1
|
Pang Y, Zhen F, Wang D, Luo Z, Huang J, Zhang Y. Effects of biochar combined with MgO desulfurization waste residue on nitrogen conversion and odor emission in chicken manure composting. ENVIRONMENTAL TECHNOLOGY 2024; 45:4779-4790. [PMID: 37970824 DOI: 10.1080/09593330.2023.2283086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 07/18/2023] [Indexed: 11/19/2023]
Abstract
Aim: Chicken manure is known to produce strong odors during aerobic composting, which not only pollutes the surrounding environment but also leads to the loss of valuable nutrients like nitrogen and sulfur, thus reducing the quality of the fertilizer. Methods: In this study, we explored the use of biochar combined with MgO desulfurization waste residue (MDWR) as a novel composting additive. Our approach involved conducting composting tests, characterizing the compost samples, conducting pot experiments, and examining the impact of the additives on nitrogen retention, deodorization, and compost quality. Results: Our findings revealed that the addition of biochar and MDWR significantly reduced ammonia volatilization in chicken manure compost, demonstrating a reduction rate of up to 60.12%. Additionally, the emission of volatile organic compounds (VOCs) from chicken manure compost treated with biochar and MDWR decreased by 44.63% compared to the control group. Conclusions: The composting product treated with both biochar and MDWR (CMB) exhibited a 67.7% increase in total nitrogen (TN) compared to the blank control group, surpassing the other treatment groups and showcasing the synergistic effect of these two additives on nitrogen retention. Moreover, the CMB treatment facilitated the formation of struvite crystals. Furthermore, our pot experiment results demonstrated that the CMB treatment enhanced vegetable yield and quality while reducing nitrate content. These findings highlight the significant impact of MDWR on nitrogen retention, deodorization, and compost quality enhancement, thereby indicating its promising application prospects.
Collapse
Affiliation(s)
- Yuwan Pang
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, People's Republic of China
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, People's Republic of China
- Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Guangzhou, People's Republic of China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, People's Republic of China
| | - Feng Zhen
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, People's Republic of China
| | - Dehan Wang
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, People's Republic of China
| | - Zifeng Luo
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, People's Republic of China
| | - Jianfeng Huang
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, People's Republic of China
- Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Guangzhou, People's Republic of China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, People's Republic of China
| | - Yanli Zhang
- College of Life Science and Technology, Mudanjiang Normal University, Mudanjiang, People's Republic of China
| |
Collapse
|
2
|
Yu H, Shan C, Li J, Hou X, Yang L. Alkaline absorbents for SO 2 and SO 3 removal: A comprehensive review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121532. [PMID: 38986382 DOI: 10.1016/j.jenvman.2024.121532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/13/2024] [Accepted: 06/16/2024] [Indexed: 07/12/2024]
Abstract
Injection of an alkaline absorbent into the flue gas can significantly reduce SO2 and SO3 emissions. The article presents alkaline absorbents employed in industrial processes to remove SO2 and SO3 from flue gases, detailing their characteristics and applications across various process conditions. It summarizes the mechanisms and influencing factors behind SO2 and SO3 removal, outlines the impact of multi-component gases, particularly SO2, on SO3 removal in actual flue gases, and elucidates this competitive phenomenon from a theoretical standpoint. The article compares the application scenarios and efficiencies of alkaline absorbents across different processes, identifies the optimal combinations of various absorbents and processes, and proposes a synergistic approach for the removal of SO2 and SO3. The findings demonstrate that by injecting calcium- or sodium-based absorbents into dry processes, SO2 and SO3 can be removed efficiently and cost-effectively, with process optimization and absorbent modifications further enhancing the SOx removal efficiency. In the future, by blending two or more absorbents and applying them to dry processes, a synergistic removal of SO2 and SO3 can be achieved.
Collapse
Affiliation(s)
- Hang Yu
- Key Laboratory of Energy Thermal Conversion and Control of Ministry Education, School of Energy and Environment, Southeast University, Nanjing, China.
| | - Chuanjia Shan
- Key Laboratory of Energy Thermal Conversion and Control of Ministry Education, School of Energy and Environment, Southeast University, Nanjing, China.
| | - Jinjin Li
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, China.
| | - Xueyan Hou
- Key Laboratory of Energy Thermal Conversion and Control of Ministry Education, School of Energy and Environment, Southeast University, Nanjing, China.
| | - Linjun Yang
- Key Laboratory of Energy Thermal Conversion and Control of Ministry Education, School of Energy and Environment, Southeast University, Nanjing, China.
| |
Collapse
|
3
|
He L, Wang D, Zhu T, Lv Y, Li S. Pyrolysis recycling of pig manure biochar adsorption material for decreasing ammonia nitrogen in biogas slurry. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 881:163315. [PMID: 37028657 DOI: 10.1016/j.scitotenv.2023.163315] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/19/2023] [Accepted: 04/02/2023] [Indexed: 06/01/2023]
Abstract
Biochar adsorption materials have a good removal effect on ammonia nitrogen in piggery biogas slurry. However, the cost of biochar adsorption material is still high. If these materials can be recycled several times, the cost can be significantly reduced. Therefore, this paper investigated a new process of biochar adsorption material (C@Mg-P) pyrolysis cycle for reducing ammonia nitrogen in piggery biogas slurry. The effects of pyrolysis process conditions (pyrolysis temperature and pyrolysis time) and number of recycling times on reducing ammonia nitrogen in biogas slurry by C@Mg-P were studied, a preliminary investigation on the reaction mechanism of C@Mg-P for reducing ammonia nitrogen in biogas slurry was conducted, and the economic feasibility of the pyrolysis recycling process was analyzed. It was found that the NH3-N elimination efficiency by C@Mg-P was 79.16 % under the optimal conditions of 0.5 h and 100 °C. Second, C@Mg-P removed 70.31 % NH3-N after recycling 10 times. Chemical precipitation, ion exchange, physical adsorption and electrostatic attraction were the potential reaction mechanisms for NH3-N reduction by C@Mg-P. Moreover, C@Mg-P had a good decolorization effect on piggery biogas slurry with a 72.56 % decolorization rate. Compared with the non-pyrolyzed recycling process, the proposed process saved 80 % of the cost, thus representing an economically possible approach for pig manure biochar application in wastewater denitrification treatment.
Collapse
Affiliation(s)
- Lintong He
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, Guangzhou 510642, China
| | - Dehan Wang
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, Guangzhou 510642, China.
| | - Tianlang Zhu
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, Guangzhou 510642, China
| | - Yongzhen Lv
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, Guangzhou 510642, China
| | - Sicheng Li
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, Guangzhou 510642, China
| |
Collapse
|
4
|
Chen G, Zhou T, Zhang M, Ding Z, Zhou Z, Ji Y, Tang H, Wang C. Effects of heavy metal ions Cu2+/Pb2+/Zn2+ on kinetic rate constants of struvite crystallization. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2022.06.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
5
|
Environmental and Economic Sustainability of Swine Wastewater Treatments Using Ammonia Stripping and Anaerobic Digestion: A Short Review. SUSTAINABILITY 2020. [DOI: 10.3390/su12124971] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
One of the most promising systems to treat swine wastewater is air stripping. This system simultaneously recovers nitrogen salts, to be used as fertiliser, and reduces the organic pollutant load in the effluents of swine breeding farms. Several reviews have discussed the air stripping as a treatment for many types of industrial wastewater or nitrogen-rich digestate (the liquid effluent derived from the anaerobic digestion plants) for the stripping/recovery of nutrients. However, reviews about the use of air stripping as treatment for raw or anaerobically digested swine wastewater are not available in literature. To fill this gap, this study: (i) Summarises the experiences of air stripping for recovery of ammonium salts from both raw and digested swine wastewater; and (ii) compares air stripping efficiency under different operational conditions. Moreover, combined systems including air stripping (such as struvite crystallisation, chemical precipitation, microwave radiation) have been compared. These comparisons have shown that air stripping of raw and digested swine wastewater fits well the concept of bio-refinery, because this system allows the sustainable management of the piggery effluent by extracting value-added compounds, by-products, and/or energy from wastewater. On the other hand, air stripping of raw and digested swine wastewater has not been extensively studied and more investigations should be carried out.
Collapse
|
6
|
The Use of Ca- and Mg-Rich Fly Ash as a Chemical Precipitant in the Simultaneous Removal of Nitrogen and Phosphorus—Recycling and Reuse. RECYCLING 2019. [DOI: 10.3390/recycling4020014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The European Union’s circular economy strategy aims to increase the recycling and re-use of products and waste materials. According to the strategy, the use of industry waste material should be more effective. A chemical precipitation method to simultaneously remove phosphorus and nitrogen from synthetic (NH4)2HPO4 solution and the liquid phase of anaerobic digestate using fly ash as a precipitant was tested. Fly ash is a waste material formed in the power plant process. It mainly contains calcium oxide (CaO) and magnesium oxide (MgO). Saturated precipitant solution was prepared from fly ash, which was added in small proportions to (NH4)2HPO4 solution during the experiment. Fly ash’s effectiveness as a precipitant was compared with that of commercial CaO and MgO salts, and it can be observed that fly ash removed as much ammonium and phosphate as commercial salts. Fly ash sufficiently removed ammonium nitrogen and phosphate from the liquid phase of anaerobic digestate, which led to the formation of ammonium magnesium hydrogen phosphate hydrate, struvite (NH4MgPO4·6H2O), and calcium hydroxide phosphate, monetite, CaPO3(OH). In this study, we have shown for the first time that fly ash can be used to manufacture recycled, slow-release fertilizers from anaerobic digestate.
Collapse
|
7
|
Cao L, Wang J, Xiang S, Huang Z, Ruan R, Liu Y. Nutrient removal from digested swine wastewater by combining ammonia stripping with struvite precipitation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:6725-6734. [PMID: 30632036 DOI: 10.1007/s11356-019-04153-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 01/02/2019] [Indexed: 06/09/2023]
Abstract
Typical biological processing is often challenging for removing ammonia nitrogen and phosphate from swine wastewater due to inhibition of high ammonia on activity of microorganisms, exhaustion of time, and low efficiency. In this study, a physicochemical process by combining ammonia stripping with struvite precipitation has been tested to simultaneously remove ammonia nitrogen, phosphate, and chemical oxygen demand (COD) from digested swine wastewater (DSW) with high efficiency, low cost, and environmental friendliness. The pH, temperature, and magnesium content of DSW are the key factors for ammonia removal and phosphate recovery through combining stripping with struvite precipitation. MgO was used as the struvite precipitant for NH4+ and PO43- and as the pH adjusted for air stripping of residual ammonia under the condition of 40 °C and 0.48 m3 h-1 L-1 aeration rate for 3 h. The results showed that the removal efficiency of ammonia, total phosphate, and COD from DSW significantly increased with increase of MgO dosage due to synergistic action of ammonia stripping and struvite precipitation. Considering the processing cost and national discharge standard for DSW, 0.75 g L-1 MgO dosage was recommended using the combining technology for nutrient removal from DSW. In addition, 88.03% NH4+-N and 96.07% TP could be recovered from DSW by adsorption of phosphoric acid and precipitation of magnesium ammonium phosphate (MAP). The combined technology could effectively remove and recover the nutrients from DSW to achieve environmental protection and sustainable and renewable resource of DSW. An economic analysis showed that the combining technology for nutrient removal from DSW was feasible.
Collapse
Affiliation(s)
- Leipeng Cao
- State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, 330047, China
| | - Jingjing Wang
- State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, 330047, China
| | - Shuyu Xiang
- State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, 330047, China
| | - Zhenghua Huang
- State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, 330047, China
| | - Roger Ruan
- State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, 330047, China
- Center for Biorefining and Department of Bioproducts and Biosystems Engineering, University of Minnesota, 1390 Eckles Avenue, St. Paul, MN, 55112, USA
| | - Yuhuan Liu
- State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, 330047, China.
| |
Collapse
|
8
|
Wu B, Tian H, Hao Y, Liu S, Liu X, Liu W, Bai X, Liang W, Lin S, Wu Y, Shao P, Liu H, Zhu C. Effects of Wet Flue Gas Desulfurization and Wet Electrostatic Precipitators on Emission Characteristics of Particulate Matter and Its Ionic Compositions from Four 300 MW Level Ultralow Coal-Fired Power Plants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:14015-14026. [PMID: 30378426 DOI: 10.1021/acs.est.8b03656] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
To achieve ultralow-emission (ULE) standards, wet electrostatic precipitators (WESP) installed downstream from wet flue gas desulfurization (WFGD) have been widely used in Chinese coal-fired power plants (CFPPs). We conducted a comprehensive field test study at four 300 MW level ULE CFPPs, to explore the impact of wet clean processing (WFGD and WESP) on emission characteristics of three size fractions of particulate matter (PM: PM2.5, PM10-2.5, and PM>10) and their ionic compositions. All these CFPPs are installed with limestone-based/magnesium-based WFGD and followed by WESP as the end control device. Our results indicate that particle size distribution, mass concentration of PM, and ionic compositions in flue gas change significantly after passing WFGD and WESP. PM mass concentrations through WFGD are significantly affected by the relative strength between desulfur slurry scouring and flue gas carrying effects. Concentrations of ions in PM increase greatly after passing WFGD; especially, SO42- in PM2.5, PM10-2.5, and PM>10 increase on average by about 1.4, 3.9, and 8.3 times, respectively. However, WESP before the stack can effectively reduce final PM emissions and their major ionic compositions. Furthermore, emission factors (kg/(t of coal)) of PM for different combinations of air pollution control devices are presented and discussed.
Collapse
Affiliation(s)
- Bobo Wu
- State Key Joint Laboratory of Environmental Simulation & Pollution Control, School of Environment , Beijing Normal University , Beijing 100875 , China
- Center for Atmospheric Environmental Studies , Beijing Normal University , Beijing 100875 , China
| | - Hezhong Tian
- State Key Joint Laboratory of Environmental Simulation & Pollution Control, School of Environment , Beijing Normal University , Beijing 100875 , China
- Center for Atmospheric Environmental Studies , Beijing Normal University , Beijing 100875 , China
| | - Yan Hao
- State Key Joint Laboratory of Environmental Simulation & Pollution Control, School of Environment , Beijing Normal University , Beijing 100875 , China
| | - Shuhan Liu
- State Key Joint Laboratory of Environmental Simulation & Pollution Control, School of Environment , Beijing Normal University , Beijing 100875 , China
- Center for Atmospheric Environmental Studies , Beijing Normal University , Beijing 100875 , China
| | - Xiangyang Liu
- State Key Joint Laboratory of Environmental Simulation & Pollution Control, School of Environment , Beijing Normal University , Beijing 100875 , China
- Center for Atmospheric Environmental Studies , Beijing Normal University , Beijing 100875 , China
| | - Wei Liu
- State Key Joint Laboratory of Environmental Simulation & Pollution Control, School of Environment , Beijing Normal University , Beijing 100875 , China
- Center for Atmospheric Environmental Studies , Beijing Normal University , Beijing 100875 , China
| | - Xiaoxuan Bai
- State Key Joint Laboratory of Environmental Simulation & Pollution Control, School of Environment , Beijing Normal University , Beijing 100875 , China
- Center for Atmospheric Environmental Studies , Beijing Normal University , Beijing 100875 , China
| | - Weizhao Liang
- Center for Atmospheric Environmental Studies , Beijing Normal University , Beijing 100875 , China
| | - Shumin Lin
- State Key Joint Laboratory of Environmental Simulation & Pollution Control, School of Environment , Beijing Normal University , Beijing 100875 , China
- Center for Atmospheric Environmental Studies , Beijing Normal University , Beijing 100875 , China
| | - Yiming Wu
- State Key Joint Laboratory of Environmental Simulation & Pollution Control, School of Environment , Beijing Normal University , Beijing 100875 , China
- Center for Atmospheric Environmental Studies , Beijing Normal University , Beijing 100875 , China
| | - Panyang Shao
- State Key Joint Laboratory of Environmental Simulation & Pollution Control, School of Environment , Beijing Normal University , Beijing 100875 , China
- Center for Atmospheric Environmental Studies , Beijing Normal University , Beijing 100875 , China
| | - Huanjia Liu
- State Key Joint Laboratory of Environmental Simulation & Pollution Control, School of Environment , Beijing Normal University , Beijing 100875 , China
- Center for Atmospheric Environmental Studies , Beijing Normal University , Beijing 100875 , China
| | - Chuanyong Zhu
- Center for Atmospheric Environmental Studies , Beijing Normal University , Beijing 100875 , China
- School of Environmental Science and Engineering , Qilu University of Technology , Jinan 250353 , China
| |
Collapse
|