1
|
Mukherjee A, Dhak P, Mandal D, Dhak D. Solvothermal synthesis of 3D rod-shaped Ti/Al/Cr nano-oxide for photodegradation of wastewater micropollutants under sunlight: a green way to achieve SDG:6. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:56901-56916. [PMID: 37812343 DOI: 10.1007/s11356-023-30112-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 09/24/2023] [Indexed: 10/10/2023]
Abstract
Waterbodies are day-by-day polluted by the various colored micropollutants, e.g., azo dyes enriched (carcinogenic, non-biodegradable) colored wastewater from textile industries. Water pollution has become a serious global issue as ~ 25% of health diseases are prompted by pollution as reported by WHO. Around 1 billion people will face water scarcity by 2025 and this water crisis is also a prime focus to the UNs' sustainable development goal 6 (SDG6: clean water and sanitation). To prevent the water pollution caused by micropollutants, a mesoporous, 3D rod-like nano-oxide Ti/Al/Cr (abbreviated as TAC) has been synthesized via the solvothermal method. TAC degraded all classes of azo dyes (mono, di, tri, etc.) with > 90% efficiency under renewable energy source solar irradiation within the pH range 2-11. The detailed study was done on the photodegradation of carcinogenic di-azo dye Congo red (CR) which is banned in many countries. TAC showed 90.64 ± 2% degradation efficiency for CR at pH 7. The proposed photodegradation mechanism of CR was confirmed by the high-resolution liquid chromatography-mass spectroscopy (HRLC-MS) analysis obeying the Pirkanniemi path. The photodegradation obeyed the pseudo-1st-order kinetics and was reusable up to successive 5 cycles which can be an efficient tool to meet the UNs' SDG:6.
Collapse
Affiliation(s)
- Arnab Mukherjee
- Nanomaterials Research Lab, Department of Chemistry, Sidho-Kanho-Birsha University, Purulia, 723104, India
| | - Prasanta Dhak
- Department of Chemistry, Techno India University, Kolkata, 700091, India
| | - Debpriya Mandal
- Nanomaterials Research Lab, Department of Chemistry, Sidho-Kanho-Birsha University, Purulia, 723104, India
| | - Debasis Dhak
- Nanomaterials Research Lab, Department of Chemistry, Sidho-Kanho-Birsha University, Purulia, 723104, India.
| |
Collapse
|
2
|
Zheng Z, Zhang C, Li J, Fang D, Tan P, Fang Q, Chen G. Insight into the effect of exposed crystal facets of anatase TiO 2 on HCHO catalytic oxidation of Mn-Ce/TiO 2. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134710. [PMID: 38820758 DOI: 10.1016/j.jhazmat.2024.134710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/13/2024] [Accepted: 05/22/2024] [Indexed: 06/02/2024]
Abstract
Indoor formaldehyde pollution seriously jeopardizes human health. The development of efficient and stable non-precious metal catalysts for low-temperature catalytic degradation of formaldehyde is a promising approach. In this study, TiO2 {001} and {101} supports were loaded with different ratios of Mn and Ce active components, and the effects of the ratios of the active components on the catalytic activity were investigated. The elemental oxidation states, redox capacities, active oxygen mobilities and acid site distributions of the catalysts were determined using characterization techniques such as XPS, H2-TPR, O2-TPD, and NH3-TPD. In situ infrared spectroscopy was utilized to reveal the differences in the two-step dehydrogenation reactions of dioxymethylene (DOM) in 5Mn1Ce/Ti-NS and 5Mn1Ce/Ti-NP. Density-functional theory was used to investigate the differences in the catalytic steps and maximum energy barriers of Mn-Ce/Ti-NS and Mn-Ce/Ti-NP for HCHO. The differences in catalytic activity due to the influence of the manganese and cerium active components on the {001} and {101} crystal faces of anatase titanium dioxide are comprehensively revealed. Exposure of the supported crystalline surfaces alters the catalytic activity centers and reaction pathways at the molecular level. This study provides experimental and theoretical guidance for the selection of exposed crystalline surfaces for loaded catalysts.
Collapse
Affiliation(s)
- Zhao Zheng
- State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan 430074, China
| | - Cheng Zhang
- State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan 430074, China.
| | - Junchen Li
- State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan 430074, China
| | - Dingli Fang
- State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan 430074, China
| | - Peng Tan
- State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan 430074, China
| | - Qingyan Fang
- State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan 430074, China
| | - Gang Chen
- State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan 430074, China
| |
Collapse
|
3
|
Jang Y, Lee YH, Eom H, Lee SM, Kim SS. Effect of preparation method of noble metal supported catalyts on formaldehyde oxidation at room temperature: Gas or liquid phase reduction. J Environ Sci (China) 2022; 122:201-216. [PMID: 35717085 DOI: 10.1016/j.jes.2022.01.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 01/12/2022] [Accepted: 01/17/2022] [Indexed: 06/15/2023]
Abstract
Formaldehyde (HCHO) is toxic to the human body and is one of the main threats to the indoor air quality (IAQ). As such, the removal of HCHO is imperative to improving the IAQ, whereby the most useful method to effectively remove HCHO at room temperature is catalytic oxidation. This review discusses catalysts for HCHO room-temperature oxidation, which are categorized according to their preparation methods, i.e., gas-phase reduction and liquid-phase reduction methods. The HCHO oxidation performances, structural features, and reaction mechanisms of the different catalysts are discussed, and directions for future research on catalytic oxidation are reviewed.
Collapse
Affiliation(s)
- Younghee Jang
- Department of Environmental Energy Envineering, Graduate School of kyonggi University, Gyeonggi-do 16227, Korea
| | - Ye Hwan Lee
- Department of Environmental Energy Envineering, Graduate School of kyonggi University, Gyeonggi-do 16227, Korea
| | - Hanki Eom
- Department of Environmental Energy Engineeing, Kyonggi University, Gyonggi-do 16227, Korea
| | - Sang Moon Lee
- Department of Environmental Energy Engineeing, Kyonggi University, Gyonggi-do 16227, Korea
| | - Sung Su Kim
- Department of Environmental Energy Engineeing, Kyonggi University, Gyonggi-do 16227, Korea.
| |
Collapse
|
4
|
Zhao R, Wang H, Zhao D, Liu R, Liu S, Fu J, Zhang Y, Ding H. Review on Catalytic Oxidation of VOCs at Ambient Temperature. Int J Mol Sci 2022; 23:ijms232213739. [PMID: 36430218 PMCID: PMC9697337 DOI: 10.3390/ijms232213739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/02/2022] [Accepted: 11/06/2022] [Indexed: 11/11/2022] Open
Abstract
As an important air pollutant, volatile organic compounds (VOCs) pose a serious threat to the ecological environment and human health. To achieve energy saving, carbon reduction, and safe and efficient degradation of VOCs, ambient temperature catalytic oxidation has become a hot topic for researchers. Firstly, this review systematically summarizes recent progress on the catalytic oxidation of VOCs with different types. Secondly, based on nanoparticle catalysts, cluster catalysts, and single-atom catalysts, we discuss the influence of structural regulation, such as adjustment of size and configuration, metal doping, defect engineering, and acid/base modification, on the structure-activity relationship in the process of catalytic oxidation at ambient temperature. Then, the effects of process conditions, such as initial concentration, space velocity, oxidation atmosphere, and humidity adjustment on catalytic activity, are summarized. It is further found that nanoparticle catalysts are most commonly used in ambient temperature catalytic oxidation. Additionally, ambient temperature catalytic oxidation is mainly applied in the removal of easily degradable pollutants, and focuses on ambient temperature catalytic ozonation. The activity, selectivity, and stability of catalysts need to be improved. Finally, according to the existing problems and limitations in the application of ambient temperature catalytic oxidation technology, new prospects and challenges are proposed.
Collapse
Affiliation(s)
- Rui Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Han Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Dan Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Rui Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Shejiang Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Jianfeng Fu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Yuxin Zhang
- College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
| | - Hui Ding
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
- Correspondence:
| |
Collapse
|
5
|
Yan Z, Huang G, Wang G, Xiang M, Han X, Xu Z. Fluorescent lamp promoted formaldehyde removal over CeO2 catalysts at ambient temperature. J RARE EARTH 2022. [DOI: 10.1016/j.jre.2021.06.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
6
|
The Effect of Pretreatment on the Reactivity of Pd/Al
2
O
3
in Room Temperature Formaldehyde Oxidation. ChemCatChem 2021. [DOI: 10.1002/cctc.202101091] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
7
|
|
8
|
Ma M, Yang R, He C, Jiang Z, Shi JW, Albilali R, Fayaz K, Liu B. Pd-based catalysts promoted by hierarchical porous Al 2O 3 and ZnO microsphere supports/coatings for ethyl acetate highly active and stable destruction. JOURNAL OF HAZARDOUS MATERIALS 2021; 401:123281. [PMID: 32629352 DOI: 10.1016/j.jhazmat.2020.123281] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/02/2020] [Accepted: 06/19/2020] [Indexed: 06/11/2023]
Abstract
Developing economical and active materials is of great significance for VOC purification. Here, hierarchical porous Al2O3 and ZnO microspheres (Al2O3-pm and ZnO-pm) were synthesized by a facile hydrothermal strategy. The urchin-like Al2O3-pm and flower-like ZnO-pm possess high specific surface area (especially; external surface area) obviously boost the dispersion of Pd with 29.3 % and 30.1 % over Pd/Al2O3-pm and Pd/ZnO-pm, respectively, over 3.4 times higher than those of commercial Al2O3- and ZnO-supported counterparts. Pd/Al2O3-pm possesses excellent activity and CO2 yield in ethyl acetate (EA) degradation, with TOF reaches 7.76 × 10-3 s-1 at 160 °C under GHSV of 50,000 h-1. Moreover, Pd/Al2O3-pm exhibits satisfied performance in EA-contained binary VOCs oxidation and has high long-term stability under both dry and humid conditions. Both Pd sites and Brønsted acid sites participated in reaction process and initially react with EA to form ethylene and ethanol, respectively. Larger amount Brønsted acid sites over Pd/Al2O3-pm promote ethanol formation and C-C cleavage, resulting in different CO2 yields and EA activation mechanisms. The coating greatly enhances Pd dispersion over Pd supported monolithic catalyst, endowing its desired activity and stability even with a much lower Pd loading. This work promotes the potential application of noble-metal-based monolithic materials in VOC degradation.
Collapse
Affiliation(s)
- Mudi Ma
- State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, PR China
| | - Rui Yang
- State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, PR China
| | - Chi He
- State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, PR China; National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing 101408, PR China.
| | - Zeyu Jiang
- State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, PR China
| | - Jian-Wen Shi
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, PR China
| | - Reem Albilali
- Department of Chemistry, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Khaled Fayaz
- Department of Criminal Justice and Forensic Science, King Fahd Security College, P.O. Box 2511, Riyadh 11461, Saudi Arabia
| | - Baojun Liu
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, 550025, PR China.
| |
Collapse
|
9
|
Lin Y, Cao Y, Yao Q, Chai OJH, Xie J. Engineering Noble Metal Nanomaterials for Pollutant Decomposition. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c04258] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Yingzheng Lin
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, P. R. China
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Yitao Cao
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Qiaofeng Yao
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Osburg Jin Huang Chai
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Jianping Xie
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, P. R. China
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| |
Collapse
|
10
|
Size effect of γ-Al2O3 supports on the catalytic performance of Pd/γ-Al2O3 catalysts for HCHO oxidation. MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2020.111112] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
11
|
Eom H, Hwang IH, Lee DY, Lee SM, Kim SS. Preparation of Liquid-Phase Reduction Method-Based Pt/TiO 2 Catalyst and Reaction Characteristics during HCHO Room-Temperature Oxidation. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c02059] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hanki Eom
- Department of Environmental Energy Engineering, Kyonggi University, 154-42, Gwanggyosan-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16227, Republic of Korea
| | - In-hyuck Hwang
- Department of Environmental Energy Engineering, Graduate School, Kyonggi University, 154-42, Gwanggyosan-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16227, Republic of Korea
| | - Dong Yoon Lee
- Department of Environmental Energy Engineering, Graduate School, Kyonggi University, 154-42, Gwanggyosan-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16227, Republic of Korea
| | - Sang Moon Lee
- Department of Environmental Energy Engineering, Kyonggi University, 154-42, Gwanggyosan-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16227, Republic of Korea
| | - Sung Su Kim
- Department of Environmental Energy Engineering, Kyonggi University, 154-42, Gwanggyosan-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16227, Republic of Korea
| |
Collapse
|
12
|
Xie W, Zhang J, Zeng Y, Wang H, Yang Y, Zhai Y, Miao D, Li L. Highly sensitive and selective detection of 4-nitroaniline in water by a novel fluorescent sensor based on molecularly imprinted poly(ionic liquid). Anal Bioanal Chem 2020; 412:5653-5661. [PMID: 32621093 DOI: 10.1007/s00216-020-02785-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 06/12/2020] [Accepted: 06/22/2020] [Indexed: 12/15/2022]
Abstract
A novel molecularly imprinted fluorescent sensor for the determination of 4-nitroaniline (4-NA) was synthesized via free radical polymerization with 3-[(7-methoxy-2-oxo-2H-chromen-4-yl)methyl]-1-vinyl-1H-imidazol-3-ium bromide as the fluorescence functional monomer, 4-NA as the template molecule, ethylene glycol dimethacrylate as the cross-linker, and 2,2'-azo(bisisobutyronitrile) as the initiator. The obtained fluorescent poly(ionic liquid) was characterized through Fourier transform infrared, scanning electron microscopy, Brunauer-Emmett-Teller analysis, and fluorescence spectrophotometry. The fluorescent sensor had high fluorescence intensity, short detection time (0.5 min), good selectivity, and excellent sensitivity (limit of detection = 0.8 nM) for 4-NA, with good linear relationships of 2.67-10,000 nM. The practical applicability of the fluorescence sensor in detecting 4-NA in industrial wastewater and spiked environmental water was demonstrated, and a satisfactory result was obtained. Graphical abstract Highly sensitive and selective detection of 4-nitroaniline in water by a novel fluorescent sensor based on molecularly imprinted poly(ionic liquid).
Collapse
Affiliation(s)
- Wei Xie
- School of Petrochemical Engineering, Changzhou University, Changzhou, 213016, Jiangsu, China.,College of Biological, Chemical Sciences and Engineering, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001, Zhejiang, China
| | - Jian Zhang
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001, Zhejiang, China
| | - Yanbo Zeng
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001, Zhejiang, China
| | - Hailong Wang
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001, Zhejiang, China
| | - Yiwen Yang
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001, Zhejiang, China.
| | - Yunyun Zhai
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001, Zhejiang, China
| | - Dongwei Miao
- School of Petrochemical Engineering, Changzhou University, Changzhou, 213016, Jiangsu, China
| | - Lei Li
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001, Zhejiang, China.
| |
Collapse
|
13
|
Comparison of the Performance of Au, Pt and Rh Nanoparticles Supported on Mn/Alkali Titanate Nanotubes in Formaldehyde Oxidation at Room Temperature. Catal Letters 2020. [DOI: 10.1007/s10562-020-03254-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
14
|
Svarovskaya N, Glazkova E, Bakina O, Kazantsev S, Lozhkomoev A, Lerner M. Hierarchical γ-alumina: From Pure Phase to Nanocomposites. RECENT PATENTS ON NANOTECHNOLOGY 2020; 14:92-101. [PMID: 31838995 DOI: 10.2174/1872210514666191213150838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 08/06/2019] [Accepted: 11/10/2019] [Indexed: 06/10/2023]
Abstract
Recent advances in nanotechnology make it possible to create nanomaterials based on γ-alumina with novel hierarchical structure and physicochemical properties. Hierarchical γ-alumina can be synthesized using chemical or physical methods. The nanostructures based on γ-alumina exhibit unique properties, which are utilized in the design of efficient applications. These superior properties are often due to their hierarchical organizations from the nanosize scale to the macroscopic level. The present review is devoted to the contemporary state of the studies on the methods to produce hierarchical γ-alumina. We tried to summarize herein the literature data on the methods of synthesis of hierarchical γ-AlOOH and γ-Al2O3 with controlled morphology and the application of these methods for the synthesis of hierarchical γ-AlOOH and γ-Al2O3 nanocomposites.
Collapse
Affiliation(s)
- Natalia Svarovskaya
- Institute of Strength Physics and Materials Science of Siberian Branch Russian Academy of Sciences (ISPMS SB RAS), 2/4, pr. Akademicheskii, Tomsk, 634055, Russian Federation
| | - Elena Glazkova
- Institute of Strength Physics and Materials Science of Siberian Branch Russian Academy of Sciences (ISPMS SB RAS), 2/4, pr. Akademicheskii, Tomsk, 634055, Russian Federation
| | - Olga Bakina
- Institute of Strength Physics and Materials Science of Siberian Branch Russian Academy of Sciences (ISPMS SB RAS), 2/4, pr. Akademicheskii, Tomsk, 634055, Russian Federation
| | - Sergey Kazantsev
- Institute of Strength Physics and Materials Science of Siberian Branch Russian Academy of Sciences (ISPMS SB RAS), 2/4, pr. Akademicheskii, Tomsk, 634055, Russian Federation
| | - Aleksandr Lozhkomoev
- Institute of Strength Physics and Materials Science of Siberian Branch Russian Academy of Sciences (ISPMS SB RAS), 2/4, pr. Akademicheskii, Tomsk, 634055, Russian Federation
| | - Marat Lerner
- Institute of Strength Physics and Materials Science of Siberian Branch Russian Academy of Sciences (ISPMS SB RAS), 2/4, pr. Akademicheskii, Tomsk, 634055, Russian Federation
| |
Collapse
|
15
|
Photodeposition of Pt on the Bi2WO6 nanosheets under irradiation of 365 nm and 450 nm LED lights. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2019.137019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
16
|
Huang G, Yan Z, Liu S, Luo T, An L, Xu Z. Bimetallic nickel molybdate supported Pt catalyst for efficient removal of formaldehyde at low temperature. J Environ Sci (China) 2020; 87:173-183. [PMID: 31791490 DOI: 10.1016/j.jes.2019.06.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 05/27/2019] [Accepted: 06/03/2019] [Indexed: 06/10/2023]
Abstract
Efficient removal of formaldehyde from indoor environments is of significance for human health. In this work, a typical binary transition metal oxide that could provide various oxidation states, β-NiMoO4, was employed as a support to immobilize the active Pt component (Pt/NiMoO4) for catalytic formaldehyde elimination at low ambient temperature (15°C). The results showed that the hydrothermal preparation temperature and time had a noticeable impact on the morphology and catalytic activity of the samples. The catalyst prepared with hydrothermal temperature of 150°C for 4 hr (Pt-150-4) exhibited superior catalytic activity and stability mainly due to its distinctly porous structure, relative abundance of adsorbed surface hydroxyls/water, and high oxidation ability, which resulted from the interaction of Pt with Ni and Mo of the bimetallic NiMoO4 support. Our results might shed light on the rational design of multifunctional catalysts for removal of indoor air pollutants at low ambient temperature.
Collapse
Affiliation(s)
- Gang Huang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, and Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, Jianghan University, Wuhan 430056, China
| | - Zhaoxiong Yan
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, and Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, Jianghan University, Wuhan 430056, China.
| | - Shuyuan Liu
- Department of Pharmacology, Shenyang Medical College, Shenyang 110034, China
| | - Tingting Luo
- Materials Analysis Center, Wuhan University of Technology, Wuhan 430070, China
| | - Liang An
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, and Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, Jianghan University, Wuhan 430056, China
| | - Zhihua Xu
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, and Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, Jianghan University, Wuhan 430056, China.
| |
Collapse
|
17
|
Xu Z, Huang G, Yan Z, Wang N, Yue L, Liu Q. Hydroxyapatite-Supported Low-Content Pt Catalysts for Efficient Removal of Formaldehyde at Room Temperature. ACS OMEGA 2019; 4:21998-22007. [PMID: 31891080 PMCID: PMC6933805 DOI: 10.1021/acsomega.9b03068] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 11/27/2019] [Indexed: 06/10/2023]
Abstract
Indoor environmental quality directly affects the life quality and health of human beings, and therefore, it is highly vital to eliminate the volatile organic compounds especially formaldehyde (HCHO), which is regarded as one of the most common harmful pollutants in indoor air. Hydroxyapatite (HAP)-supported Pt (Pt/HAP) catalysts with a low content of Pt (0.2 wt %) obtained via hydrothermal and chemical reduction processes could effectively remove gaseous HCHO from the indoor environment at room temperature. The influence of modifier in the preparation on the catalyst activity was investigated. The HAP and HAP modified by sodium citrate and hexamethylenetetramine-supported 0.2 wt % Pt could completely decompose HCHO into CO2 and water, while HAP modified by sodium dodecyl-sulfate-supported Pt removed HCHO primarily via adsorption. The HAP modified by the sodium citrate catalyst exhibited superior catalytic performance of HCHO compared to the HAP and HAP modified by hexamethylenetetramine and sodium dodecyl-sulfate-supported Pt catalysts, which was mainly because of its higher surface Ca/P ratio providing more Lewis acidic sites (Ca2+) for co-operational capture of HCHO molecules and a larger amount of active oxygen species. Our results indicate that an optimized combination of functional supports and low-content noble metal nanoparticles could be a route to fabricate effective room-temperature catalysts for potential application in indoor air purification.
Collapse
Affiliation(s)
- Zhihua Xu
- Key
Laboratory of Optoelectronic Chemical Materials and Devices of
Ministry of Education and Hubei Key Laboratory of Industrial Fume
and Dust Pollution Control and Hubei Key Laboratory of Environmental and
Health Effects of Persistent Toxic Substances, Jianghan University, Wuhan 430056, P. R. China
| | - Gang Huang
- Key
Laboratory of Optoelectronic Chemical Materials and Devices of
Ministry of Education and Hubei Key Laboratory of Industrial Fume
and Dust Pollution Control and Hubei Key Laboratory of Environmental and
Health Effects of Persistent Toxic Substances, Jianghan University, Wuhan 430056, P. R. China
| | - Zhaoxiong Yan
- Key
Laboratory of Optoelectronic Chemical Materials and Devices of
Ministry of Education and Hubei Key Laboratory of Industrial Fume
and Dust Pollution Control and Hubei Key Laboratory of Environmental and
Health Effects of Persistent Toxic Substances, Jianghan University, Wuhan 430056, P. R. China
| | - Nenghuan Wang
- Key
Laboratory of Optoelectronic Chemical Materials and Devices of
Ministry of Education and Hubei Key Laboratory of Industrial Fume
and Dust Pollution Control and Hubei Key Laboratory of Environmental and
Health Effects of Persistent Toxic Substances, Jianghan University, Wuhan 430056, P. R. China
| | - Lin Yue
- Key
Laboratory of Optoelectronic Chemical Materials and Devices of
Ministry of Education and Hubei Key Laboratory of Industrial Fume
and Dust Pollution Control and Hubei Key Laboratory of Environmental and
Health Effects of Persistent Toxic Substances, Jianghan University, Wuhan 430056, P. R. China
| | - Qiongyu Liu
- Key
Laboratory of Optoelectronic Chemical Materials and Devices of
Ministry of Education and Hubei Key Laboratory of Industrial Fume
and Dust Pollution Control and Hubei Key Laboratory of Environmental and
Health Effects of Persistent Toxic Substances, Jianghan University, Wuhan 430056, P. R. China
| |
Collapse
|
18
|
Zhu S, Wang J, Nie L. Progress of Catalytic Oxidation of Formaldehyde over Manganese Oxides. ChemistrySelect 2019. [DOI: 10.1002/slct.201902701] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Silong Zhu
- Hubei Provincial Key Laboratory of Green Materials for Light IndustryHubei University of Technology Wuhan 430068 P. R. China
| | - Jie Wang
- Hubei Provincial Key Laboratory of Green Materials for Light IndustryHubei University of Technology Wuhan 430068 P. R. China
| | - Longhui Nie
- Hubei Provincial Key Laboratory of Green Materials for Light IndustryHubei University of Technology Wuhan 430068 P. R. China
- Collaborative Innovation Center of Green Light-weight Materials and ProcessingHubei University of Technology Wuhan 430068 P. R. China
| |
Collapse
|
19
|
Ma L, Liu C, Guan Q, Li W. Relationship between Pt particle size and catalyst activity for catalytic oxidation of ultrahigh‐concentration formaldehyde. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.5217] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Luyao Ma
- College of Chemistry, State Key Laboratory of Elemento‐Organic Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education)Nankai University Tianjin 300071 China
| | - Chenxin Liu
- College of Chemistry, State Key Laboratory of Elemento‐Organic Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education)Nankai University Tianjin 300071 China
| | - Qingxin Guan
- College of Chemistry, State Key Laboratory of Elemento‐Organic Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education)Nankai University Tianjin 300071 China
| | - Wei Li
- College of Chemistry, State Key Laboratory of Elemento‐Organic Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education)Nankai University Tianjin 300071 China
| |
Collapse
|
20
|
A Hybrid Reactor System Comprised of Non-Thermal Plasma and Mn/Natural Zeolite for the Removal of Acetaldehyde from Food Waste. Catalysts 2018. [DOI: 10.3390/catal8090389] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The degradation of low concentrations of acetaldehyde while using a non-thermal plasma (NTP)/catalyst hybrid reactor system was investigated while using humidified air at ambient temperature. A series of highly active manganese-impregnated natural zeolite (Mn/NZ) catalysts were synthesized by the incipient wetness method using sonication. The Mn/NZ catalysts were analyzed by Brunauer-Emmett-Teller surface area measurements and X-ray photoelectron spectroscopy. The Mn/NZ catalyst located at the downstream of a dc corona was used for the decomposition of ozone and acetaldehyde. The decomposition efficiency of ozone and acetaldehyde was increased significantly using the Mn/NZ catalyst with NTP. Among the various types of Mn/NZ catalysts with different Mn contents, the 10 wt.% Mn/NZ catalyst under the NTP resulted the highest ozone and acetaldehyde removal efficiency, almost 100% within 5 min. Moreover, this high efficiency was maintained for 15 h. The main reason for the high catalytic activity and stability was attributed to the high dispersion of Mn on the NZ made by the appropriate impregnation method using sonication. This system is expected to be efficient to decompose a wide range of volatile organic compounds with low concentrations.
Collapse
|
21
|
Enhanced catalytic activity of graphene oxide/CeO2 supported Pt toward HCHO decomposition at room temperature. REACTION KINETICS MECHANISMS AND CATALYSIS 2018. [DOI: 10.1007/s11144-018-1348-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
22
|
Wang L, Liang XY, Chang ZY, Ding LS, Zhang S, Li BJ. Effective Formaldehyde Capture by Green Cyclodextrin-Based Metal-Organic Framework. ACS APPLIED MATERIALS & INTERFACES 2018; 10:42-46. [PMID: 29239598 DOI: 10.1021/acsami.7b16520] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
A kind of metal-organic framework made from γ-cyclodextrin (γ-CD) and potassium ions were explored as excellent formaldehyde (HCHO) absorbents. The adsorption capacity and speed of γ-CD-MOF-K are both about 9 times higher than those of activated carbon, which are attributed to the porous structure and synergistic effect of hydrogen bonding and host-guest interactions.
Collapse
Affiliation(s)
- Lu Wang
- Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization, Chengdu Institute of Biology, Chinese Academy of Sciences , Chengdu 610041, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Xiang-Yong Liang
- Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization, Chengdu Institute of Biology, Chinese Academy of Sciences , Chengdu 610041, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Zhi-Yi Chang
- Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization, Chengdu Institute of Biology, Chinese Academy of Sciences , Chengdu 610041, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Li-Sheng Ding
- Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization, Chengdu Institute of Biology, Chinese Academy of Sciences , Chengdu 610041, China
| | - Sheng Zhang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Sichuan University , Chengdu 610065, China
| | - Bang-Jing Li
- Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization, Chengdu Institute of Biology, Chinese Academy of Sciences , Chengdu 610041, China
| |
Collapse
|
23
|
Enhanced activity and stability of the monolithic Pt/SiO2–Al2O3 diesel oxidation catalyst promoted by suitable tungsten additive amount. J IND ENG CHEM 2017. [DOI: 10.1016/j.jiec.2017.06.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Zhu X, Yu J, Jiang C, Cheng B. Catalytic decomposition and mechanism of formaldehyde over Pt–Al2O3 molecular sieves at room temperature. Phys Chem Chem Phys 2017; 19:6957-6963. [DOI: 10.1039/c6cp08223h] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Al2O3 molecular sieve supported Pt was prepared for catalytic formaldehyde oxidation at room temperature.
Collapse
Affiliation(s)
- Xiaofeng Zhu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing
- Wuhan University of Technology
- Wuhan
- China
| | - Jiaguo Yu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing
- Wuhan University of Technology
- Wuhan
- China
- Department of Physics
| | - Chuanjia Jiang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing
- Wuhan University of Technology
- Wuhan
- China
| | - Bei Cheng
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing
- Wuhan University of Technology
- Wuhan
- China
| |
Collapse
|
25
|
Nie L, Wang J, Yu J. Preparation of a Pt/TiO2/cotton fiber composite catalyst with low air resistance for efficient formaldehyde oxidation at room temperature. RSC Adv 2017. [DOI: 10.1039/c7ra01616f] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Pt/TiO2/cotton fiber catalyst was successfully prepared with much lower air resistance than powder-like sample. It can catalyze oxidation of HCHO into CO2 and H2O with an optimum Pt loading of 0.75 wt%. It also exhibited good catalytic stability.
Collapse
Affiliation(s)
- Longhui Nie
- School of Materials and Chemical Engineering
- Hubei University of Technology
- Wuhan 430068
- China
| | - Jie Wang
- School of Materials and Chemical Engineering
- Hubei University of Technology
- Wuhan 430068
- China
| | - Jiaguo Yu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing
- Wuhan University of Technology
- Wuhan 430070
- China
| |
Collapse
|