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany; DZHK, German Centre for Cardiovascular Research, Berlin, Germany
| | - Samira Michel
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle, Saale, Germany
| | - Monika Wensch-Dorendorf
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle, Saale, Germany
| | - Sofia K Forslund-Startceva
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Berlin, Germany; Charité-Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany; DZHK, German Centre for Cardiovascular Research, Berlin, Germany; Structural and Computational Biology Unit, EMBL, Heidelberg, Germany
| | - Gabriele I Stangl
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle, Saale, Germany; Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD), Halle-Jena-Leipzig, Germany
| |
Collapse
|
6
|
Taracha-Wisniewska A, Parks EGC, Miller M, Lipinska-Zubrycka L, Dworkin S, Wilanowski T. Vitamin D Receptor Regulates the Expression of the Grainyhead-Like 1 Gene. Int J Mol Sci 2024; 25:7913. [PMID: 39063155 PMCID: PMC11276664 DOI: 10.3390/ijms25147913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/28/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Vitamin D plays an important pleiotropic role in maintaining global homeostasis of the human body. Its functions go far beyond skeletal health, playing a crucial role in a plethora of cellular functions, as well as in extraskeletal health, ensuring the proper functioning of multiple human organs, including the skin. Genes from the Grainyhead-like (GRHL) family code for transcription factors necessary for the development and maintenance of various epithelia. Even though they are involved in many processes regulated by vitamin D, a direct link between vitamin D-mediated cellular pathways and GRHL genes has never been described. We employed various bioinformatic methods, quantitative real-time PCR, chromatin immunoprecipitation, reporter gene assays, and calcitriol treatments to investigate this issue. We report that the vitamin D receptor (VDR) binds to a regulatory region of the Grainyhead-like 1 (GRHL1) gene and regulates its expression. Ectopic expression of VDR and treatment with calcitriol alters the expression of the GRHL1 gene. The evidence presented here indicates a role of VDR in the regulation of expression of GRHL1 and correspondingly a role of GRHL1 in mediating the actions of vitamin D.
Collapse
Affiliation(s)
- Agnieszka Taracha-Wisniewska
- Faculty of Biology, Institute of Genetics and Biotechnology, University of Warsaw, 02-096 Warsaw, Poland; (A.T.-W.); (L.L.-Z.)
| | - Emma G. C. Parks
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, VIC 3086, Australia; (E.G.C.P.); (S.D.)
| | - Michal Miller
- Nencki Institute of Experimental Biology of Polish Academy of Sciences, 02-093 Warsaw, Poland;
| | - Lidia Lipinska-Zubrycka
- Faculty of Biology, Institute of Genetics and Biotechnology, University of Warsaw, 02-096 Warsaw, Poland; (A.T.-W.); (L.L.-Z.)
| | - Sebastian Dworkin
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, VIC 3086, Australia; (E.G.C.P.); (S.D.)
| | - Tomasz Wilanowski
- Faculty of Biology, Institute of Genetics and Biotechnology, University of Warsaw, 02-096 Warsaw, Poland; (A.T.-W.); (L.L.-Z.)
| |
Collapse
|
7
|
Bogdanowicz P, Bensadoun P, Noizet M, Béganton B, Philippe A, Alvarez-Georges S, Doat G, Tourette A, Bessou-Touya S, Lemaitre JM, Duplan H. Senomorphic activity of a combination of niacinamide and hyaluronic acid: correlation with clinical improvement of skin aging. Sci Rep 2024; 14:16321. [PMID: 39009698 PMCID: PMC11251187 DOI: 10.1038/s41598-024-66624-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 07/02/2024] [Indexed: 07/17/2024] Open
Abstract
Intrinsic and extrinsic factors, including lifestyle and sun exposure, can contribute to cell senescence, which impairs skin homeostasis, that may in turn lead to skin aging. Senescent cells have a specific secretome, called the senescence-associated secretory phenotype (SASP) that includes MMPs, CXCLs and S100A8/9. Reducing the SASP with senotherapeutics is a promising strategy to reduce skin aging. Here we evaluated the effect of a formula containing niacinamide and hyaluronic acid, which are known to limit senescence and skin aging. We conducted three different studies. (1) Ex vivo explants treated with the formula had more collagen and glycosaminoglycan. (2) In a clinical trial with forty-four women, two months of treatment improved fine lines, wrinkles, luminosity, smoothness, homogeneity, and plumpness. (3) In a third study on thirty women, we treated one arm for two months and took skin biopsies to study gene expression. 101 mRNAs and 13 miRNAs were differentially expressed. We observed a likely senomorphic effect, as there was a decrease in many SASP genes including MMP12 and CXCL9 and a significant downregulation of autocrine signaling genes: S100A8 and S100A9. These pharmaco-clinical results are the first to demonstrate the senomorphic properties of an effective anti-aging formula in skin.
Collapse
Affiliation(s)
| | - Paul Bensadoun
- INSERM IRMB UMR1183, Hôpital Saint Eloi, Université de Montpellier, Montpellier, France
| | - Maïté Noizet
- R&D Pierre Fabre Dermo-Cosmétique & Personal Care, Toulouse, France
| | - Benoît Béganton
- R&D Pierre Fabre Dermo-Cosmétique & Personal Care, Toulouse, France
| | - Armony Philippe
- R&D Pierre Fabre Dermo-Cosmétique & Personal Care, Toulouse, France
| | | | - Gautier Doat
- Laboratoires Dermatologiques Avène, Lavaur, France
| | - Amélie Tourette
- R&D Pierre Fabre Dermo-Cosmétique & Personal Care, Toulouse, France
| | | | - Jean-Marc Lemaitre
- INSERM IRMB UMR1183, Hôpital Saint Eloi, Université de Montpellier, Montpellier, France.
| | - Hélène Duplan
- R&D Pierre Fabre Dermo-Cosmétique & Personal Care, Toulouse, France
| |
Collapse
|
8
|
Sun Y, Alessandroni L, Angeloni S, Del Bianco E, Sagratini G. From 7-dehydrocholesterol to vitamin D 3: Optimization of UV conversion procedures toward the valorization of fish waste matrices. Food Chem X 2024; 22:101373. [PMID: 38633740 PMCID: PMC11021362 DOI: 10.1016/j.fochx.2024.101373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/26/2024] [Accepted: 04/08/2024] [Indexed: 04/19/2024] Open
Abstract
Vitamin D, a fat-soluble steroid, has increasingly taken a central role due to its crucial role in human health. It is estimated that about 40% of worldwide population are vitamin D deficient. The fish industry produces significant quantities of waste daily, with consequent high environmental impact. The aim of this work is to place a first brick for the fish waste reuse as a source of vitamin D3 extracts to be used for nutraceutical purposes. For this purpose, an UV conversion method for transforming the 7-dehydrocholesterol, highly present in fish, in vitamin D3 has been optimized. The UV wavelength, exposure time, temperature, stirring, and UV intensity were optimized using a surface response design tool. The optimized treatment was applied to five fish species with different fat percentages and the results were very promising reaching vitamin D3 levels >10 times higher than the pre-treatment ones.
Collapse
Affiliation(s)
| | | | - Simone Angeloni
- School of Pharmacy, Chemistry Interdisciplinary Project (ChIP), University of Camerino, 62032 Camerino, Italy
| | - Erika Del Bianco
- School of Pharmacy, Chemistry Interdisciplinary Project (ChIP), University of Camerino, 62032 Camerino, Italy
| | - Gianni Sagratini
- School of Pharmacy, Chemistry Interdisciplinary Project (ChIP), University of Camerino, 62032 Camerino, Italy
| |
Collapse
|
9
|
Attal ZG, Shalata W, Soklakova A, Tourkey L, Shalata S, Abu Saleh O, Abu Salamah F, Alatawneh I, Yakobson A. Advanced and Metastatic Non-Melanoma Skin Cancer: Epidemiology, Risk Factors, Clinical Features, and Treatment Options. Biomedicines 2024; 12:1448. [PMID: 39062023 PMCID: PMC11274597 DOI: 10.3390/biomedicines12071448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/27/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
Non-melanoma skin cancers (NMSC) form the majority of skin cancers, with basal cell carcinoma (BCC) being the most common and cutaneous squamous cell carcinoma (cSCC) being second. Prolonged ultraviolet (UV) exposure, aging, male gender, and immunosuppression represent most of the causes of this category of diseases. BCCs and cSCCs both include different types of skin cancers, such as nodular or morpheaform BCC or flat cSCC. Locally advanced and metastatic NMSCs cannot be treated surgically; thus, systemic therapy (TKI and Immunotherapy) is needed. Interestingly, NMSCs are frequently linked to abnormal Hedgehog (HH) signaling which most systemic immunotherapies for these cancers are based upon. Of note, the first line therapies of BCC, sonidegib and vismodegib, are HH inhibitors. Programmed death receptor 1 antibody (PD-1) inhibitors such as cemiplimab, pembrolizumab, and nivolumab have been approved for the treatment of cSCC. Thus, this paper reviews the epidemiology, risk factors, clinical features, and treatment options for both BCC and cSCC.
Collapse
Affiliation(s)
- Zoe Gabrielle Attal
- Medical School for International Health, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Walid Shalata
- The Legacy Heritage Center, Dr Larry Norton Institute, Soroka Medical Center, Ben Gurion University, Beer Sheva 84105, Israel
| | - Arina Soklakova
- Medical School for International Health, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Lena Tourkey
- Medical School for International Health, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Sondos Shalata
- Nutrition Unit, Galilee Medical Center, Nahariya 22000, Israel
| | - Omar Abu Saleh
- Department of Dermatology and Venereology, The Emek Medical Centre, Afula 18341, Israel
| | - Fahed Abu Salamah
- Department of Dermatology, Soroka Medical Center and Ben Gurion University, Beer Sheva 84105, Israel
| | - Ibrahim Alatawneh
- Department of Dermatology, Soroka Medical Center and Ben Gurion University, Beer Sheva 84105, Israel
| | - Alexander Yakobson
- Medical School for International Health, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
| |
Collapse
|
10
|
Slominski RM, Kim TK, Janjetovic Z, Brożyna AA, Podgorska E, Dixon KM, Mason RS, Tuckey RC, Sharma R, Crossman DK, Elmets C, Raman C, Jetten AM, Indra AK, Slominski AT. Malignant Melanoma: An Overview, New Perspectives, and Vitamin D Signaling. Cancers (Basel) 2024; 16:2262. [PMID: 38927967 PMCID: PMC11201527 DOI: 10.3390/cancers16122262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/09/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Melanoma, originating through malignant transformation of melanin-producing melanocytes, is a formidable malignancy, characterized by local invasiveness, recurrence, early metastasis, resistance to therapy, and a high mortality rate. This review discusses etiologic and risk factors for melanoma, diagnostic and prognostic tools, including recent advances in molecular biology, omics, and bioinformatics, and provides an overview of its therapy. Since the incidence of melanoma is rising and mortality remains unacceptably high, we discuss its inherent properties, including melanogenesis, that make this disease resilient to treatment and propose to use AI to solve the above complex and multidimensional problems. We provide an overview on vitamin D and its anticancerogenic properties, and report recent advances in this field that can provide solutions for the prevention and/or therapy of melanoma. Experimental papers and clinicopathological studies on the role of vitamin D status and signaling pathways initiated by its active metabolites in melanoma prognosis and therapy are reviewed. We conclude that vitamin D signaling, defined by specific nuclear receptors and selective activation by specific vitamin D hydroxyderivatives, can provide a benefit for new or existing therapeutic approaches. We propose to target vitamin D signaling with the use of computational biology and AI tools to provide a solution to the melanoma problem.
Collapse
Affiliation(s)
- Radomir M. Slominski
- Department of Rheumatology and Clinical Immunology, Department of Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Tae-Kang Kim
- Department of Dermatology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (T.-K.K.); (Z.J.); (E.P.); (C.E.); (C.R.)
| | - Zorica Janjetovic
- Department of Dermatology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (T.-K.K.); (Z.J.); (E.P.); (C.E.); (C.R.)
| | - Anna A. Brożyna
- Department of Human Biology, Institute of Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, 87-100 Torun, Poland;
| | - Ewa Podgorska
- Department of Dermatology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (T.-K.K.); (Z.J.); (E.P.); (C.E.); (C.R.)
| | - Katie M. Dixon
- School of Medical Sciences, The University of Sydney, Sydney, NSW 2050, Australia; (K.M.D.); (R.S.M.)
| | - Rebecca S. Mason
- School of Medical Sciences, The University of Sydney, Sydney, NSW 2050, Australia; (K.M.D.); (R.S.M.)
| | - Robert C. Tuckey
- School of Molecular Sciences, University of Western Australia, Perth, WA 6009, Australia;
| | - Rahul Sharma
- Department of Biomedical Informatics and Data Science, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - David K. Crossman
- Department of Genetics and Bioinformatics, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Craig Elmets
- Department of Dermatology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (T.-K.K.); (Z.J.); (E.P.); (C.E.); (C.R.)
| | - Chander Raman
- Department of Dermatology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (T.-K.K.); (Z.J.); (E.P.); (C.E.); (C.R.)
| | - Anton M. Jetten
- Cell Biology Section, NIEHS—National Institutes of Health, Research Triangle Park, NC 27709, USA;
| | - Arup K. Indra
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR 97331, USA
- Department of Dermatology, Oregon Health & Science University, Portland, OR 97239, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Andrzej T. Slominski
- Department of Dermatology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (T.-K.K.); (Z.J.); (E.P.); (C.E.); (C.R.)
- Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Pathology and Laboratory Medicine Service, Veteran Administration Medical Center, Birmingham, AL 35233, USA
| |
Collapse
|
11
|
Gorini F, Tonacci A. Vitamin D: An Essential Nutrient in the Dual Relationship between Autoimmune Thyroid Diseases and Celiac Disease-A Comprehensive Review. Nutrients 2024; 16:1762. [PMID: 38892695 PMCID: PMC11174782 DOI: 10.3390/nu16111762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 05/29/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024] Open
Abstract
Autoimmune thyroid diseases (AITD) are among the most frequent autoimmune disorders, with a multifactorial etiology in which both genetic and environmental determinants are probably involved. Celiac disease (CeD) also represents a public concern, given its increasing prevalence due to the recent improvement of screening programs, leading to the detection of silent subtypes. The two conditions may be closely associated due to common risk factors, including genetic setting, changes in the composition and diversity of the gut microbiota, and deficiency of nutrients like vitamin D. This comprehensive review discussed the current evidence on the pivotal role of vitamin D in modulating both gut microbiota dysbiosis and immune system dysfunction, shedding light on the possible relevance of an adequate intake of this nutrient in the primary prevention of AITD and CeD. While future technology-based strategies for proper vitamin D supplementation could be attractive in the context of personalized medicine, several issues remain to be defined, including standardized assays for vitamin D determination, timely recommendations on vitamin D intake for immune system functioning, and longitudinal studies and randomized controlled trials to definitely establish a causal relationship between serum vitamin D levels and the onset of AITD and CeD.
Collapse
Affiliation(s)
- Francesca Gorini
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy;
| | | |
Collapse
|
12
|
Kermpatsou D, Olsson F, Wåhlén E, Söderberg O, Lennartsson J, Norlin M. Cellular responses to silencing of PDIA3 (protein disulphide-isomerase A3): Effects on proliferation, migration, and genes in control of active vitamin D. J Steroid Biochem Mol Biol 2024; 240:106497. [PMID: 38460707 DOI: 10.1016/j.jsbmb.2024.106497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/15/2024] [Accepted: 03/03/2024] [Indexed: 03/11/2024]
Abstract
The active form of vitamin D, 1,25-dihydroxyvitamin D3, is known to act via VDR (vitamin D receptor), affecting several physiological processes. In addition, PDIA3 (protein disulphide-isomerase A3) has been associated with some of the functions of 1,25-dihydroxyvitamin D3. In the present study we used siRNA-mediated silencing of PDIA3 in osteosarcoma and prostate carcinoma cell lines to examine the role(s) of PDIA3 for 1,25-dihydroxyvitamin D3-dependent responses. PDIA3 silencing affected VDR target genes and significantly altered the 1,25-dihydroxyvitamin D3-dependent induction of CYP24A1, essential for elimination of excess 1,25-dihydroxyvitamin D3. Also, PDIA3 silencing significantly altered migration and proliferation in prostate PC3 cells, independently of 1,25-dihydroxyvitamin D3. 1,25-Dihydroxyvitamin D3 increased thermostability of PDIA3 in cellular thermal shift assay, supporting functional interaction between PDIA3 and 1,25-dihydroxyvitamin D3-dependent pathways. In summary, our data link PDIA3 to 1,25-dihydroxyvitamin D3-mediated signalling, underline and extend its role in proliferation and reveal a novel function in maintenance of 1,25-dihydroxyvitamin D3 levels.
Collapse
Affiliation(s)
- Despoina Kermpatsou
- Department of Pharmaceutical Biosciences, Science for Life Laboratory, Uppsala University, Uppsala Biomedical Centre, Box 591, Uppsala S-751 24, Sweden
| | - Frida Olsson
- Department of Pharmaceutical Biosciences, Science for Life Laboratory, Uppsala University, Uppsala Biomedical Centre, Box 591, Uppsala S-751 24, Sweden
| | - Erik Wåhlén
- Department of Pharmaceutical Biosciences, Science for Life Laboratory, Uppsala University, Uppsala Biomedical Centre, Box 591, Uppsala S-751 24, Sweden
| | - Ola Söderberg
- Department of Pharmaceutical Biosciences, Science for Life Laboratory, Uppsala University, Uppsala Biomedical Centre, Box 591, Uppsala S-751 24, Sweden
| | - Johan Lennartsson
- Department of Pharmaceutical Biosciences, Science for Life Laboratory, Uppsala University, Uppsala Biomedical Centre, Box 591, Uppsala S-751 24, Sweden
| | - Maria Norlin
- Department of Pharmaceutical Biosciences, Science for Life Laboratory, Uppsala University, Uppsala Biomedical Centre, Box 591, Uppsala S-751 24, Sweden.
| |
Collapse
|
13
|
Murdaca G, Tagliafico L, Page E, Paladin F, Gangemi S. Gender Differences in the Interplay between Vitamin D and Microbiota in Allergic and Autoimmune Diseases. Biomedicines 2024; 12:1023. [PMID: 38790985 PMCID: PMC11117902 DOI: 10.3390/biomedicines12051023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/22/2024] [Accepted: 05/01/2024] [Indexed: 05/26/2024] Open
Abstract
The synergic role of vitamin D and the intestinal microbiota in the regulation of the immune system has been thoroughly described in the literature. Vitamin D deficiency and intestinal dysbiosis have shown a pathogenetic role in the development of numerous immune-mediated and allergic diseases. The physiological processes underlying aging and sex have proven to be capable of having a negative influence both on vitamin D values and the biodiversity of the microbiome. This leads to a global increase in levels of systemic inflammatory markers, with potential implications for all immune-mediated diseases and allergic conditions. Our review aims to collect and analyze the relationship between vitamin D and the intestinal microbiome with the immune system and the diseases associated with it, emphasizing the effect mediated by sexual hormones and aging.
Collapse
Affiliation(s)
- Giuseppe Murdaca
- Department of Internal Medicine, University of Genova, 16132 Genova, Italy (E.P.)
- Allergology and Clinical Immunology Unit, San Bartolomeo Hospital, 19038 Sarzana, Italy
| | - Luca Tagliafico
- Department of Internal Medicine, University of Genova, 16132 Genova, Italy (E.P.)
- Ospedale Policlinico San Martino IRCCS, Largo Rosanna Benzi 10, 16132 Genova, Italy
| | - Elena Page
- Department of Internal Medicine, University of Genova, 16132 Genova, Italy (E.P.)
- Ospedale Policlinico San Martino IRCCS, Largo Rosanna Benzi 10, 16132 Genova, Italy
| | - Francesca Paladin
- Elderly and Disabeld Department, San Paolo Hospital, 17100 Savona, Italy
| | - Sebastiano Gangemi
- School and Operative Unit of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy
| |
Collapse
|
14
|
Bokayeva K, Jamka M, Walkowiak D, Duś-Żuchowska M, Herzig KH, Walkowiak J. Vitamin Status in Patients with Phenylketonuria: A Systematic Review and Meta-Analysis. Int J Mol Sci 2024; 25:5065. [PMID: 38791104 PMCID: PMC11120668 DOI: 10.3390/ijms25105065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/02/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024] Open
Abstract
The published data on the vitamin status of patients with phenylketonuria (PKU) is contradictory; therefore, this systematic review and meta-analysis evaluated the vitamin status of PKU patients. A comprehensive search of multiple databases (PubMed, Web of Sciences, Cochrane, and Scopus) was finished in March 2024. The included studies compared vitamin levels between individuals diagnosed with early-treated PKU and healthy controls while excluding pregnant and lactating women, untreated PKU or hyperphenylalaninemia cases, control groups receiving vitamin supplementation, PKU patients receiving tetrahydrobiopterin or pegvaliase, and conference abstracts. The risk of bias in the included studies was assessed by the Newcastle-Ottawa scale. The effect sizes were expressed as standardised mean differences. The calculation of effect sizes with 95% CI using fixed-effects models and random-effects models was performed. A p-value < 0.05 was considered statistically significant. The study protocol was registered in the PROSPERO database (CRD42024519589). Out of the initially identified 11,086 articles, 24 met the criteria. The total number of participants comprised 770 individuals with PKU and 2387 healthy controls. The meta-analyses of cross-sectional and case-control studies were conducted for vitamin B12, D, A, E, B6 and folate levels. PKU patients demonstrated significantly higher folate levels (random-effects model, SMD: 1.378, 95% CI: 0.436, 2.320, p = 0.004) and 1,25-dihydroxyvitamin D concentrations (random-effects model, SMD: 2.059, 95% CI: 0.250, 3.868, p = 0.026) compared to the controls. There were no significant differences in vitamin A, E, B6, B12 or 25-dihydroxyvitamin D levels. The main limitations of the evidence include a limited number of studies and their heterogeneity and variability in patients' compliance. Our findings suggest that individuals with PKU under nutritional guidance can achieve a vitamin status comparable to that of healthy subjects. Our study provides valuable insights into the nutritional status of PKU patients, but further research is required to confirm these findings and explore additional factors influencing vitamin status in PKU.
Collapse
Affiliation(s)
- Kamila Bokayeva
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, Szpitalna Str. 27/33, 60-572 Poznań, Poland; (K.B.); (M.J.); (M.D.-Ż.); (K.-H.H.)
| | - Małgorzata Jamka
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, Szpitalna Str. 27/33, 60-572 Poznań, Poland; (K.B.); (M.J.); (M.D.-Ż.); (K.-H.H.)
| | - Dariusz Walkowiak
- Department of Organization and Management in Health Care, Poznan University of Medical Sciences, Przybyszewskiego Str. 39, 60-356 Poznań, Poland;
| | - Monika Duś-Żuchowska
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, Szpitalna Str. 27/33, 60-572 Poznań, Poland; (K.B.); (M.J.); (M.D.-Ż.); (K.-H.H.)
| | - Karl-Heinz Herzig
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, Szpitalna Str. 27/33, 60-572 Poznań, Poland; (K.B.); (M.J.); (M.D.-Ż.); (K.-H.H.)
- Research Unit of Biomedicine and Internal Medicine, Biocenter of Oulu, Medical Research Center, Oulu University Hospital, University of Oulu, Aapistie Str. 5, 90220 Oulu, Finland
| | - Jarosław Walkowiak
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, Szpitalna Str. 27/33, 60-572 Poznań, Poland; (K.B.); (M.J.); (M.D.-Ż.); (K.-H.H.)
| |
Collapse
|
15
|
Ma Y, Gong Y, Wu Y, Zhao Q, Fu R, Zhang X, Li Y, Zhi X. 1,25(OH) 2D 3 improves diabetic wound healing by modulating inflammation and promoting angiogenesis. J Steroid Biochem Mol Biol 2024; 239:106477. [PMID: 38340904 DOI: 10.1016/j.jsbmb.2024.106477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024]
Abstract
Vitamin D was found to regulate inflammatory response and angiogenesis, which were often impaired in diabetic wound healing. This study aimed to investigate the effects of 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] on diabetic wound healing both in vivo and in vitro. Diabetes was induced by high-fat diet combined with streptozotocin. After four weeks of establishing diabetic mouse model, full-thickness excisional wounds were created on their dorsal skin. Then 1,25(OH)2D3 was administered via intraperitoneal injection for 14 consecutive days. Human umbilical vein endothelial cells (HUVECs) were cultured with normal glucose, high glucose, high glucose plus 1,25(OH)2D3. Cell proliferation, migration, tube formation, and expression levels of relevant pathway components were measured. Intervention with 1,25(OH)2D3 significantly increased wound closure rates of diabetic mice. During the inflammatory phase, 1,25(OH)2D3 alleviated excessive inflammation and promoted the transition of macrophages from M1 to M2 phenotype. Regarding vascular endothelial function, 1,25(OH)2D3 significantly up-regulated eNOS protein expression and inhibited Vcam-1 mRNA expression in diabetic mice (P < 0.05). As for angiogenesis, 1,25(OH)2D3 markedly increased CD31-positive area, the protein and mRNA expression of VEGF, VEGFR2, PDGF, and PDGFRβ, as well as the mRNA expression of Bfgf and Egfr (P < 0.05). In vitro, 1,25(OH)2D3 restored impaired cell proliferation, migration, and tube formation induced by high-glucose, and up-regulated expression of angiogenesis-related factors. These protective effects might be mediated through PI3K/AKT/HIF-1α pathway. These findings suggested that 1,25(OH)2D3 accelerated diabetic wound healing by modulating inflammation, restoring vascular endothelial dysfunction, and promoting angiogenesis.
Collapse
Affiliation(s)
- Yiming Ma
- Department of Occupational and Environmental Health, School of Public Health, Suzhou Medical College of Soochow University, 199 Renai Road, Suzhou 215123, China
| | - Yiting Gong
- Department of Occupational and Environmental Health, School of Public Health, Suzhou Medical College of Soochow University, 199 Renai Road, Suzhou 215123, China
| | - Ying Wu
- Department of Occupational and Environmental Health, School of Public Health, Suzhou Medical College of Soochow University, 199 Renai Road, Suzhou 215123, China
| | - Qiaofan Zhao
- Department of Occupational and Environmental Health, School of Public Health, Suzhou Medical College of Soochow University, 199 Renai Road, Suzhou 215123, China
| | - Ruyu Fu
- Department of Occupational and Environmental Health, School of Public Health, Suzhou Medical College of Soochow University, 199 Renai Road, Suzhou 215123, China
| | - Xiaoming Zhang
- Department of Occupational and Environmental Health, School of Public Health, Suzhou Medical College of Soochow University, 199 Renai Road, Suzhou 215123, China
| | - Ye Li
- Department of Occupational and Environmental Health, School of Public Health, Suzhou Medical College of Soochow University, 199 Renai Road, Suzhou 215123, China
| | - Xueyuan Zhi
- Department of Occupational and Environmental Health, School of Public Health, Suzhou Medical College of Soochow University, 199 Renai Road, Suzhou 215123, China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Suzhou Medical College of Soochow University, 199 Renai Road, Suzhou 215123, China.
| |
Collapse
|
16
|
Adamiak K, Gaida VA, Schäfer J, Bosse L, Diemer C, Reiter RJ, Slominski AT, Steinbrink K, Sionkowska A, Kleszczyński K. Melatonin/Sericin Wound Healing Patches: Implications for Melanoma Therapy. Int J Mol Sci 2024; 25:4858. [PMID: 38732075 PMCID: PMC11084828 DOI: 10.3390/ijms25094858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/19/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
Melatonin and sericin exhibit antioxidant properties and may be useful in topical wound healing patches by maintaining redox balance, cell integrity, and regulating the inflammatory response. In human skin, melatonin suppresses damage caused by ultraviolet radiation (UVR) which involves numerous mechanisms associated with reactive oxygen species/reactive nitrogen species (ROS/RNS) generation and enhancing apoptosis. Sericin is a protein mainly composed of glycine, serine, aspartic acid, and threonine amino acids removed from the silkworm cocoon (particularly Bombyx mori and other species). It is of interest because of its biodegradability, anti-oxidative, and anti-bacterial properties. Sericin inhibits tyrosinase activity and promotes cell proliferation that can be supportive and useful in melanoma treatment. In recent years, wound healing patches containing sericin and melatonin individually have attracted significant attention by the scientific community. In this review, we summarize the state of innovation of such patches during 2021-2023. To date, melatonin/sericin-polymer patches for application in post-operational wound healing treatment has been only sparingly investigated and it is an imperative to consider these materials as a promising approach targeting for skin tissue engineering or regenerative dermatology.
Collapse
Affiliation(s)
- Katarzyna Adamiak
- Department of Biomaterials and Cosmetic Chemistry, Faculty of Chemistry, Nicolaus Copernicus University, Gagarin 7, 87-100 Toruń, Poland; (K.A.); (A.S.)
| | - Vivian A. Gaida
- Department of Dermatology, University of Münster, Von-Esmarch-Str. 58, 48149 Münster, Germany; (V.A.G.); (J.S.); (L.B.); (C.D.); (K.S.)
| | - Jasmin Schäfer
- Department of Dermatology, University of Münster, Von-Esmarch-Str. 58, 48149 Münster, Germany; (V.A.G.); (J.S.); (L.B.); (C.D.); (K.S.)
| | - Lina Bosse
- Department of Dermatology, University of Münster, Von-Esmarch-Str. 58, 48149 Münster, Germany; (V.A.G.); (J.S.); (L.B.); (C.D.); (K.S.)
| | - Clara Diemer
- Department of Dermatology, University of Münster, Von-Esmarch-Str. 58, 48149 Münster, Germany; (V.A.G.); (J.S.); (L.B.); (C.D.); (K.S.)
| | - Russel J. Reiter
- Department of Cell Systems and Anatomy, Long School of Medicine, UT Health, San Antonio, TX 78229, USA;
| | - Andrzej T. Slominski
- Department of Dermatology, Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
- Pathology and Laboratory Medicine Service, VA Medical Center, Birmingham, AL 35294, USA
| | - Kerstin Steinbrink
- Department of Dermatology, University of Münster, Von-Esmarch-Str. 58, 48149 Münster, Germany; (V.A.G.); (J.S.); (L.B.); (C.D.); (K.S.)
| | - Alina Sionkowska
- Department of Biomaterials and Cosmetic Chemistry, Faculty of Chemistry, Nicolaus Copernicus University, Gagarin 7, 87-100 Toruń, Poland; (K.A.); (A.S.)
| | - Konrad Kleszczyński
- Department of Dermatology, University of Münster, Von-Esmarch-Str. 58, 48149 Münster, Germany; (V.A.G.); (J.S.); (L.B.); (C.D.); (K.S.)
| |
Collapse
|
17
|
Slominski RM, Chen JY, Raman C, Slominski AT. Photo-neuro-immuno-endocrinology: How the ultraviolet radiation regulates the body, brain, and immune system. Proc Natl Acad Sci U S A 2024; 121:e2308374121. [PMID: 38489380 PMCID: PMC10998607 DOI: 10.1073/pnas.2308374121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2024] Open
Abstract
Ultraviolet radiation (UVR) is primarily recognized for its detrimental effects such as cancerogenesis, skin aging, eye damage, and autoimmune disorders. With exception of ultraviolet B (UVB) requirement in the production of vitamin D3, the positive role of UVR in modulation of homeostasis is underappreciated. Skin exposure to UVR triggers local responses secondary to the induction of chemical, hormonal, immune, and neural signals that are defined by the chromophores and extent of UVR penetration into skin compartments. These responses are not random and are coordinated by the cutaneous neuro-immuno-endocrine system, which counteracts the action of external stressors and accommodates local homeostasis to the changing environment. The UVR induces electrical, chemical, and biological signals to be sent to the brain, endocrine and immune systems, as well as other central organs, which in concert regulate body homeostasis. To achieve its central homeostatic goal, the UVR-induced signals are precisely computed locally with transmission through nerves or humoral signals release into the circulation to activate and/or modulate coordinating central centers or organs. Such modulatory effects will be dependent on UVA and UVB wavelengths. This leads to immunosuppression, the activation of brain and endocrine coordinating centers, and the modification of different organ functions. Therefore, it is imperative to understand the underlying mechanisms of UVR electromagnetic energy penetration deep into the body, with its impact on the brain and internal organs. Photo-neuro-immuno-endocrinology can offer novel therapeutic approaches in addiction and mood disorders; autoimmune, neurodegenerative, and chronic pain-generating disorders; or pathologies involving endocrine, cardiovascular, gastrointestinal, or reproductive systems.
Collapse
Affiliation(s)
- Radomir M. Slominski
- Departments of Genetics, the University of Alabama at Birmingham, Birmingham, AL35294
| | - Jake Y. Chen
- Department of Biomedical Informatics and Data Science, the University of Alabama at Birmingham, Birmingham, AL35294
- Comprehensive Cancer Center, Cancer Chemoprevention Program, University of Alabama at Birmingham, Birmingham, AL35294
| | - Chander Raman
- Department of Dermatology, the University of Alabama at Birmingham, Birmingham, AL35294
| | - Andrzej T. Slominski
- Comprehensive Cancer Center, Cancer Chemoprevention Program, University of Alabama at Birmingham, Birmingham, AL35294
- Department of Dermatology, the University of Alabama at Birmingham, Birmingham, AL35294
- Veteran Administration Medical Center, Birmingham, AL35294
| |
Collapse
|
18
|
Kallioğlu MA, Sharma A, Kallioğlu A, Kumar S, Khargotra R, Singh T. UV index-based model for predicting synthesis of (pre-)vitamin D3 in the mediterranean basin. Sci Rep 2024; 14:3541. [PMID: 38347060 PMCID: PMC10861575 DOI: 10.1038/s41598-024-54188-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 02/09/2024] [Indexed: 02/15/2024] Open
Abstract
The importance of solar radiation for the body's ability to synthesize Vitamin D3 is well documented, yet the precise amount of sun exposure required to avoid Vitamin D insufficiency is less clear. To address this knowledge gap, this study sought to utilize the sun in a suitable period at the optimum dose by utilizing numerical simulations to determine the amount of Vitamin D3 synthesis in the skin according to season, time of day, and geographical location in Turkey. The study was carried out in three stages; in the first stage, daily, monthly, and annual values were determined in cases where the solar zenith angle has the active UV-B wavelength. The second stage determined the level of Vitamin D that can be synthesized in all skin types at 25% solar radiation exposure. In the third stage, the sun exposure time required for 1000 International Units (IU) for all skin types was calculated. According to the analysis, the yearly period of active synthesis of D3 on Earth lasts from the beginning of March to the third week of October. During the day, it is between 10:00 and 16:00. For 1000 IU/day, the average annual estimated times (minutes) are 5.05 for Type I, 6.3 for Type II, 7.6 for Type III, 11.35 for Type IV, 15.15 for Type V, and 25.25 for Type VI. The results of this paper will impact awareness for academic-medical users.
Collapse
Affiliation(s)
| | - Ashutosh Sharma
- College of Science and Engineering, James Cook University, Townsville, QLD, 4810, Australia
| | - Ayşan Kallioğlu
- Department of Neurology, Faculty of Medicine, Cigli Research and Training Hospital, Izmir Bakırçay University, 8780, Çiğli - İzmir, Turkey
| | - Sunil Kumar
- Department of Nanotechnology and Advanced Materials Engineering and HMC, Sejong University, Seoul, 05006, South Korea
| | - Rohit Khargotra
- Institute of Materials Engineering, Faculty of Engineering, Pannonia University, Veszprem, 8200, Hungary.
- Sustainability Solutions Research Lab, University of Pannonia, Egyetem u. 10., Veszprém, 8200, Hungary.
| | - Tej Singh
- Savaria Institute of Technology, Faculty of Informatics, ELTE Eötvös Loránd University, Budapest, Budapest, 1117, Hungary
| |
Collapse
|
19
|
de Macêdo LP, de Castro Tavares R, Torres Braga M, Dos Santos LM, Donato G, Lima Júnior FASD, de Macêdo RP, Ugulino Netto A, Franke K, Vansant Oliveira Eugênio P, Batista Cezar-Junior A, Vilela Faquini I, Júnior Silva JL, de Carvalho Júnior EV, Almeida NS, Bandeira E Farias FA, Moraes Valença M, Rocha Cirne Azevedo-Filho H. The relationship between the level of vitamin D and ruptured intracranial aneurysms among patients with high sun exposure. Sci Rep 2024; 14:3555. [PMID: 38347057 PMCID: PMC10861505 DOI: 10.1038/s41598-024-53676-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 02/03/2024] [Indexed: 02/15/2024] Open
Abstract
Non-traumatic subarachnoid hemorrhage (SAH) accounts for 3-5% of acute strokes. Intracranial aneurysm is the most common cause of non-traumatic SAH. Vitamin D influences the cardiovascular system, including the formation and rupture of cerebral aneurysms. To evaluate the serum vitamin D level in patients living in the tropical zone who suffered aneurysmal subarachnoid hemorrhage and its correlation with demographic and neurological characteristics. This is an analytical cross-sectional study to assess the serum level of vitamin D in a study population of 99 patients treated and diagnosed with aSAH in a public hospital in Recife-PE over a period of 12 months. In the study sample, composed of individuals with high sun exposure due to the lifestyle they lead in a tropical region, we observed hypovitaminosis D (85.9%), with a median of 19.9 ng/ml, although the majority of individuals are skin with high concentration of melanin (Fitzpatrick skin type IV and V). In addition, rates of sun exposure are high to all patients (Solar Index 9.03 P50). Most individuals were female (79.8%); there was no statistical difference in solar exposure/solar index between genders. As for the neurological repercussions, there was no statistical relevance in the clinical prognostic scales evaluated. As the sample was composed mainly of individuals whose economic activity is agriculture, the values of solar index found are vastly higher than those of other studies conducted in high latitude regions. In line with the literature review, some aspects were raised with the objective of justifying such findings that go from the base of the poor diet of these individuals, the increase of melanin in the skin and genetic alterations that directs us to possible mechanisms of natural photoprotection to high sun exposure. Thus, we had a vast majority (85%) of hypovitaminosis D, which in fact makes us wonder if there is any influence of calcitriol on vitamin D receptors in vascular walls and in the cardiovascular system as a whole, which influence bleeding events of this nature. As for the neurological repercussions, measured using assessment scales (Glasgow coma scale, WFNS scale, Hunt-Hess and Fisher's tomographic scale) there was no significant difference in the results. As it is only a descriptive study, the causal relationship of the facts cannot be established. However, in a population exposed to high sun exposure and affected by aneurysmal SAH, there is a significant rate of hypovitaminosis D, which supports the hypothesis that vitamin D plays a role in vascular pathologies, such as cerebral aneurysms and SAH.
Collapse
Affiliation(s)
- Lívio Pereira de Macêdo
- Department of Neurosurgery, Hospital da Restauração, Recife, Pernambuco, Brazil.
- Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil.
- , Recife, Brasil.
| | | | | | | | - Glaudir Donato
- Medical Student, Centro de Ciências Médicas, Universidade Federal da Paraíba, João Pessoa, Paraíba, Brazil
| | | | | | | | - Kauê Franke
- Department of Neurosurgery, Hospital da Restauração, Recife, Pernambuco, Brazil
| | | | | | - Igor Vilela Faquini
- Department of Neurosurgery, Hospital da Restauração, Recife, Pernambuco, Brazil
| | | | | | - Nivaldo S Almeida
- Department of Neurosurgery, Hospital da Restauração, Recife, Pernambuco, Brazil
| | | | | | - Hildo Rocha Cirne Azevedo-Filho
- Department of Neurosurgery, Hospital da Restauração, Recife, Pernambuco, Brazil
- Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| |
Collapse
|
20
|
Brennan E, Butler AE, Nandakumar M, Thompson K, Sathyapalan T, Atkin SL. Relationship between endocrine disrupting chemicals (phthalate metabolites, triclosan and bisphenols) and vitamin D in female subjects: An exploratory pilot study. CHEMOSPHERE 2024; 349:140894. [PMID: 38070612 DOI: 10.1016/j.chemosphere.2023.140894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/08/2023] [Accepted: 12/02/2023] [Indexed: 01/10/2024]
Abstract
INTRODUCTION Evidence suggests that endocrine disrupting chemicals (EDCs), commonly used in plastics and personal care products, may be associated with reduced levels of vitamin D. Therefore, this study examined the relationship between phthalate metabolites, 5-chloro-2-(2,4-dichlorophenoxy)phenol (triclosan; TCS) and bisphenols (BPs) with vitamin D3 (25(OH)D3) and active 1,25-dihydroxyvitamin D3 (1,25(OH)2D3), and their relationship to calcium homeostasis. METHODS 57 female participants (age 31.8 ± 4.6 years; BMI 25.6 ± 3.7 kg/m2) were analyzed for urinary levels of phthalate metabolites, TCS and BPs, and serum levels of 25(OH)D3 and 1,25(OH)2D3, determined by isotope-dilution liquid chromatography tandem mass spectrometry. Serum calcium/calmodulin-dependent (CaM) associated proteins were determined by Slow Off-rate Modified Aptamer (SOMA)-scan. RESULTS In the study cohort, 25(OH)D3 and 1,25(OH)2D3 levels were 22.9 ± 11.2 ng/mL and 0.05 ± 0.02 ng/mL, respectively: mono-3-carboxypropyl-phthalate (MCPP) correlated negatively with 25(OH)D3 (ρ = -0.53, p = 0.01). 28 of the 57 women recruited were 25(OH)D3 deficient, <20 ng/mL (50 nmol/L): in this group, mono-iso-butylphthalate (MiBP) and mono-butylphthalate (MBP) negatively correlated with 25(OH)D3; (ρ = -0.47, p = 0.049) and (ρ = -0.64, p = 0.005), respectively. EDCs did not correlate with 1,25(OH)2D3, measures of renal function or CaM proteins. CONCLUSION These putative data indicate that MCPP is related to 25(OH)D3, while MiBP and MBP were related to vitamin D deficiency; however, no correlations were observed with TCS and BPs. No phthalate metabolites correlated with 1,25(OH)2D3, CaM associated proteins or renal function, suggesting that effects occur earlier in the vitamin D pathway and not through modulation of cellular calcium flux. The observed correlations are surprisingly strong compared to other predictors of 25(OH)D3, and larger studies adjusting for potential confounders are warranted.
Collapse
Affiliation(s)
- Edwina Brennan
- School of Medicine, Royal College of Surgeons in Ireland-Medical University of Bahrain, Busaiteen, Bahrain.
| | - Alexandra E Butler
- School of Medicine, Royal College of Surgeons in Ireland-Medical University of Bahrain, Busaiteen, Bahrain.
| | - Manjula Nandakumar
- School of Medicine, Royal College of Surgeons in Ireland-Medical University of Bahrain, Busaiteen, Bahrain.
| | - Kristie Thompson
- Queensland Alliance for Environmental Health Sciences, The University of Queensland, QLD, Australia.
| | | | - Stephen L Atkin
- School of Medicine, Royal College of Surgeons in Ireland-Medical University of Bahrain, Busaiteen, Bahrain.
| |
Collapse
|
21
|
Janjetovic Z, Qayyum S, Reddy SB, Podgorska E, Scott SG, Szpotan J, Mobley AA, Li W, Boda VK, Ravichandran S, Tuckey RC, Jetten AM, Slominski AT. Novel Vitamin D3 Hydroxymetabolites Require Involvement of the Vitamin D Receptor or Retinoic Acid-Related Orphan Receptors for Their Antifibrogenic Activities in Human Fibroblasts. Cells 2024; 13:239. [PMID: 38334631 PMCID: PMC10854953 DOI: 10.3390/cells13030239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/18/2024] [Accepted: 01/23/2024] [Indexed: 02/10/2024] Open
Abstract
We investigated multiple signaling pathways activated by CYP11A1-derived vitamin D3 hydroxymetabolites in human skin fibroblasts by assessing the actions of these molecules on their cognate receptors and by investigating the role of CYP27B1 in their biological activities. The actions of 20(OH)D3, 20,23(OH)2D3, 1,20(OH)2D3 and 1,20,23(OH)3D3 were compared to those of classical 1,25(OH)2D3. This was undertaken using wild type (WT) fibroblasts, as well as cells with VDR, RORs, or CYP27B1 genes knocked down with siRNA. Vitamin D3 hydroxymetabolites had an inhibitory effect on the proliferation of WT cells, but this effect was abrogated in cells with silenced VDR or RORs. The collagen expression by WT cells was reduced upon secosteroid treatment. This effect was reversed in cells where VDR or RORs were knocked down where the inhibition of collagen production and the expression of anti-fibrotic genes in response to the hydroxymetabolites was abrogated, along with ablation of their anti-inflammatory action. The knockdown of CYP27B1 did not change the effect of either 20(OH)D3 or 20,23(OH)2D3, indicating that their actions are independent of 1α-hydroxylation. In conclusion, the expression of the VDR and/or RORα/γ receptors in fibroblasts is necessary for the inhibition of both the proliferation and fibrogenic activity of hydroxymetabolites of vitamin D3, while CYP27B1 is not required.
Collapse
Affiliation(s)
- Zorica Janjetovic
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (Z.J.); (S.Q.); (S.B.R.); (E.P.); (S.G.S.); (J.S.); (A.A.M.); (S.R.)
| | - Shariq Qayyum
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (Z.J.); (S.Q.); (S.B.R.); (E.P.); (S.G.S.); (J.S.); (A.A.M.); (S.R.)
- Brigham’s Women’s Hospital, Harvard University, Boston, MA 02115, USA
| | - Sivani B. Reddy
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (Z.J.); (S.Q.); (S.B.R.); (E.P.); (S.G.S.); (J.S.); (A.A.M.); (S.R.)
| | - Ewa Podgorska
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (Z.J.); (S.Q.); (S.B.R.); (E.P.); (S.G.S.); (J.S.); (A.A.M.); (S.R.)
| | - S. Gates Scott
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (Z.J.); (S.Q.); (S.B.R.); (E.P.); (S.G.S.); (J.S.); (A.A.M.); (S.R.)
| | - Justyna Szpotan
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (Z.J.); (S.Q.); (S.B.R.); (E.P.); (S.G.S.); (J.S.); (A.A.M.); (S.R.)
| | - Alisa A. Mobley
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (Z.J.); (S.Q.); (S.B.R.); (E.P.); (S.G.S.); (J.S.); (A.A.M.); (S.R.)
| | - Wei Li
- College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN 38163, USA; (W.L.); (V.K.B.)
| | - Vijay K. Boda
- College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN 38163, USA; (W.L.); (V.K.B.)
| | - Senthilkumar Ravichandran
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (Z.J.); (S.Q.); (S.B.R.); (E.P.); (S.G.S.); (J.S.); (A.A.M.); (S.R.)
| | - Robert C. Tuckey
- School of Molecular Science, The University of Western Australia, Perth 6009, Australia;
| | - Anton M. Jetten
- Cell Biology Section, NIEHS, National Institutes of Health, Research Triangle Park, NC 27709, USA;
| | - Andrzej T. Slominski
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (Z.J.); (S.Q.); (S.B.R.); (E.P.); (S.G.S.); (J.S.); (A.A.M.); (S.R.)
- Cancer Chemoprevention Program, Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- VA Medical Center, Birmingham, AL 35294, USA
| |
Collapse
|
22
|
Soyer E, Temel B, Bukan N, Demirtas CY, Gulekon A. The correlation analysis between alterations of serum vitamin D, IL-33 levels, and clinical improvement after narrow-band UVB treatment in vitiligo patients: A case-control study. PHOTODERMATOLOGY, PHOTOIMMUNOLOGY & PHOTOMEDICINE 2024; 40:e12947. [PMID: 38288766 DOI: 10.1111/phpp.12947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/19/2023] [Accepted: 12/25/2023] [Indexed: 02/01/2024]
Abstract
BACKGROUND The etiology of vitiligo has not been completely elucidated. Recently, 25-hydroxyvitamin D (25(OH)D) and IL-33 levels were found to be associated with the development of the vitiligo. The aim was to assess relationship between 25(OH)D, IL-33 levels, and clinical improvement after narrow-band UVB treatment in vitiligo. METHOD Patients with vitiligo who underwent at least 48 sessions of narrow-band UVB treatment were included in this study. Age, gender, smoking status, family history of vitiligo, type of vitiligo, body surface area affected by vitiligo, and vitiligo activity were recorded. 25(OH)D and IL-33 were measured and compared at baseline, second month, and fourth month. RESULTS Twenty patients with vitiligo and 20 healthy controls were included in this study. The mean baseline 25(OH)D level of vitiligo group was statistically significantly lower than the control group's (p < .05). The mean baseline IL-33 level was higher in vitiligo group with no statistically significantly difference (p > .05). The increase in 25(OH)D level and the decrease in vitiligo-affected body surface area were found to be statistically significant during treatment (p < .05). The mean IL-33 levels were found to be lower at the second and fourth month compared to baseline. However, there were no statistical significance (p > .05). CONCLUSION Low levels of 25(OH)D are thought to play a role in the etiopathogenesis of vitiligo. 25(OH)D increase due to phototherapy may have a role in repigmentation independently from the direct effect of narrow-band UVB.
Collapse
Affiliation(s)
- Emin Soyer
- Dermatology and Venereology, Private Clinic, Istanbul, Turkey
| | - Berkay Temel
- Dermatology and Venereology, Ankara Training and Research Hospital, Ankara, Turkey
| | - Neslihan Bukan
- Biochemistry, Gazi University School of Medicine Hospital, Ankara, Turkey
| | | | - Ayla Gulekon
- Dermatology and Venereology Gazi University School of Medicine Hospital, Ankara, Turkey
| |
Collapse
|
23
|
Fenizia S, Gaggini M, Vassalle C. Interplay between Vitamin D and Sphingolipids in Cardiometabolic Diseases. Int J Mol Sci 2023; 24:17123. [PMID: 38069444 PMCID: PMC10706901 DOI: 10.3390/ijms242317123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/28/2023] [Accepted: 12/03/2023] [Indexed: 12/18/2023] Open
Abstract
Sphingolipids (SLs) are structural, bioactive molecules with several key cellular roles, whereas 1,25-dihydroxyvitamin D (1,25(OH)D), the active form of vitamin D, is considered the major regulator of calcium homeostasis, although it also exerts other extraskeletal effects. Many studies reported the physiological connection between vitamin D and SLs, highlighting not only the effects of vitamin D on SL metabolism and signaling but also the influence of SLs on vitamin D levels and function, thus strongly suggesting a crosstalk between these molecules. After a brief description of 1,25(OH)D and SL metabolism, this review aims to discuss the preclinical and clinical evidence on the crosstalk between SLs and 1,25(OH)D, with a special focus on cardiometabolic diseases.
Collapse
Affiliation(s)
- Simona Fenizia
- Department of Sciences and Technological Innovation, University of Piemonte Orientale, Corso Trieste 15/A, I-28100 Novara, Italy;
- Department of Translational Medicine, University of Piemonte Orientale, Corso Trieste 15/A, I-28100 Novara, Italy
| | - Melania Gaggini
- Istituto di Fisiologia Clinica, Italian National Research Council, Via Moruzzi 1, I-56124 Pisa, Italy;
| | - Cristina Vassalle
- Fondazione CNR-Regione Toscana G. Monasterio, Via Moruzzi 1, I-56124 Pisa, Italy
| |
Collapse
|
24
|
Xia Y, Yu Y, Zhao Y, Deng Z, Zhang L, Liang G. Insight into the Interaction Mechanism of Vitamin D against Metabolic Syndrome: A Meta-Analysis and In Silico Study. Foods 2023; 12:3973. [PMID: 37959091 PMCID: PMC10649035 DOI: 10.3390/foods12213973] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
As a dietary supplement or functional food additive, vitamin D (VD) deficiency may impact extra-skeletal functions associated with metabolic syndrome (MetS) risk factors. However, the precise effects and mechanisms of VD supplementation on dyslipidemia and insulin resistance in MetS subjects remain controversial. Here, we investigate potential therapeutic targets, pathways and mechanisms of VD against MetS through a comprehensive strategy including meta-analysis, network pharmacology analysis, molecular docking, dynamics simulations, and quantum chemical calculations. Our results reveal that VD supplementation significantly reduces triglyceride levels, fasting glucose, and insulin concentrations in subjects, thereby improving insulin homeostasis to some extent. We theoretically identify 14 core MetS-associated targets. Notably, VD exhibits substantial interactions with three targets (PPARγ, FABP4, and HMGCR) in the PPAR signaling pathway, indicating that VD can modulate this pathway. Van der Waals forces predominantly stabilize the complexes formed between VD and the three targets. Nonetheless, to provide valuable insights for personalized MetS management, further research is necessary to confirm our findings, emphasizing the importance of exploring genetic variability in VD response. In conclusion, our study contributes insights into the mechanisms of VD in preventing and treating MetS through dietary supplementation, promoting the development of VD-based functional foods or nutritious diets.
Collapse
Affiliation(s)
- Yuting Xia
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China; (Y.X.); (Y.Y.); (Y.Z.); (Z.D.)
| | - Yuandong Yu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China; (Y.X.); (Y.Y.); (Y.Z.); (Z.D.)
| | - Yi Zhao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China; (Y.X.); (Y.Y.); (Y.Z.); (Z.D.)
| | - Zhifen Deng
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China; (Y.X.); (Y.Y.); (Y.Z.); (Z.D.)
| | - Lei Zhang
- College of Life Science, Chongqing Normal University, Chongqing 401331, China
| | - Guizhao Liang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China; (Y.X.); (Y.Y.); (Y.Z.); (Z.D.)
| |
Collapse
|