1
|
Cao L, Chen J, Pang J, Qu H, Liu J, Gao J. Research Progress in Enzyme Biofuel Cells Modified Using Nanomaterials and Their Implementation as Self-Powered Sensors. Molecules 2024; 29:257. [PMID: 38202838 PMCID: PMC10780655 DOI: 10.3390/molecules29010257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/26/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
Enzyme biofuel cells (EBFCs) can convert chemical or biochemical energy in fuel into electrical energy, and therefore have received widespread attention. EBFCs have advantages that traditional fuel cells cannot match, such as a wide range of fuel sources, environmental friendliness, and mild reaction conditions. At present, research on EBFCs mainly focuses on two aspects: one is the use of nanomaterials with excellent properties to construct high-performance EBFCs, and the other is self-powered sensors based on EBFCs. This article reviews the applied nanomaterials based on the working principle of EBFCs, analyzes the design ideas of self-powered sensors based on enzyme biofuel cells, and looks forward to their future research directions and application prospects. This article also points out the key properties of nanomaterials in EBFCs, such as electronic conductivity, biocompatibility, and catalytic activity. And the research on EBFCs is classified according to different research goals, such as improving battery efficiency, expanding the fuel range, and achieving self-powered sensors.
Collapse
Affiliation(s)
- Lili Cao
- College of Science, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (J.C.); (J.P.); (H.Q.); (J.L.); (J.G.)
| | | | | | | | | | | |
Collapse
|
2
|
Zhang W, Zhang J, Fan S, Zhang L, Liu C, Liu J. Oxygen reduction catalyzed by bilirubin oxidase and applications in biosensors and biofuel cells. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
3
|
Montegiove N, Calzoni E, Pelosi D, Gammaitoni L, Barelli L, Emiliani C, Di Michele A, Cesaretti A. Optimizing Covalent Immobilization of Glucose Oxidase and Laccase on PV15 Fluoropolymer-Based Bioelectrodes. J Funct Biomater 2022; 13:jfb13040270. [PMID: 36547530 PMCID: PMC9785612 DOI: 10.3390/jfb13040270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/16/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022] Open
Abstract
Enzymatic biofuel cells (EBCs) represent a promising technology for biosensors, biodevices, and sustainable green energy applications, thanks to enzymes' high specificity and catalytic efficiency. Nevertheless, drawbacks such as limited output power and short lifetime have to be solved. Nowadays, research is addressed to the use of 3D electrode structures, but the high cost and the industrialization difficulties of such electrodes represent a key issue. The purpose of the paper is thus to describe the use of a low-cost commercial conductive polymer (Sigracell® PV15) as support for the covalent immobilization of glucose oxidase and laccase, for bioanode and biocathode fabrication, respectively. Efficient immobilization protocols were determined for the immobilized enzymes in terms of employed linkers and enzyme concentrations, resulting in significant enzymatic activities for units of area. The analysis focuses specifically on the optimization of the challenging immobilization of laccase and assessing its stability over time. In particular, an optimum activity of 23 mU/cm2 was found by immobilizing 0.18 mg/cm2 of laccase, allowing better performances, as for voltage output and electrochemical stability, and a direct electron transfer mechanism to be revealed for the fabricated biocathode. This study thus poses the basis for the viable development of low-cost functional EBC devices for biomedical applications.
Collapse
Affiliation(s)
- Nicolò Montegiove
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy
| | - Eleonora Calzoni
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy
- Centro di Eccellenza sui Materiali Innovativi Nanostrutturati (CEMIN), University of Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy
| | - Dario Pelosi
- Department of Engineering, University of Perugia, Via G. Duranti 93, 06125 Perugia, Italy
| | - Luca Gammaitoni
- Department of Physics and Geology, University of Perugia, Via Pascoli, 06123 Perugia, Italy
| | - Linda Barelli
- Department of Engineering, University of Perugia, Via G. Duranti 93, 06125 Perugia, Italy
| | - Carla Emiliani
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy
- Centro di Eccellenza sui Materiali Innovativi Nanostrutturati (CEMIN), University of Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy
| | - Alessandro Di Michele
- Department of Physics and Geology, University of Perugia, Via Pascoli, 06123 Perugia, Italy
| | - Alessio Cesaretti
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy
- Centro di Eccellenza sui Materiali Innovativi Nanostrutturati (CEMIN), University of Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy
- Correspondence: ; Tel.: +39-075-5857436
| |
Collapse
|
4
|
Yu S, Myung NV. Recent Advances in the Direct Electron Transfer-Enabled Enzymatic Fuel Cells. Front Chem 2021; 8:620153. [PMID: 33644003 PMCID: PMC7902792 DOI: 10.3389/fchem.2020.620153] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 12/09/2020] [Indexed: 12/16/2022] Open
Abstract
Direct electron transfer (DET), which requires no mediator to shuttle electrons from enzyme active site to the electrode surface, minimizes complexity caused by the mediator and can further enable miniaturization for biocompatible and implantable devices. However, because the redox cofactors are typically deeply embedded in the protein matrix of the enzymes, electrons generated from oxidation reaction cannot easily transfer to the electrode surface. In this review, methods to improve the DET rate for enhancement of enzymatic fuel cell performances are summarized, with a focus on the more recent works (past 10 years). Finally, progress on the application of DET-enabled EFC to some biomedical and implantable devices are reported.
Collapse
Affiliation(s)
| | - Nosang V. Myung
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, United States
| |
Collapse
|
5
|
Yang S, Chung Y, Lee KS, Kwon Y. Enhancements in catalytic activity and duration of PdFe bimetallic catalysts and their use in direct formic acid fuel cells. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2020.07.034] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
6
|
Ji J, Chung Y, Hyun K, Chung KY, Kwon Y. Effect of axial ligand on the performance of hemin based catalysts and their use for fuel cells. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2020.05.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
7
|
Ji J, Ro S, Kwon Y. Membraneless biofuel cells using new cathodic catalyst including hemin bonded with amine functionalized carbon nanotube and glucose oxidase sandwiched by poly(dimethyl-diallylammonium chloride). J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2020.04.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
8
|
Bocchetta P, Frattini D, Ghosh S, Mohan AMV, Kumar Y, Kwon Y. Soft Materials for Wearable/Flexible Electrochemical Energy Conversion, Storage, and Biosensor Devices. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E2733. [PMID: 32560176 PMCID: PMC7345738 DOI: 10.3390/ma13122733] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/08/2020] [Accepted: 06/12/2020] [Indexed: 02/07/2023]
Abstract
Next-generation wearable technology needs portable flexible energy storage, conversion, and biosensor devices that can be worn on soft and curved surfaces. The conformal integration of these devices requires the use of soft, flexible, light materials, and substrates with similar mechanical properties as well as high performances. In this review, we have collected and discussed the remarkable research contributions of recent years, focusing the attention on the development and arrangement of soft and flexible materials (electrodes, electrolytes, substrates) that allowed traditional power sources and sensors to become viable and compatible with wearable electronics, preserving or improving their conventional performances.
Collapse
Affiliation(s)
- Patrizia Bocchetta
- Dipartimento di Ingegneria dell’Innovazione, Università del Salento, via Monteroni, 73100 Lecce, Italy
| | - Domenico Frattini
- Graduate School of Energy and Environment, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul 01811, Korea;
| | - Srabanti Ghosh
- Department of Organic and Inorganic Chemistry, Universidad de Alcala (UAH), Alcalá de Henares, 28805 Madrid, Spain;
| | - Allibai Mohanan Vinu Mohan
- Electrodics and Electrocatalysis Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi, Tamil Nadu 630003, India;
| | - Yogesh Kumar
- Department of Physics, ARSD College, University of Delhi, Delhi 110021, India;
| | - Yongchai Kwon
- Graduate School of Energy and Environment, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul 01811, Korea;
- Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul 01811, Korea
| |
Collapse
|
9
|
Hyun K, Kang S, Kim J, Kwon Y. New Biocatalyst Including a 4-Nitrobenzoic Acid Mediator Embedded by the Cross-Linking of Chitosan and Genipin and Its Use in an Energy Device. ACS APPLIED MATERIALS & INTERFACES 2020; 12:23635-23643. [PMID: 32343553 DOI: 10.1021/acsami.0c05564] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A new anodic catalyst consisting of carbon nanotube, 4-nitrobenzoic acid, chitosan, genipin, and glucose oxidase (GOx) (CNT/4-NBA/[Chit/GOx/GP]) is suggested to promote the glucose oxidation reaction (GOR) and the performance of enzymatic biofuel cell (EBC). In this catalyst, through the cross-linked structure of chitosan and genipin and the proper distribution of amine groups within chitosan, many GOx molecules are maximally captured, their leaching out is suppressed, and the GOR is improved upon. In addition, 4-nitrobenzoic acid plays the role of mediator well. The effect induced by the cross-linked structure is evaluated by ultraviolet-visible (UV-vis) spectroscopy, pH measurements, and electrochemical characterizations. According to the characterizations, the new CNT/4-NBA/[Chit/GOx/GP] catalyst contains a large amount of GOx (17.8 mg/mL) and produces a high anodic current (331 μA/cm2 at 0.3 V vs Ag/AgCl) with a low onset potential (0.05 V vs Ag/AgCl) because its catalytic activity follows the desirable reaction pathway that minimizes creation of a protonated amine group that interferes with GOR. When the performance of EBC using this catalyst as an anodic electrode is measured, the EBC shows a high open-circuit voltage of 0.54 V and a maximum power density of 38 μW/cm2.
Collapse
Affiliation(s)
- Kyuhwan Hyun
- Graduate School of Energy and Environment, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul 01811, Republic of Korea
| | - Suhyeon Kang
- Graduate School of Energy and Environment, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul 01811, Republic of Korea
| | - Jiyong Kim
- Department of Energy and Chemical Engineering, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea
| | - Yongchai Kwon
- Graduate School of Energy and Environment, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul 01811, Republic of Korea
- Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul 01811, Republic of Korea
| |
Collapse
|
10
|
Zouraris D, Kiafi S, Zerva A, Topakas E, Karantonis A. FTacV study of electroactive immobilized enzyme/free substrate reactions: Enzymatic catalysis of epinephrine by a multicopper oxidase from Thermothelomyces thermophila. Bioelectrochemistry 2020; 134:107538. [PMID: 32380451 DOI: 10.1016/j.bioelechem.2020.107538] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/15/2020] [Accepted: 04/16/2020] [Indexed: 01/02/2023]
Abstract
In the present work, a kinetic analysis is made concerning the reaction of an electroactive immobilized enzyme with a free substrate, based on a Michaelis-Menten scheme. The proposed kinetic equations are investigated numerically for conditions describing large amplitude fast Fourier transform alternating current voltammetry (FTacV), under different reaction states (transient or steady state for the reaction intermediate as well as quasi or complete reversibility of the electrochemical step). The dependence of two chief observables that occur from the analysis of the results of the method, that is, the maximum of the harmonics and the potential shift of the corresponding dominant peaks, on substrate concentration is presented. The FTacV method is applied experimentally for an immobilized laccase-like multicopper oxidase from Thermothelomyces thermophila, TtLMCO1, and its reaction with epinephrine. From the experimental findings it is shown that the intrinsic characteristics of the system do not lead to the extraction of the desired kinetic data although indications on the relation between the kinetic constants is revealed. Finally, the response of the third harmonic for the first additions of epinephrine at subnanomolarity range can be exploited for the detection of epinephrine at rather low concentrations.
Collapse
Affiliation(s)
- D Zouraris
- Laboratory of Physical Chemistry and Applied Electrochemistry, School of Chemical Engineering, National Technical University of Athens, 15780 Zografou, Athens, Greece
| | - S Kiafi
- Laboratory of Physical Chemistry and Applied Electrochemistry, School of Chemical Engineering, National Technical University of Athens, 15780 Zografou, Athens, Greece
| | - A Zerva
- IndBioCat Group, Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, 15780 Zografou, Athens, Greece
| | - E Topakas
- IndBioCat Group, Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, 15780 Zografou, Athens, Greece
| | - A Karantonis
- Laboratory of Physical Chemistry and Applied Electrochemistry, School of Chemical Engineering, National Technical University of Athens, 15780 Zografou, Athens, Greece.
| |
Collapse
|
11
|
Frattini D, Accardo G, Kwon Y. Perovskite ceramic membrane separator with improved biofouling resistance for yeast-based microbial fuel cells. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.117843] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Kim K, Wie J, Kim J. Synergistic interaction of P and N co-doping EDTA with controllable active EDTA-cobalt sites as efficient electrocatalyst for oxygen reduction reaction. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2019.11.035] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
13
|
Demkiv OM, Gayda GZ, Broda D, Gonchar MV. Extracellular laccase from Monilinia fructicola: isolation, primary characterization and application. Cell Biol Int 2020; 45:536-548. [PMID: 32052524 DOI: 10.1002/cbin.11316] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 02/02/2020] [Indexed: 01/16/2023]
Abstract
Laccases are enzymes belonging to the family of blue copper oxidases. Due to their broad substrate specificity, they are widely used in many industrial processes and environmental bioremediations for removal of a large number of pollutants. During last decades, laccases attracted scientific interest also as highly promising enzymes to be used in bioanalytics. The aim of this study is to obtain a highly purified laccase from an efficient fungal producer and to demonstrate the applicability of this enzyme for analytics and bioremediation. To select the best microbial source of laccase, a screening of fungal strains was carried out and the fungus Monilinia fructicola was chosen as a producer of an extracellular enzyme. Optimal cultivation conditions for the highest yield of laccase were established; the enzyme was purified by a column chromatography and partially characterized. Molecular mass of the laccase subunit was determined to be near 35 kDa; the optimal pH ranges for the highest activity and stability are 4.5-5.0 and 3.0-5.0, respectively; the optimal temperature for laccase activity is 30°C. Laccase preparation was successfully used as a biocatalyst in the amperometric biosensor for bisphenol A assay and in the bioreactor for bioremediation of some xenobiotics.
Collapse
Affiliation(s)
- Olga M Demkiv
- Institute of Cell Biology, National Academy of Sciences of Ukraine, 14/16 Drahomanov Str., 79005, Lviv, Ukraine
| | - Galina Z Gayda
- Institute of Cell Biology, National Academy of Sciences of Ukraine, 14/16 Drahomanov Str., 79005, Lviv, Ukraine
| | - Daniel Broda
- Faculty of Biotechnology, University of Rzeszów, 1 Pigonia Str., 35-310, Rzeszów, Poland
| | - Mykhailo V Gonchar
- Institute of Cell Biology, National Academy of Sciences of Ukraine, 14/16 Drahomanov Str., 79005, Lviv, Ukraine.,Drohobych Ivan Franko State Pedagogical University, 24 Ivan Franko Str., 82100, Drohobych, Ukraine
| |
Collapse
|
14
|
Abstract
There is a high number of well characterized, commercially available laccases with different redox potentials and low substrate specificity, which in turn makes them attractive for a vast array of biotechnological applications. Laccases operate as batteries, storing electrons from individual substrate oxidation reactions to reduce molecular oxygen, releasing water as the only by-product. Due to society’s increasing environmental awareness and the global intensification of bio-based economies, the biotechnological industry is also expanding. Enzymes such as laccases are seen as a better alternative for use in the wood, paper, textile, and food industries, and they are being applied as biocatalysts, biosensors, and biofuel cells. Almost 140 years from the first description of laccase, industrial implementations of these enzymes still remain scarce in comparison to their potential, which is mostly due to high production costs and the limited control of the enzymatic reaction side product(s). This review summarizes the laccase applications in the last decade, focusing on the published patents during this period.
Collapse
|
15
|
Frattini D, Hyun K, Kwon Y. Direct electrochemistry of lactate dehydrogenase in aqueous solution system containing l(+)-lactic acid, β-nicotinamide adenine dinucleotide, and its reduced form. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2019.08.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
16
|
Vu KB, Bach LG, Van Tran T, Thuong NT, Giang HN, Bui QTP, Ngo ST. Gold@silica catalyst: Porosity of silica shells switches catalytic reactions. Chem Phys Lett 2019. [DOI: 10.1016/j.cplett.2019.04.082] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
17
|
Hyun K, Kang S, Kwon Y. Performance evaluation of glucose oxidation reaction using biocatalysts adopting different quinone derivatives and their utilization in enzymatic biofuel cells. KOREAN J CHEM ENG 2019. [DOI: 10.1007/s11814-018-0218-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
18
|
Bathla A, Pal B. Bimetallic Pd@Ni-mesoporous TiO2 nanocatalyst for highly improved and selective hydrogenation of carbonyl compounds under UV light radiation. J IND ENG CHEM 2018. [DOI: 10.1016/j.jiec.2018.07.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|