1
|
Venkatachalam J, Mohan H, Seralathan KK. Significance of Herbaspirillum sp. in biodegradation and biodetoxification of herbicides, pesticides, hydrocarbons and heavy metals - A review. ENVIRONMENTAL RESEARCH 2023; 239:117367. [PMID: 37827364 DOI: 10.1016/j.envres.2023.117367] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/04/2023] [Accepted: 10/09/2023] [Indexed: 10/14/2023]
Abstract
In today's industrialized world, contamination of soil and water with various substances has emerged as a pressing concern. Bioremediation, with its advantages of degradation or detoxification, non-polluting nature, and cost-effectiveness, has become a promising method due to technological advancements. Among the bioremediation agents, bacteria have been highly explored and documented as a productive organism. Recently, few studies have reported on the significance of Herbaspirillum sp., a Gram-negative bacterium, in bioremediating herbicides, pesticides, polycyclic aromatic hydrocarbons, metalloids, and heavy metals, as well as its role in augmenting phytoremediation efforts. Herbaspirillum sp. GW103 leached 66% of Cu from ore materials and significantly enhanced the phytoaccumulation of Pb and Zn in plumule and radical tissues of Zea mays L. plants. Additionally, Herbaspirillum sp. WT00C reduced Se6+ into Se0, resulting in an increased Se0 content in tea plants. Also, Herbaspirillum sp. proved effective in degrading 0.6 mM of 4-chlorophenol, 92.8% of pyrene, 77.4% of fluoranthene, and 16.4% of trifluralin from aqueous solution and soil-water system. Considering these findings, this review underscores the need for further exploration into the pathways of pollutant degradation, the enzymes pivotal in the degradation or detoxification processes, the influence of abiotic factors and pollutants on crucial gene expression, and the potential toxicity of intermediate products generated during the degradation process. This perspective reframes the numerical data to underscore the underutilized potential of Herbaspirillum sp. within the broader context of addressing a significant research gap. This shift in emphasis aligns more closely with the problem-necessity for solution-existing unexplored solution framework.
Collapse
Affiliation(s)
- Janaki Venkatachalam
- PG and Research Department of Chemistry, Sri Sarada College for Women, Salem, 636016, Tamil Nadu, India
| | - Harshavardhan Mohan
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, 54596, South Korea
| | - Kamala-Kannan Seralathan
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, 54596, South Korea.
| |
Collapse
|
2
|
Dawwam GE, Abdelfattah NM, Abdel-Monem MO, Jahin HS, Omer AM, Abou-Taleb KA, Mansor ES. An immobilized biosorbent from Paenibacillus dendritiformis dead cells and polyethersulfone for the sustainable bioremediation of lead from wastewater. Sci Rep 2023; 13:891. [PMID: 36650253 PMCID: PMC9845294 DOI: 10.1038/s41598-023-27796-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/09/2023] [Indexed: 01/18/2023] Open
Abstract
Heavy metals, including lead, cause serious damage to human health and the surrounding environment. Natural biosorbents arise as environmentally friendly alternatives. In this study, two of the 41 isolates (8EF and 17OS) were the most efficient bacteria for growing on media supplemented with Pb2+ (1000 mg/L). At high concentrations up to 2000 mg/L, the pioneer isolate 17OS exhibited remarkable resistance to multiheavy metals. This isolate was identified as Paenibacillus dendritiformis 17OS and deposited in GenBank under accession number ON705726.1. Design-Expert was used to optimize Pb2+ metal removal by the tested bacteria. Results indicated that four of six variables were selected using a minimum-run resolution IV experimental design, with a significant affecting Pb2+ removal. Temperature and Pb2+ concentration were significant positive influences, whereas incubation period and agitation speed were significant negative ones. The tested strain modulated the four significant variables for maximum Pb2+ removal using Box-Behnken design. The sequential optimization method was beneficial in increasing biosorption by 4.29%. Dead biomass of P. dendritiformis 17OS was embedded with polyethersulfone to get a hydrophilic adsorptive membrane that can separate Pb2+ easily from aqueous solutions. SEM images and FT-IR analysis proved that the new biosorbent possesses a great structure and a lot of surface functional groups with a negative surface charge of - 9.1 mV. The removal rate of 200 mg/L Pb2+ from water reached 98% using 1.5 g/L of the immobilized biosorbent. The adsorption isotherm studies were displayed to determine the nature of the reaction. The adsorption process was related to Freundlich isotherm which describes the multilayer and heterogeneous adsorption of molecules to the adsorbent surface. In conclusion, dead bacterial cells were immobilized on a polyether sulfone giving it the characteristics of a novel adsorptive membrane for the bioremediation of lead from wastewater. Thus this study proposed a new generation of adsorptive membranes based on polyethersulfone and dead bacterial cells.
Collapse
Affiliation(s)
- Ghada E Dawwam
- Botany and Microbiology Department, Faculty of Science, Benha University, Benha, 13518, Egypt.
| | - Nehad M Abdelfattah
- Botany and Microbiology Department, Faculty of Science, Benha University, Benha, 13518, Egypt
| | - Mohamed O Abdel-Monem
- Botany and Microbiology Department, Faculty of Science, Benha University, Benha, 13518, Egypt
| | - Hossam S Jahin
- Central Laboratory for Environmental Quality Monitoring, National Water Research Center, Elkanatir, 13621, Egypt
| | - Amal M Omer
- Department of Soil Fertility and Microbiology, Desert Research Center, El-Matareya 11753, Cairo, Egypt
| | - Khadiga A Abou-Taleb
- Department of Agricultural Microbiology, Faculty of Agriculture, Ain Shams University, Hadayek Shubra 11241, P.O. Box 68, Cairo, Egypt
| | - Eman S Mansor
- Water Pollution Research Department, National Research Centre, Environment and Climate Change Research Institute, Dokki, Cairo, Egypt
| |
Collapse
|
3
|
Bhanse P, Kumar M, Singh L, Awasthi MK, Qureshi A. Role of plant growth-promoting rhizobacteria in boosting the phytoremediation of stressed soils: Opportunities, challenges, and prospects. CHEMOSPHERE 2022; 303:134954. [PMID: 35595111 DOI: 10.1016/j.chemosphere.2022.134954] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/30/2022] [Accepted: 05/10/2022] [Indexed: 05/02/2023]
Abstract
Soil is considered as a vital natural resource equivalent to air and water which supports growth of the plants and provides habitats to microorganisms. Changes in soil properties, productivity, and, inevitably contamination/stress are the result of urbanisation, industrialization, and long-term use of synthetic fertiliser. Therefore, in the recent scenario, reclamation of contaminated/stressed soils has become a potential challenge. Several customized, such as, physical, chemical, and biological technologies have been deployed so far to restore contaminated land. Among them, microbial-assisted phytoremediation is considered as an economical and greener approach. In recent decades, soil microbes have successfully been used to improve plants' ability to tolerate biotic and abiotic stress and strengthen their phytoremediation capacity. Therefore, in this context, the current review work critically explored the microbial assisted phytoremediation mechanisms to restore different types of stressed soil. The role of plant growth-promoting rhizobacteria (PGPR) and their potential mechanisms that foster plants' growth and also enhance phytoremediation capacity are focussed. Finally, this review has emphasized on the application of advanced tools and techniques to effectively characterize potent soil microbial communities and their significance in boosting the phytoremediation process of stressed soils along with prospects for future research.
Collapse
Affiliation(s)
- Poonam Bhanse
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440020, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Manish Kumar
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440020, Maharashtra, India
| | - Lal Singh
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440020, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi Province, PR China.
| | - Asifa Qureshi
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440020, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
4
|
Huang J, Wang J, Jia L. Removal of zinc(II) from livestock and poultry sewage by a zinc(II) resistant bacteria. Sci Rep 2020; 10:21027. [PMID: 33273584 PMCID: PMC7713077 DOI: 10.1038/s41598-020-78138-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 11/19/2020] [Indexed: 11/23/2022] Open
Abstract
In order to remediate Zn-contaminated livestock and poultry sewage, a zinc-resistant bacterial strain was screened and isolated from the manure of livestock and poultry and identified by molecular biology. The optimal conditions for removing zinc(II) from strain XZN4 were determined by single-factor experiments as follows: within 3 times of repeated use, pH value was 5, initial concentration of zinc(II) was 100 mg/L, the amount of bacteria was 6 g/L, the temperature was 25-30 °C, and the removal equilibrium time was 60 min. Then, through adsorption isotherm model, scanning electron microscope image, energy dispersive spectrum analysis, infrared spectrum analysis and sterilization control experiment, it was found that the removal of zinc(II) by bacteria was single-molecule layer adsorption, which was carried out in coordination with degradation. The influence of different concentrations of copper(II), ammonia nitrogen, phosphorus, and chlortetracycline on the removal of zinc(II) from livestock and poultry sewage by XZN4 strain in the actual application was discussed. The bacteria can reduce the concentration of zinc(II) from the complex livestock and poultry waste water to below the discharge standard, and has a strong environmental tolerance, the highest removal rate reached 88.6% and the highest removal amount reached 10.30 mg/L. The screening and application of XZN4 strain can thus be of great significance for the microbial treatment of zinc(II) in complex livestock and poultry sewage. The results will provide guidance for the microbial remediation of heavy metal pollution.
Collapse
Affiliation(s)
- Jiang Huang
- Key Laboratory of Straw Biology and Utilization, Ministry of Education, Jilin Agricultural University, Changchun, Jilin, China
- College of Resource and Environment, Jilin Agricultural University, Changchun, Jilin, China
| | - Jihong Wang
- Key Laboratory of Straw Biology and Utilization, Ministry of Education, Jilin Agricultural University, Changchun, Jilin, China.
| | - Lan Jia
- College of Resource and Environment, Jilin Agricultural University, Changchun, Jilin, China
| |
Collapse
|
5
|
Hu X, Li D, Qiao Y, Song Q, Guan Z, Qiu K, Cao J, Huang L. Salt tolerance mechanism of a hydrocarbon-degrading strain: Salt tolerance mediated by accumulated betaine in cells. JOURNAL OF HAZARDOUS MATERIALS 2020; 392:122326. [PMID: 32092654 DOI: 10.1016/j.jhazmat.2020.122326] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/15/2020] [Accepted: 02/15/2020] [Indexed: 06/10/2023]
Abstract
Rhodococcus sp. HX-2 could degrade diesel oil in the presence of 1%-10 % NaCl. The compatible solute betaine accumulated in cells with increasing NaCl concentration, and this was found to be the main mechanism of resistance of HX-2 to high salt concentration. Exogenously added betaine can be transported into cells, which improved cell growth and the percentage degradation of diesel oil in the presence of high [NaCl] in solution and in soil. Scanning electron microscopy data suggested that addition of exogenous betaine facilitated salt tolerance by stimulating exopolysaccharide production. Fourier-transform infrared analysis suggested that surface hydroxyl, amide and phosphate groups may be related to tolerance of high-salt environments. Four betaine transporter-encoding genes (H0, H1, H3, H5) and the betaine producer gene betB were induced in Rhodococcus sp. HX-2 by NaCl stress. The maximal induction of H0, H1, H3 and H5 transcription depended on high salinity plus the presence of betaine. These results demonstrate that salt tolerance is mediated by accumulated betaine in Rhodococcus sp. HX-2 cells, and the potential of this strain for application in bioremediation of hydrocarbon pollution in saline environments.
Collapse
Affiliation(s)
- Xin Hu
- College of Chemistry and Chemical Engineering, Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin Key Laboratory of Drug Targeting and Bioimaging, Tianjin University of Technology, Tianjin, 300384, China
| | - Dahui Li
- College of Chemistry and Chemical Engineering, Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin Key Laboratory of Drug Targeting and Bioimaging, Tianjin University of Technology, Tianjin, 300384, China
| | - Yue Qiao
- College of Chemistry and Chemical Engineering, Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin Key Laboratory of Drug Targeting and Bioimaging, Tianjin University of Technology, Tianjin, 300384, China
| | - Qianqian Song
- College of Chemistry and Chemical Engineering, Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin Key Laboratory of Drug Targeting and Bioimaging, Tianjin University of Technology, Tianjin, 300384, China
| | - Zhiguo Guan
- College of Chemistry and Chemical Engineering, Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin Key Laboratory of Drug Targeting and Bioimaging, Tianjin University of Technology, Tianjin, 300384, China
| | - Kaixuan Qiu
- College of Chemistry and Chemical Engineering, Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin Key Laboratory of Drug Targeting and Bioimaging, Tianjin University of Technology, Tianjin, 300384, China
| | - Jiachang Cao
- College of Chemistry and Chemical Engineering, Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin Key Laboratory of Drug Targeting and Bioimaging, Tianjin University of Technology, Tianjin, 300384, China
| | - Lei Huang
- College of Chemistry and Chemical Engineering, Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin Key Laboratory of Drug Targeting and Bioimaging, Tianjin University of Technology, Tianjin, 300384, China.
| |
Collapse
|
6
|
Kalaimurugan D, Durairaj K, Kumar AJ, Senthilkumar P, Venkatesan S. Novel preparation of fungal conidiophores biomass as adsorbent for removal of phosphorus from aqueous solution. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:20757-20769. [PMID: 32248417 DOI: 10.1007/s11356-020-08307-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 03/02/2020] [Indexed: 06/11/2023]
Abstract
The present study focused on phosphorus adsorption by novel fungal conidiophores biomass in aqueous solution. Fungal Conidiophores biomass was prepared from the fungal strains Aspergillus oryzae (YFK) and Fusarium oxysporum (YVS2). The functional groups and morphology of Conidiophores Biomass (CB) from these strains were characterized by FTIR and SEM. FTIR confirms the presence of alcohol, carboxylic acid, carbon dioxide, cyclic alkene, amine, alkene, fluoro compound, and halo compound groups. Batch mode study was carried out with two CB's such as Aspergillus oryzae CB (ACB) and Fusarium oxysporum CB (FCB) with initial concentration of phosphorus ranging from 20 to 100 mg L-1. Based on the batch experiments, the adsorption kinetics (pseudo first order and pseudo second order), isotherms (Freundlich and Langmuir models), and thermodynamic (standard entropy, energy, and enthalpy) parameters were calculated. The adsorption kinetics and isotherm studies showed that the adsorption data well fitted with PSO kinetic model. From the isotherm results, it was found that ACB and FCB exhibited highest adsorption capacity 25.64 mg g-1 and 26.32 mg g-1 of phosphorus respectively at the optimal condition of pH (7), time (90 min), dose (250 mg), and room temperature (35 °C). Thermodynamics values were found to be endothermic and spontaneous in nature for phosphorus adsorption. Finally, the results suggested that the ACB and FCB are economically feasible cost-effective adsorbent for removal of phosphorus in wastewater treatment. Graphical abstract.
Collapse
Affiliation(s)
- Dharman Kalaimurugan
- Microbial Ecology Laboratory, Department of Environmental Science, School of Life Sciences, Periyar University, Salem, 636011, India
| | - Kaliannan Durairaj
- Waste Management and Remediation Laboratory, Department of Environmental Science, School of Life Sciences, Periyar University, Salem, 636011, India
- Zoonosis Research Center, Department of Infection Biology, School of Medicine, Wonkwang University, Iksan, 54538, Republic of Korea
| | - Alagarasan Jagadeesh Kumar
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Palaninaicker Senthilkumar
- Waste Management and Remediation Laboratory, Department of Environmental Science, School of Life Sciences, Periyar University, Salem, 636011, India
| | - Srinivasan Venkatesan
- Microbial Ecology Laboratory, Department of Environmental Science, School of Life Sciences, Periyar University, Salem, 636011, India.
| |
Collapse
|
7
|
Hu X, Cao J, Yang H, Li D, Qiao Y, Zhao J, Zhang Z, Huang L. Pb2+ biosorption from aqueous solutions by live and dead biosorbents of the hydrocarbon-degrading strain Rhodococcus sp. HX-2. PLoS One 2020; 15:e0226557. [PMID: 31995615 PMCID: PMC6988972 DOI: 10.1371/journal.pone.0226557] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 11/29/2019] [Indexed: 01/14/2023] Open
Abstract
In this study, the Pb2+ biosorption potential of live and dead biosorbents of the hydrocarbon-degrading strain Rhodococcus sp. HX-2 was analyzed. Optimal biosorption conditions were determined via single factor optimization, which were as follows: temperature, 25°C; pH, 5.0, and biosorbent dose, 0.75 g L−1. A response surface software (Design Expert 10.0) was used to analyze optimal biosorption conditions. The biosorption data for live and dead biosorbents were suitable for the Freundlich model at a Pb2+ concentration of 200 mg L−1. At this same concentration, the maximum biosorption capacity was 88.74 mg g−1 (0.428 mmol g−1) for live biosorbents and 125.5 mg g−1 (0.606 mmol g−1) for dead biosorbents. Moreover, in comparison with the pseudo-first-order model, the pseudo-second-order model seemed better to depict the biosorption process. Dead biosorbents seemed to have lower binding strength than live biosorbents, showing a higher desorption capacity at pH 1.0. The order of influence of competitive metal ions on Pb2+ adsorption was Cu2+ > Cd2+ > Ni+. Fourier-transform infrared spectroscopy analyses revealed that several functional groups were involved in the biosorption process of dead biosorbents. Scanning electron microscopy showed that Pb2+ attached to the surface of dead biosorbents more readily than on the surface of live biosorbents, whereas transmission electron microscopy confirmed the transfer of biosorbed Pb2+ into the cells in the case of both live and dead biosorbents. It can thus be concluded that dead biosorbents are better than live biosorbents for Pb2+ biosorption, and they can accordingly be used for wastewater treatment.
Collapse
Affiliation(s)
- Xin Hu
- College of Chemistry and Chemical Engineering, Tianjin Key Laboratory of Drug Targeting and Bioimaging, Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin University of Technology, Tianjin, China
| | - Jiachang Cao
- College of Chemistry and Chemical Engineering, Tianjin Key Laboratory of Drug Targeting and Bioimaging, Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin University of Technology, Tianjin, China
| | - Hanyu Yang
- College of Management Science and Engineering, Capital University of Economics and Business, Beijing, China
| | - Dahui Li
- College of Chemistry and Chemical Engineering, Tianjin Key Laboratory of Drug Targeting and Bioimaging, Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin University of Technology, Tianjin, China
| | - Yue Qiao
- College of Chemistry and Chemical Engineering, Tianjin Key Laboratory of Drug Targeting and Bioimaging, Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin University of Technology, Tianjin, China
| | - Jialin Zhao
- College of Chemistry and Chemical Engineering, Tianjin Key Laboratory of Drug Targeting and Bioimaging, Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin University of Technology, Tianjin, China
| | - Zhixia Zhang
- College of Chemistry and Chemical Engineering, Tianjin Key Laboratory of Drug Targeting and Bioimaging, Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin University of Technology, Tianjin, China
| | - Lei Huang
- College of Chemistry and Chemical Engineering, Tianjin Key Laboratory of Drug Targeting and Bioimaging, Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin University of Technology, Tianjin, China
- * E-mail:
| |
Collapse
|
8
|
Li X, Xu H, Gao B, Yang Z, Sun Y, Shi X, Wu J. Cotransport of Herbaspirillum chlorophenolicum FA1 and heavy metals in saturated porous media: Effect of ion type and concentration. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 254:112940. [PMID: 31376604 DOI: 10.1016/j.envpol.2019.07.108] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 07/19/2019] [Accepted: 07/20/2019] [Indexed: 06/10/2023]
Abstract
Predicting the cotransport of functional microorganisms and heavy metals in porous media is essential to both bioremediation and pollutant risk assessment. In this study, batch and column experiments were conducted to explore the cotransport behaviors of functional bacteria (FA1) and heavy metals (Pb2+/Cd2+) in saturated sand media under different conditions. The sorption capacity of heavy metals on FA1 was much greater than that of the sand, while both FA1 and sand showed stronger affinity to Pb2+ than Cd2+. The surface properties, especially zeta potential, of the bacteria and sand were altered by metal adsorption. As a result, the co-existence of Pb2+ decreased the transport of FA1 more significantly than that of Cd2+, and the influence was more significant with higher heavy metal concentration. On the other hand, the co-existence of FA1 inhibited the mobility of Pb2+ and Cd2+ in most scenarios, except when the cotransport concentration of Pb2+ was 5 mg L-1, and the inhibition was more pronounced for Pb2+ than Cd2+. Increase in metal concentrations decreased the FA1-associated Pb2+/Cd2+ in effluents due to the remarkable decrease in FA1 mobility, and free soluble Pb2+/Cd2+ became the major migration species. In addition, due to stronger attractive forces and affinity between Pb2+ and FA1, nearly all presorbed-Pb2+ by sand was remobilized by FA1 and transported mainly in FA1-associated form other than soluble Pb2+. Findings from this study indicated that the cotransport of biocolloids and heavy metals are highly sensitive to the ion type and concentration, and evaluation of their transport in the subsurface should be carefully carried out to avoid inaccurate estimations.
Collapse
Affiliation(s)
- Xiaohui Li
- Key Laboratory of Surficial Geochemistry of Ministry of Education, School of Earth Sciences and Engineering, Hydrosciences Department, Nanjing University, Nanjing 210023, China
| | - Hongxia Xu
- Key Laboratory of Surficial Geochemistry of Ministry of Education, School of Earth Sciences and Engineering, Hydrosciences Department, Nanjing University, Nanjing 210023, China.
| | - Bin Gao
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Zhidong Yang
- Key Laboratory of Surficial Geochemistry of Ministry of Education, School of Earth Sciences and Engineering, Hydrosciences Department, Nanjing University, Nanjing 210023, China
| | - Yuanyuan Sun
- Key Laboratory of Surficial Geochemistry of Ministry of Education, School of Earth Sciences and Engineering, Hydrosciences Department, Nanjing University, Nanjing 210023, China
| | - Xiaoqing Shi
- Key Laboratory of Surficial Geochemistry of Ministry of Education, School of Earth Sciences and Engineering, Hydrosciences Department, Nanjing University, Nanjing 210023, China
| | - Jichun Wu
- Key Laboratory of Surficial Geochemistry of Ministry of Education, School of Earth Sciences and Engineering, Hydrosciences Department, Nanjing University, Nanjing 210023, China
| |
Collapse
|
9
|
Muñoz AJ, Espínola F, Ruiz E, Barbosa-Dekker AM, Dekker RFH, Castro E. Assessment of By-Product from Botryosphaeria rhodina MAMB-05 as an Effective Biosorbent of Pb(II). Molecules 2019; 24:molecules24183306. [PMID: 31514386 PMCID: PMC6767276 DOI: 10.3390/molecules24183306] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/05/2019] [Accepted: 09/08/2019] [Indexed: 11/25/2022] Open
Abstract
In this work, two types of biomass preparations (VMSM and M3) from the filamentous fungus Botryosphaeria rhodina MAMB-05, which were previously used in a process of production of β-glucan, were assessed as biosorbents of lead. The operating conditions, optimized through response surface methodology and experimental design, were shown to be pH 5.29 and a biosorbent dose of 0.23 g/L for the VMSM biomass type; and pH 5.06 and a dose of biosorbent of 0.60 g/L for the M3 biomass type, at a constant temperature of 27 °C. Fourier transform-infrared spectroscopy analyzed the presence of functional groups on the biomass surface. In addition to give an extra value to the by-product biomass, the VMSM-type from B. rhodina MAMB-05 showed an excellent lead biosorption capacity (qm) with a value of 403.4 mg/g for the Langmuir model, comparing favorably with literature results, while the M3 subtype biomass showed a value of 96.05 mg/g.
Collapse
Affiliation(s)
- Antonio J Muñoz
- Department of Chemical, Environmental and Materials Engineering, Universidad de Jaén, Campus Las Lagunillas, 23071 Jaén, Spain.
| | - Francisco Espínola
- Department of Chemical, Environmental and Materials Engineering, Universidad de Jaén, Campus Las Lagunillas, 23071 Jaén, Spain.
- Centre for Advanced Studies in Energy and Environment (CEAEMA), Universidad de Jaén, Campus Las Lagunillas, 23071 Jaén, Spain.
| | - Encarnación Ruiz
- Department of Chemical, Environmental and Materials Engineering, Universidad de Jaén, Campus Las Lagunillas, 23071 Jaén, Spain.
- Centre for Advanced Studies in Energy and Environment (CEAEMA), Universidad de Jaén, Campus Las Lagunillas, 23071 Jaén, Spain.
| | - Aneli M Barbosa-Dekker
- Departamento de Química, CCE - Universidade Estadual de Londrina, Londrina - Paraná CEP: 86051-990, Brazil.
| | - Robert F H Dekker
- Programa de Pós Graduação em Engenharia Ambiental, Universidade Tecnológica Federal do Paraná, Câmpus Londrina, Londrina - Paraná CEP: 86036-370, Brazil.
| | - Eulogio Castro
- Department of Chemical, Environmental and Materials Engineering, Universidad de Jaén, Campus Las Lagunillas, 23071 Jaén, Spain.
- Centre for Advanced Studies in Energy and Environment (CEAEMA), Universidad de Jaén, Campus Las Lagunillas, 23071 Jaén, Spain.
| |
Collapse
|
10
|
Inactive Fusarium Fungal strains (ZSY and MJY) isolation and application for the removal of Pb(II) ions from aqueous environment. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2018.12.047] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|