1
|
Rungruangkitkrai N, Phromphen P, Chartvivatpornchai N, Srisa A, Laorenza Y, Wongphan P, Harnkarnsujarit N. Water Repellent Coating in Textile, Paper and Bioplastic Polymers: A Comprehensive Review. Polymers (Basel) 2024; 16:2790. [PMID: 39408499 PMCID: PMC11479018 DOI: 10.3390/polym16192790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/16/2024] [Accepted: 09/20/2024] [Indexed: 10/20/2024] Open
Abstract
Water-repellent coatings are essential for enhancing the durability and sustainability of textiles, paper, and bioplastic polymers. Despite the growing use of sustainable materials, their inherent hydrophilicity presents significant challenges. This review explores advanced coating technologies to address these issues, focusing on their mechanisms, properties, and applications. By imparting water resistance and repellency, these coatings improve material performance and longevity. The environmental impact and limitations of current coatings are critically assessed, highlighting the need for sustainable solutions. This review identifies key trends and challenges, offering insights into developing water-resistant materials that align with environmental goals while meeting industry demands. Key focus areas include coating mechanisms, techniques, performance evaluation, applications, environmental impact assessment, and the development of sustainable coating solutions. This research contributes to the development of water-resistant materials that meet the demands of modern industries while minimizing environmental impact.
Collapse
Affiliation(s)
- Nattadon Rungruangkitkrai
- Department of Textile Science, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand; (N.R.); (P.P.); (N.C.)
| | - Phannaphat Phromphen
- Department of Textile Science, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand; (N.R.); (P.P.); (N.C.)
| | - Nawarat Chartvivatpornchai
- Department of Textile Science, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand; (N.R.); (P.P.); (N.C.)
| | - Atcharawan Srisa
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand; (A.S.); (Y.L.); (P.W.)
| | - Yeyen Laorenza
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand; (A.S.); (Y.L.); (P.W.)
| | - Phanwipa Wongphan
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand; (A.S.); (Y.L.); (P.W.)
| | - Nathdanai Harnkarnsujarit
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand; (A.S.); (Y.L.); (P.W.)
- Center for Advanced Studies for Agriculture and Food, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
| |
Collapse
|
2
|
Venezia V, Prieto C, Verrillo M, Grumi M, Silvestri B, Vitiello G, Luciani G, Lagaron JM. Electrospun films incorporating humic substances of application interest in sustainable active food packaging. Int J Biol Macromol 2024; 263:130210. [PMID: 38365144 DOI: 10.1016/j.ijbiomac.2024.130210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/29/2024] [Accepted: 02/13/2024] [Indexed: 02/18/2024]
Abstract
Sustainable active food packaging is essential to reduce the use of plastics, preserve food quality and minimize the environmental impact. Humic substances (HS) are rich in redox-active compounds, such as quinones, phenols, carboxyl, and hydroxyl moieties, making them functional additives for biopolymeric matrices, such as poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV). Herein, composites made by incorporating different amounts of HS into PHBV were developed using the electrospinning technology and converted into homogeneous and continuous films by a thermal post-treatment to obtain a bioactive and biodegradable layer which could be part of a multilayer food packaging solution. The morphology, thermal, optical, mechanical, antioxidant and barrier properties of the resulting PHBV-based films have been evaluated, as well as the antifungal activity against Aspergillus flavus and Candida albicans and the antimicrobial properties against both Gram (+) and Gram (-) bacterial strains. HS show great potential as natural additives for biopolymer matrices, since they confer antioxidant, antimicrobial, and antifungal properties to the resulting materials. In addition, barrier, optical and mechanical properties highlighted that the obtained films are suitable for sustainable active packaging. Therefore, the electrospinning methodology is a promising and sustainable approach to give biowaste a new life through the development of multifunctional materials suitable in the active bio-packaging.
Collapse
Affiliation(s)
- Virginia Venezia
- DICMaPI, Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, Naples, Italy; DiSt, Department of Structures for Engineering and Architecture, University of Naples Federico II, Naples, Italy.
| | - Cristina Prieto
- Novel Materials and Nanotechnology Group, Institute of Agrochemistry and Food Technology (IATA), Spanish Council for Scientific Research (CSIC), Paterna, Spain
| | | | - Mattia Grumi
- Novel Materials and Nanotechnology Group, Institute of Agrochemistry and Food Technology (IATA), Spanish Council for Scientific Research (CSIC), Paterna, Spain
| | - Brigida Silvestri
- Department of Civil, Architectural and Environmental Engineering, University of Naples Federico II, Italy
| | - Giuseppe Vitiello
- DICMaPI, Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, Naples, Italy; CSGI-Center for Colloid and Surface Science, Via Della Lastruccia 3, 50019 Florence, Italy
| | - Giuseppina Luciani
- DICMaPI, Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, Naples, Italy.
| | - Jose M Lagaron
- Novel Materials and Nanotechnology Group, Institute of Agrochemistry and Food Technology (IATA), Spanish Council for Scientific Research (CSIC), Paterna, Spain
| |
Collapse
|
3
|
Jia D, Lin Y, Zou Y, Zhang Y, Yu Q. Recent Advances in Dual-Function Superhydrophobic Antibacterial Surfaces. Macromol Biosci 2023; 23:e2300191. [PMID: 37265089 DOI: 10.1002/mabi.202300191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/31/2023] [Indexed: 06/03/2023]
Abstract
Bacterial adhesion and subsequent biofilm formation on the surfaces of synthetic materials imposes a significant burden in various fields, which can lead to infections in patients or reduce the service life of industrial devices. Therefore, there is increasing interest in imbuing surfaces with antibacterial properties. Bioinspired superhydrophobic surfaces with high water contact angles (>150°) exhibit excellent surface repellency against contaminations, thereby preventing initial bacterial adhesion and inhibiting biofilm formation. However, conventional superhydrophobic surfaces typically lack long-term durability and are incapable of achieving persistent efficacy against bacterial adhesion. To overcome these limitations, in recent decades, dual-function superhydrophobic antibacterial surfaces with both bacteria-repelling and bacteria-killing properties have been developed by introducing bactericidal components. These surfaces have demonstrated improved long-term antibacterial performance in addressing the issues associated with surface-attached bacteria. This review summarizes the recent advancements of these dual-function superhydrophobic antibacterial surfaces. First, a brief overview of the fabrication strategies and bacteria-repelling mechanism of superhydrophobic surfaces is provided and then the dual-function superhydrophobic antibacterial surfaces are classified into three types based on the bacteria-killing mechanism: i) mechanotherapy, ii) chemotherapy, and iii) phototherapy. Finally, the limitations and challenges of current research are discussed and future perspectives in this promising area are proposed.
Collapse
Affiliation(s)
- Dongxu Jia
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, Suzhou Medical College of Soochow University, Soochow University, Suzhou, 215000, P. R. China
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Yuancheng Lin
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Yi Zou
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Yanxia Zhang
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, Suzhou Medical College of Soochow University, Soochow University, Suzhou, 215000, P. R. China
| | - Qian Yu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| |
Collapse
|
4
|
Keerthiga G, Prasad MJNV, Vijayshankar D, Singh Raman RK. Polymeric Coatings for Magnesium Alloys for Biodegradable Implant Application: A Review. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4700. [PMID: 37445014 DOI: 10.3390/ma16134700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/26/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023]
Abstract
Magnesium (Mg) alloys are a very attractive material of construction for biodegradable temporary implants. However, Mg alloys suffer unacceptably rapid corrosion rates in aqueous environments, including physiological fluid, that may cause premature mechanical failure of the implant. This necessitates a biodegradable surface barrier coating that should delay the corrosion of the implant until the fractured/damaged bone has healed. This review takes a brief account of the merits and demerits of various existing coating methodologies for the mitigation of Mg alloy corrosion. Since among the different coating approaches investigated, no single coating recipe seems to address the degradation control and functionality entirely, this review argues the need for polymer-based and biodegradable composite coatings.
Collapse
Affiliation(s)
- G Keerthiga
- IITB-Monash Research Academy, Mumbai 400076, Maharashtra, India
- Microstructural Engineering and Mechanical Performance Laboratory, Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Mumbai 400076, Maharashtra, India
- Electrochemistry at Interface Lab, Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Mumbai 400076, Maharashtra, India
- Department of Chemical and Biological Engineering, Monash University, Clayton, VIC 3800, Australia
| | - M J N V Prasad
- Microstructural Engineering and Mechanical Performance Laboratory, Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Mumbai 400076, Maharashtra, India
| | - Dandapani Vijayshankar
- Electrochemistry at Interface Lab, Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Mumbai 400076, Maharashtra, India
| | - R K Singh Raman
- Department of Chemical and Biological Engineering, Monash University, Clayton, VIC 3800, Australia
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
5
|
Strzelecka K, Piotrowska U, Sobczak M, Oledzka E. The Advancement of Biodegradable Polyesters as Delivery Systems for Camptothecin and Its Analogues-A Status Report. Int J Mol Sci 2023; 24:ijms24021053. [PMID: 36674567 PMCID: PMC9866533 DOI: 10.3390/ijms24021053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 12/29/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023] Open
Abstract
Camptothecin (CPT) has demonstrated antitumor activity in lung, ovarian, breast, pancreas, and stomach cancers. However, this drug, like many other potent anticancer agents, is extremely water-insoluble. Furthermore, pharmacology studies have revealed that prolonged schedules must be administered continuously. For these reasons, several of its water-soluble analogues, prodrugs, and macromolecular conjugates have been synthesized, and various formulation approaches have been investigated. Biodegradable polyesters have gained popularity in cancer treatment in recent years. A number of biodegradable polymeric drug delivery systems (DDSs), designed for localized and systemic administration of therapeutic agents, as well as tumor-targeting macromolecules, have entered clinical trials, demonstrating the importance of biodegradable polyesters in cancer therapy. Biodegradable polyester-based DDSs have the potential to deliver the payload to the target while also increasing drug availability at intended site. The systemic toxicity and serious side-effects associated with conventional cancer therapies can be significantly reduced with targeted polymeric systems. This review elaborates on the use of biodegradable polyesters in the delivery of CPT and its analogues. The design of various DDSs based on biodegradable polyesters has been described, with the drug either adsorbed on the polymer's surface or encapsulated within its macrostructure, as well as those in which a hydrolyzed chemical bond is formed between the active substance and the polymer chain. The data related to the type of DDSs, the kind of linkage, and the details of in vitro and in vivo studies are included.
Collapse
Affiliation(s)
- Katarzyna Strzelecka
- Department of Analytical Chemistry and Biomaterials, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha Str., 02-097 Warsaw, Poland
| | - Urszula Piotrowska
- Department of Analytical Chemistry and Biomaterials, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha Str., 02-097 Warsaw, Poland
| | - Marcin Sobczak
- Department of Analytical Chemistry and Biomaterials, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha Str., 02-097 Warsaw, Poland
- Military Institute of Hygiene and Epidemiology, 4 Kozielska Str., 01-163 Warsaw, Poland
| | - Ewa Oledzka
- Department of Analytical Chemistry and Biomaterials, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha Str., 02-097 Warsaw, Poland
- Correspondence: ; Tel.: +48-22-572-07-55
| |
Collapse
|
6
|
Popa MS, Frone AN, Panaitescu DM. Polyhydroxybutyrate blends: A solution for biodegradable packaging? Int J Biol Macromol 2022; 207:263-277. [PMID: 35257732 DOI: 10.1016/j.ijbiomac.2022.02.185] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/23/2022] [Accepted: 02/27/2022] [Indexed: 11/05/2022]
Abstract
Poly (3-hydroxybutyrate) (PHB) is a valuable bio-based and biodegradable polymer that may substitute common polymers in packaging and biomedical applications provided that the production cost is reduced and some properties improved. Blending PHB with other biodegradable polymers is the most simple and accessible route to reduce costs and to improve properties. This review provides a comprehensive overview on the preparation, properties and application of the PHB blends with other biodegradable polyesters such as medium-chain-length polyhydroxyalkanoates, poly(ε-caprolactone), poly(lactic acid), poly(butylene succinate), poly(propylene carbonate) and poly (butylene adipate-co-terephthalate) or polysaccharides and their derivatives. A special attention has been paid to the miscibility of PHB with these polymers and the compatibilizing methods used to improve the dispersion and interface. The changes in the PHB morphology, thermal, mechanical and barrier properties induced by the second polymer have been critically analyzed in view of industrial application. The biodegradability and recyclability strategies of the PHB blends were summarized along with the processing techniques adapted to the intended application. This review provides the tools for a better understanding of the relation between the micro/nanostructure of PHB blends and their properties for the further development of PHB blends as solutions for biodegradable packaging.
Collapse
Affiliation(s)
- Marius Stelian Popa
- Polymer Department, National Institute for Research and Development in Chemistry and Petrochemistry, 202 Spl. Independentei, Bucharest 060021, Romania
| | - Adriana Nicoleta Frone
- Polymer Department, National Institute for Research and Development in Chemistry and Petrochemistry, 202 Spl. Independentei, Bucharest 060021, Romania
| | - Denis Mihaela Panaitescu
- Polymer Department, National Institute for Research and Development in Chemistry and Petrochemistry, 202 Spl. Independentei, Bucharest 060021, Romania.
| |
Collapse
|
7
|
Dhania S, Bernela M, Rani R, Parsad M, Grewal S, Kumari S, Thakur R. Scaffolds the backbone of tissue engineering: Advancements in use of polyhydroxyalkanoates (PHA). Int J Biol Macromol 2022; 208:243-259. [PMID: 35278518 DOI: 10.1016/j.ijbiomac.2022.03.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/05/2022] [Accepted: 03/07/2022] [Indexed: 12/11/2022]
Abstract
Our body is built to heal from inside out naturally but wide-ranging medical conditions necessitate the need for artificial assistance, and therefore, something that can assist the body to heal wounds and damaged tissues quickly and efficiently is of utmost importance. Tissue engineering technology helps to regenerate new tissue to replace the diseased or injured one. The technology uses biodegradable porous three-dimensional scaffolds for mimicking the structure and functions of the natural extracellular matrix. The material and design of scaffolds are critical areas of biomaterial research. Biomaterial-based three-dimensional structures have been the most promising material to serve as scaffolds for seeding cells, both in vivo and in vitro. One such material is polyhydroxyalkanoates (PHAs) which are thermoplastic biopolyesters that are highly suitable for this purpose due to their enhanced biocompatibility, biodegradability, thermo-processability, diverse mechanical properties, non-toxicity and natural origin. Moreover, they have tremendous possibilities of customization through biological physical and chemical modification as well as blending with other materials. They are being used for several tissue engineering applications such as bone graft substitute, cardiovascular patches, stents, for nerve repair and in implantology as valves and sutures. The present review overviews usage of a multitude of PHA-based biomaterials for a wide range of tissue engineering applications, based on their properties suitable for the specific applications.
Collapse
Affiliation(s)
- Sunena Dhania
- Department of Bio & Nanotechnology, Guru Jambheshwar University of Science and Technology, Hisar 125001, Haryana, India
| | - Manju Bernela
- Department of Biotechnology, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Ruma Rani
- ICAR-National Research Centre on Equines, Hisar 125001, Haryana, India
| | - Minakshi Parsad
- Department of Animal Biotechnology, LUVAS, Hisar 125001, Haryana, India
| | - Sapna Grewal
- Department of Bio & Nanotechnology, Guru Jambheshwar University of Science and Technology, Hisar 125001, Haryana, India
| | - Santosh Kumari
- Department of Bio & Nanotechnology, Guru Jambheshwar University of Science and Technology, Hisar 125001, Haryana, India
| | - Rajesh Thakur
- Department of Bio & Nanotechnology, Guru Jambheshwar University of Science and Technology, Hisar 125001, Haryana, India.
| |
Collapse
|
8
|
Yang Z, Ren X, Liu Y. Multifunctional 3D printed porous GelMA/xanthan gum based dressing with biofilm control and wound healing activity. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 131:112493. [PMID: 34857279 DOI: 10.1016/j.msec.2021.112493] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 10/10/2021] [Accepted: 10/12/2021] [Indexed: 12/30/2022]
Abstract
Bacterial infections are the major challenges of wound treatment in current clinical applications. In this study, Three-dimensional (3D) antibacterial wound dressing has been fabricated via introducing N-halamine/TiO2 to gelatin methacrylate and xanthan gum. The prepared 3D printed dressings showed ideal swelling ratio and excellent water uptake efficiency. TiO2 nanoparticles were introduced by in-situ to improve the ultraviolet stability of N-halamines. The 3D printed GX2-TiO2-PSPH-Cl prepared dressings containing titanium dioxide retained 0.19% active chlorine after ultraviolet irradiation for 20 min, which was much higher than that of N-halamine dressings without the addition of TiO2. The 3D printed dressings showed good antibacterial activity, and 100% of Escherichia coli O157:H7 and Staphylococcus aureus were inactivated after 60 min of contact. Furthermore, the biofilm test indicated that the 3D antibacterial dressings were able to inhibit the formation of bacterial biofilm. The 3D printed dressings possess outstanding biocompatibility. Moreover, in vivo data demonstrated that the 3D printed dressings could significantly accelerate wound healing in a mouse model, indicating that the developed 3D printed dressings are ideal candidates for wound treatment.
Collapse
Affiliation(s)
- Zhenming Yang
- Key Laboratory of Eco-textiles of Ministry of Education, College of Textile Science and Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xuehong Ren
- Key Laboratory of Eco-textiles of Ministry of Education, College of Textile Science and Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Yu Liu
- Key Laboratory of Advanced Food Manufacturing Equipment and Technology, School of Mechanical Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
9
|
Pryadko A, Surmeneva MA, Surmenev RA. Review of Hybrid Materials Based on Polyhydroxyalkanoates for Tissue Engineering Applications. Polymers (Basel) 2021; 13:1738. [PMID: 34073335 PMCID: PMC8199458 DOI: 10.3390/polym13111738] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 05/18/2021] [Accepted: 05/20/2021] [Indexed: 12/26/2022] Open
Abstract
This review is focused on hybrid polyhydroxyalkanoate-based (PHA) biomaterials with improved physico-mechanical, chemical, and piezoelectric properties and controlled biodegradation rate for applications in bone, cartilage, nerve and skin tissue engineering. PHAs are polyesters produced by a wide range of bacteria under unbalanced growth conditions. They are biodegradable, biocompatible, and piezoelectric polymers, which make them very attractive biomaterials for various biomedical applications. As naturally derived materials, PHAs have been used for multiple cell and tissue engineering applications; however, their widespread biomedical applications are limited due to their lack of toughness, elasticity, hydrophilicity and bioactivity. The chemical structure of PHAs allows them to combine with other polymers or inorganic materials to form hybrid composites with improved structural and functional properties. Their type (films, fibers, and 3D printed scaffolds) and properties can be tailored with fabrication methods and materials used as fillers. Here, we are aiming to fill in a gap in literature, revealing an up-to-date overview of ongoing research strategies that make use of PHAs as versatile and prospective biomaterials. In this work, a systematic and detailed review of works investigating PHA-based hybrid materials with tailored properties and performance for use in tissue engineering applications is carried out. A literature survey revealed that PHA-based composites have better performance for use in tissue regeneration applications than pure PHA.
Collapse
Affiliation(s)
| | | | - Roman A. Surmenev
- Physical Materials Science and Composite Materials Centre, Research School of Chemistry & Applied Biomedical Sciences, National Research Tomsk Polytechnic University, 30 Lenina Avenue, Tomsk 634050, Russia; (A.P.); (M.A.S.)
| |
Collapse
|
10
|
Sameen DE, Ahmed S, Lu R, Li R, Dai J, Qin W, Zhang Q, Li S, Liu Y. Electrospun nanofibers food packaging: trends and applications in food systems. Crit Rev Food Sci Nutr 2021; 62:6238-6251. [PMID: 33724097 DOI: 10.1080/10408398.2021.1899128] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Food safety is a bottleneck problem. In order to provide information about advanced and unique food packaging technique, this study summarized the advancements of electrospinning technique. Food packaging is a multidisciplinary area involving food science, food engineering, food chemistry, and food microbiology, and the interest in maintaining the freshness and quality of foods has grown considerably. For this purpose, electrospinning technology has gained much attention due to its unique functions and superior processing. Sudden advancements of electrospinning have been rapidly incorporated into research. This review summarized some latest information about food packaging and different materials used for the packaging of various foods such as fruits, vegetables, meat, and processed items. Also, the use of electrospinning and materials used for the formation of nanofibers are discussed in detail. However, in food industry, the application of electrospun nanofibers is still in its infancy. In this study, different parameters, structures of nanofibers, features and fundamental properties are described briefly, while polymers fabricated through electrospinning with advances in food packaging films are described in detail. Moreover, this comprehensive review focuses on the polymers used for the electrospinning of nanofibers as packaging films and their applications for variety of foods. This will be a valuable source of information for researchers studying various polymers for electrospinning for application in the food packaging industry.
Collapse
Affiliation(s)
- Dur E Sameen
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Saeed Ahmed
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Rui Lu
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Rui Li
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Jianwu Dai
- College of Mechanical and Electrical Engineering, Sichuan Agricultural University, Ya'an, China
| | - Wen Qin
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Qing Zhang
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Suqing Li
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Yaowen Liu
- College of Food Science, Sichuan Agricultural University, Ya'an, China.,California Nano Systems Institute, University of California, Los Angeles, CA, USA
| |
Collapse
|
11
|
Omerović N, Djisalov M, Živojević K, Mladenović M, Vunduk J, Milenković I, Knežević NŽ, Gadjanski I, Vidić J. Antimicrobial nanoparticles and biodegradable polymer composites for active food packaging applications. Compr Rev Food Sci Food Saf 2021; 20:2428-2454. [DOI: 10.1111/1541-4337.12727] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 01/25/2021] [Accepted: 02/01/2021] [Indexed: 12/28/2022]
Affiliation(s)
- Nejra Omerović
- BioSense Institute University of Novi Sad Novi Sad Serbia
| | - Mila Djisalov
- BioSense Institute University of Novi Sad Novi Sad Serbia
| | | | | | - Jovana Vunduk
- Ekofungi Ltd. Belgrade Serbia
- Faculty of Agriculture, Institute of Food Technology and Biochemistry University of Belgrade Belgrade Serbia
| | | | | | | | - Jasmina Vidić
- Micalis Institute, INRAE, AgroParisTech Université Paris‐Saclay Jouy en Josas France
| |
Collapse
|
12
|
Seo E, Kim H, Bae K, Jung H, Jung H, Lee KJ. Optimizing chemical and mechanical stability of catalytic nanofiber web for development of efficient detoxification cloths against CWAs. POLYMER 2021. [DOI: 10.1016/j.polymer.2020.123262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
Marques A, Luz SMD. Use of biodegradable polymer for development of environmental tracers: a bibliometric review. POLIMEROS 2021. [DOI: 10.1590/0104-1428.00221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Adriana Marques
- Instituto Federal de Educação, Ciência e Tecnologia de São Paulo, Brasil
| | | |
Collapse
|
14
|
Abstract
Pathogenic microbial contamination poses serious threats to human healthcare and economies worldwide, which instigates the booming development of challenging antibacterial materials. N-halamine fibrous materials (NFMs), as an important part of antibacterial materials, featuring structural continuity, good pore connectivity, rapid sterilization, rechargeable bactericidal activity, and safety to humans and environment, have received significant research attention. This review aims to present a systematic discussion of the recent advances in N-halamine antibacterial fibrous materials. We firstly introduce the chemical structures and properties of N-halamine materials. Subsequently, the developed NFMs can be categorized based on their fabrication strategies, including surface modification and one-step spinning. Then some representative applications of these fibrous materials are highlighted. Finally, challenges and future research directions of the materials are discussed in the hope of giving suggestions for the following studies. The chemical structures and properties of N-halamine materials are briefly introduced. Design and fabrication strategies of N-halamine fibrous materials are systematically reviewed. The functional applications of the N-halamine fibrous materials are discussed. Challenges and future research directions of the antibacterial N-halamine fibrous materials are provided.
Collapse
|
15
|
Babos G, Rydz J, Kawalec M, Klim M, Fodor-Kardos A, Trif L, Feczkó T. Poly(3-Hydroxybutyrate)-Based Nanoparticles for Sorafenib and Doxorubicin Anticancer Drug Delivery. Int J Mol Sci 2020; 21:E7312. [PMID: 33022990 PMCID: PMC7582498 DOI: 10.3390/ijms21197312] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/29/2020] [Accepted: 10/01/2020] [Indexed: 12/16/2022] Open
Abstract
Dual drug-loaded nanotherapeutics can play an important role against the drug resistance and side effects of the single drugs. Doxorubicin and sorafenib were efficiently co-encapsulated by tailor-made poly([R,S]-3-hydroxybutyrate) (PHB) using an emulsion-solvent evaporation method. Subsequent poly(ethylene glycol) (PEG) conjugation onto nanoparticles was applied to make the nanocarriers stealth and to improve their drug release characteristics. Monodisperse PHB-sorafenib-doxorubicin nanoparticles had an average size of 199.3 nm, which was increased to 250.5 nm after PEGylation. The nanoparticle yield and encapsulation efficiencies of drugs decreased slightly in consequence of PEG conjugation. The drug release of the doxorubicin was beneficial, since it was liberated faster in a tumor-specific acidic environment than in blood plasma. The PEG attachment decelerated the release of both the doxorubicin and the sorafenib, however, the release of the latter drug remained still significantly faster with increased initial burst compared to doxorubicin. Nevertheless, the PEG-PHB copolymer showed more beneficial drug release kinetics in vitro in comparison with our recently developed PEGylated poly(lactic-co-glycolic acid) nanoparticles loaded with the same drugs.
Collapse
Affiliation(s)
- György Babos
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Magyar tudósok körútja 2, H-1117 Budapest, Hungary; (G.B.); (A.F.-K.); (L.T.)
- Research Institute of Biomolecular and Chemical Engineering, Faculty of Engineering, University of Pannonia, Egyetem u. 10, H-8200 Veszprém, Hungary
| | - Joanna Rydz
- Centre of Polymer and Carbon Materials Polish Academy of Sciences, 34, M. Curie-Skłodowskiej Str., 41-819 Zabrze, Poland; (J.R.); (M.K.); (M.K.)
| | - Michal Kawalec
- Centre of Polymer and Carbon Materials Polish Academy of Sciences, 34, M. Curie-Skłodowskiej Str., 41-819 Zabrze, Poland; (J.R.); (M.K.); (M.K.)
| | - Magdalena Klim
- Centre of Polymer and Carbon Materials Polish Academy of Sciences, 34, M. Curie-Skłodowskiej Str., 41-819 Zabrze, Poland; (J.R.); (M.K.); (M.K.)
- Department of Microbiology and Virology School of Pharmacy with the Division of Laboratory Medicine Medical University of Silesia, 4 Jagiellońska St., 41-200 Sosnowiec, Poland
| | - Andrea Fodor-Kardos
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Magyar tudósok körútja 2, H-1117 Budapest, Hungary; (G.B.); (A.F.-K.); (L.T.)
- Research Institute of Biomolecular and Chemical Engineering, Faculty of Engineering, University of Pannonia, Egyetem u. 10, H-8200 Veszprém, Hungary
| | - László Trif
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Magyar tudósok körútja 2, H-1117 Budapest, Hungary; (G.B.); (A.F.-K.); (L.T.)
| | - Tivadar Feczkó
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Magyar tudósok körútja 2, H-1117 Budapest, Hungary; (G.B.); (A.F.-K.); (L.T.)
- Research Institute of Biomolecular and Chemical Engineering, Faculty of Engineering, University of Pannonia, Egyetem u. 10, H-8200 Veszprém, Hungary
| |
Collapse
|
16
|
Liu L, Li C, Liu X, Jiao Y, Wang F, Jiang G, Wang L. Tricalcium Phosphate Sol-Incorporated Poly(ε-caprolactone) Membrane with Improved Mechanical and Osteoinductive Activity as an Artificial Periosteum. ACS Biomater Sci Eng 2020; 6:4631-4643. [DOI: 10.1021/acsbiomaterials.0c00511] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Laijun Liu
- Key Laboratory of Textile Science and Technology of Ministry of Education and College of Textiles, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
- Engineering Research Center of Technical Textiles, Ministry of Education, Donghua University, Shanghai 201620, China
| | - Chaojing Li
- Key Laboratory of Textile Science and Technology of Ministry of Education and College of Textiles, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Xingxing Liu
- Key Laboratory of Textile Science and Technology of Ministry of Education and College of Textiles, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Yongjie Jiao
- Key Laboratory of Textile Science and Technology of Ministry of Education and College of Textiles, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Fujun Wang
- Key Laboratory of Textile Science and Technology of Ministry of Education and College of Textiles, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
- Engineering Research Center of Technical Textiles, Ministry of Education, Donghua University, Shanghai 201620, China
| | - Guansen Jiang
- Hangzhou Ruijian Maasting Medical Equipment Co. Ltd., Hangzhou 310000, China
| | - Lu Wang
- Key Laboratory of Textile Science and Technology of Ministry of Education and College of Textiles, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| |
Collapse
|
17
|
Topuz F, Uyar T. Antioxidant, antibacterial and antifungal electrospun nanofibers for food packaging applications. Food Res Int 2020; 130:108927. [DOI: 10.1016/j.foodres.2019.108927] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 12/07/2019] [Accepted: 12/15/2019] [Indexed: 12/19/2022]
|
18
|
Novel quaternarized N-halamine chitosan and polyvinyl alcohol nanofibrous membranes as hemostatic materials with excellent antibacterial properties. Carbohydr Polym 2020; 232:115823. [PMID: 31952618 DOI: 10.1016/j.carbpol.2019.115823] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 12/27/2019] [Accepted: 12/31/2019] [Indexed: 01/07/2023]
Abstract
The aim of this study was to develop novel nanofibrous membranes based on the quaternary ammonium N-halamine chitosan (CSENDMH) and polyvinyl alcohol (PVA) for antibacterial and hemostasis wound dressing. To improve the antimicrobial properties of nanofibrous membranes, a new chitosan-quaternary ammonium N-halamine derivative was successfully synthesized, and the structure was analyzed by 1H NMR and 13C NMR, fourier transform infrared (FTIR) spectroscopy, and elemental analysis. The morphological and water absorption ability studies showed that the membrane had a uniform bead-free network and high porosity structure like natural extracellular matrix as well as high hydrophilicity. For in vitro evaluation of the hemostatic effect, the membranes showed excellent blood clotting capacity, especially the PVA/CSENDMH membranes. The antimicrobial assay demonstrated excellent antibacterial activity of nanofibrous membranes against both gram-negative and gram-positive bacteria. Furthermore, the cytocompatibility assay results indicated that human fibroblasts could adhere and proliferate on the membranes, thus corroborating their biocompatibility.
Collapse
|
19
|
Ghasemlou M, Daver F, Ivanova EP, Rhim JW, Adhikari B. Switchable Dual-Function and Bioresponsive Materials to Control Bacterial Infections. ACS APPLIED MATERIALS & INTERFACES 2019; 11:22897-22914. [PMID: 31180196 DOI: 10.1021/acsami.9b05901] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The colonization of undesired bacteria on the surface of devices used in biomedical and clinical applications has become a persistent problem. Different types of single-function (cell resistance or bactericidal) bioresponsive materials have been developed to cope with this problem. Even though these materials meet the basic requirements of many biomedical and clinical applications, dual-function (cell resistance and biocidal) bioresponsive materials with superior design and function could be better suited for these applications. The past few years have witnessed the emergence of a new class of dual-function materials that can reversibly switch between cell-resistance and biocidal functions in response to external stimuli. These materials are finding increased applications in biomedical devices, tissue engineering, and drug-delivery systems. This review highlights the recent advances in design, structure, and fabrication of dual-function bioresponsive materials and discusses translational challenges and future prospects for research involving these materials.
Collapse
Affiliation(s)
| | | | - Elena P Ivanova
- School of Science , RMIT University , Melbourne VIC 3000 , Australia
| | - Jong-Whan Rhim
- Center for Humanities and Sciences, Department of Food and Nutrition, Bionanocomposite Research Center , Kyung Hee University , 26 Kyungheedae-ro, Dongdaemun-gu , Seoul 02447 , Republic of Korea
| | | |
Collapse
|
20
|
Strategies for Fabrication of Hydrophobic Porous Materials Based on Polydimethylsiloxane for Oil-Water Separation. Macromol Res 2019. [DOI: 10.1007/s13233-019-7083-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
21
|
Lin X, Li S, Jung J, Ma W, Li L, Ren X, Sun Y, Huang TS. PHB/PCL fibrous membranes modified with SiO2@TiO2-based core@shell composite nanoparticles for hydrophobic and antibacterial applications. RSC Adv 2019; 9:23071-23080. [PMID: 35514487 PMCID: PMC9067281 DOI: 10.1039/c9ra04465e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 07/14/2019] [Indexed: 11/21/2022] Open
Abstract
In order to prepare multifunctional fibrous membranes with hydrophobicity, antibacterial properties and UV resistance, we used silica and titanium dioxide for preparing SiO2@TiO2 nanoparticles (SiO2@TiO2 NPs) to create roughness on the fibrous membranes surfaces. The introduction of TiO2 was used for improving UV resistance. N-Halamine precursor and silane precursor were introduced to modify SiO2@TiO2 NPs to synthesize SiO2@TiO2-based core@shell composite nanoparticles. The hydrophobic antibacterial fibrous membranes were prepared by a dip-pad process of electrospun biodegradable polyhydroxybutyrate/poly-ε-caprolactone (PHB/PCL) with the synthesized SiO2@TiO2-based core@shell composite nanoparticles. TEM, SEM and FT-IR were used to characterize the synthesized SiO2@TiO2-based core@shell composite nanoparticles and the hydrophobic antibacterial fibrous membranes. The fibrous membranes not only showed excellent hydrophobicity with an average water contact angle of 144° ± 1°, but also appreciable air permeability. The chlorinated fibrous membranes could inactivate all S. aureus and E. coli O157:H7 after 5 min and 60 min of contact, respectively. In addition, the chlorinated fibrous membranes exhibited outstanding cell compatibility with 102.1% of cell viability. Therefore, the prepared hydrophobic antibacterial degradable fibrous membranes may have great potential application for packaging materials. Schematic illustration of the synthesis of SiO2@TiO2-based core@shell composite nanoparticles (top) and antibacterial hydrophobic behavior of fibrous membranes (bottom).![]()
Collapse
Affiliation(s)
- Xinghuan Lin
- Key Laboratory of Eco-textiles of Ministry of Education
- College of Textiles and Clothing
- Jiangnan University
- Wuxi
- China
| | - Shanshan Li
- Key Laboratory of Eco-textiles of Ministry of Education
- College of Textiles and Clothing
- Jiangnan University
- Wuxi
- China
| | - Joonhoo Jung
- Department of Chemistry
- University of Massachusetts Lowell
- Lowell
- USA
| | - Wei Ma
- Key Laboratory of Eco-textiles of Ministry of Education
- College of Textiles and Clothing
- Jiangnan University
- Wuxi
- China
| | - Lin Li
- Key Laboratory of Eco-textiles of Ministry of Education
- College of Textiles and Clothing
- Jiangnan University
- Wuxi
- China
| | - Xuehong Ren
- Key Laboratory of Eco-textiles of Ministry of Education
- College of Textiles and Clothing
- Jiangnan University
- Wuxi
- China
| | - Yuyu Sun
- Department of Chemistry
- University of Massachusetts Lowell
- Lowell
- USA
| | | |
Collapse
|