1
|
Xu W, Sun K, Hou S, Chen A. Research progress of advanced polymer composite antibacterial materials based on electrospinning. Eur Polym J 2025; 222:113623. [DOI: 10.1016/j.eurpolymj.2024.113623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
2
|
Shabnum SS, Siranjeevi R, Susmitha R, Raj CK, Nivetha P, Benazir K, Saravanan A, Vickram AS. Enhanced photocatalytic degradation of crystal violet and malachite green oxalate dyes by NiAg 2O infused chitosan nanocomposites. Int J Biol Macromol 2025; 286:138365. [PMID: 39638204 DOI: 10.1016/j.ijbiomac.2024.138365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/19/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
The present study investigated the catalysis of Lupeol-loaded chitosan nanoparticles infused with NiAg2O nanoparticles to create a NiAg2O/Lup@CS nanocomposite. Recent advances in nanomaterials with unique architectures and functionalities have successfully treated contaminated soil and industrial wastewaters. Consequently, a lupeol@chitosan nanoparticle loaded with NiAg2O was created, and its catalytic effectiveness in degrading industrial dye pollution was examined. The ionic gelation synthesis route was used to produce the NiAg2O/Lup@CS nanocomposite. After that, the resultant nanocomposite underwent extensive analysis to determine its elemental composition through EDAX, surface bonding, nature, crystallinity using FTIR, FESEM, and XRD, and powdered particle size using HRTEM. Subsequently, the produced nanocomposite's efficacy in photo-catalytically degrading Crystal violet and Malachite green oxalate were evaluated. Moreover, the Crystal violet and Malachite green oxalate degradation kinetics were studied using the Langmuir-Hinshelwood model, which also offered a plausible photocatalytic process. The catalytic mechanism suggested that the addition of Lup@CS nanoparticles would have had the effect of speeding up photocurrent transport by increasing the quantity of electrons and holes produced by the photon's irradiation. This highlights the significance of creating innovative composite photocatalysts. The study also observed the superior photocatalytic activity of NiAg2O/Lup@CS nanocomposite with 86.14 % degradation of Crystal violet and 86.65 % degradation of Malachite green oxalate.
Collapse
Affiliation(s)
- S Sameera Shabnum
- Department of Chemistry, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 602 105, Tamil Nadu, India
| | - R Siranjeevi
- Department of Chemistry, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 602 105, Tamil Nadu, India.
| | - R Susmitha
- Department of Chemistry, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 602 105, Tamil Nadu, India
| | - C Krishna Raj
- Department of Chemistry, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 602 105, Tamil Nadu, India
| | - P Nivetha
- Department of Chemistry, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 602 105, Tamil Nadu, India
| | - K Benazir
- Department of Chemistry, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 602 105, Tamil Nadu, India
| | - A Saravanan
- Department of Sustainable Engineering, Institute of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai 602105, Tamil Nadu, India
| | - A S Vickram
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 602105, Tamil Nadu, India
| |
Collapse
|
3
|
Abumounshar N, Pandey RP, Hasan SW. Enhanced hydrophilicity and antibacterial efficacy of in-situ silver nanoparticles decorated Ti 3C 2T x/Polylactic acid composite membrane for real hospital wastewater purification. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176697. [PMID: 39366577 DOI: 10.1016/j.scitotenv.2024.176697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/13/2024] [Accepted: 10/01/2024] [Indexed: 10/06/2024]
Abstract
This study investigates the integration of Ti3C2Tx (MX) and Ag/Ti3C2Tx (Ag/MX) nanocomposites into polylactic acid membranes to enhance hydrophilicity and impart antibacterial properties, targeting hospital wastewater treatment. MX and silver nanoparticles are known for their hydrophilicity and antimicrobial capabilities, were synthesized and incorporated into PLA; a green polymer. The impact of nanocomposite concentration on the membrane's chemical structure, morphology, and overall performance were characterized using various PLA membrane properties and to evaluate the nanocomposite's performance in enhancing pure water flux and antibacterial efficacy. The pure water permeability increased from 1512 L m-2 h-1 bar-1 to 3108 L m-2 h-1 bar-1 in PLA/AgMX4 compared to PLA. Furthermore, a total bacteria count (TBC) rejection of up to 97 % was obtained using the PLA/AgMX4 membrane. The results demonstrated significant improvements in PLA/AgMX membranes compared to pristine PLA, showing a large potential for hospital wastewater treatment.
Collapse
Affiliation(s)
- Najah Abumounshar
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates; Department of Chemical and Petroleum Engineering, Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates
| | - Ravi P Pandey
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates; Department of Chemical and Petroleum Engineering, Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates
| | - Shadi W Hasan
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates; Department of Chemical and Petroleum Engineering, Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
4
|
Shakeri N, Barzegar B, Habibi R, Aghdasinia H, Altinkaya SA. Enhanced performance and anti-fouling properties of polyether sulfone (PES) membranes modified with pistachio shell-derived activated carbon (PSAC)@ZIF-8&ZIF-67 to remove dye contaminants. Int J Biol Macromol 2024; 283:137654. [PMID: 39557239 DOI: 10.1016/j.ijbiomac.2024.137654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/27/2024] [Accepted: 11/12/2024] [Indexed: 11/20/2024]
Abstract
This study aims to improve the properties of polyether sulfone (PES) membranes by using an innovative composite filler. Pistachio shell-derived activated carbon (PSAC) was initially synthesized via chemical activation, followed by surface modification with ZIF-8 and ZIF-67. Subsequently, modified membranes with varying weight percentages of this composite were fabricated using the phase inversion method. The PSAC@ZIF-8&ZIF-67/PES membranes were characterized through FESEM, AFM, pore size, zeta potential, porosity, and water contact angle analyses. The incorporation of the composite in the membranes was confirmed through ATR-FTIR, XRD, and EDS mapping analyses. The finding indicated that adding 0.6 wt% of nanoparticles improved membrane hydrophilicity, increased surface charge, and enhanced porosity. Additionally, the mixed membranes exhibited reduced sedimentation and higher dye removal than unmodified membranes. The optimum amount of composite is determined as 0.6 wt%. At this condition, pure water flux (PWF) increased dramatically from 22.56 L/m2h to 96.26 L/m2h. The mixed matrix membrane demonstrated superior efficiency in removing malachite green (MG) (97 %) and crystal violet (CV) dyes (93 %) and achieved the highest recovery ratio of 61.9 %, indicating a more remarkable membrane ability to combat fouling. The developed membrane demonstrated enhanced hydrophilicity, dye removal efficiency, and antifouling properties, making it promising for environmental applications.
Collapse
Affiliation(s)
- Neda Shakeri
- Department of Chemical Engineering, Faculty of Chemical and Petroleum Engineering, University of Tabriz, 51666-16471, Tabriz, Iran
| | - Behrad Barzegar
- Department of Chemical Engineering, Faculty of Chemical and Petroleum Engineering, University of Tabriz, 51666-16471, Tabriz, Iran; Laboratory of Advanced Water and Wastewater, Central Laboratory of University of Tabriz, 51666-16471, Tabriz, Iran.
| | - Rezvan Habibi
- Department of Chemical Engineering, Faculty of Chemical and Petroleum Engineering, University of Tabriz, 51666-16471, Tabriz, Iran
| | - Hassan Aghdasinia
- Department of Chemical Engineering, Faculty of Chemical and Petroleum Engineering, University of Tabriz, 51666-16471, Tabriz, Iran.
| | - Sacide Alsoy Altinkaya
- Izmir Institute of Technology, Department of Chemical Engineering, Gulbahce, Urla 35430, Izmir, Turkey
| |
Collapse
|
5
|
Sahu LR, Yadav D, Borah D, Gogoi A, Goswami S, Hazarika G, Karki S, Borpatra Gohain M, Sawake SV, Jadhav SV, Chatterjee S, Ingole PG. Polymeric Membranes for Liquid Separation: Innovations in Materials, Fabrication, and Industrial Applications. Polymers (Basel) 2024; 16:3240. [PMID: 39683985 DOI: 10.3390/polym16233240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/09/2024] [Accepted: 11/18/2024] [Indexed: 12/18/2024] Open
Abstract
Polymeric membranes have emerged as a versatile and efficient liquid separation technology, addressing the growing demand for sustainable, high-performance separation processes in various industrial sectors. This review offers an in-depth analysis of recent developments in polymeric membrane technology, focusing on materials' advancements, innovative fabrication methods, and strategies for improving performance. We discuss the underlying principles of membrane separation, selecting suitable polymers, and integrating novel materials, such as mixed-matrix and composite membranes, to enhance selectivity, permeability, and antifouling properties. The article also highlights the challenges and limitations associated with polymeric membranes, including stability, fouling, and scalability, and explores potential solutions to overcome these obstacles. This review aims to guide the development of next-generation polymeric membranes for efficient and sustainable liquid separation by offering a detailed analysis of current research and future directions.
Collapse
Affiliation(s)
- Lalit Ranjan Sahu
- Chemical Engineering Group, Engineering Sciences and Technology Division, CSIR-NorthEast Institute of Science and Technology, Jorhat 785006, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Diksha Yadav
- Chemical Engineering Group, Engineering Sciences and Technology Division, CSIR-NorthEast Institute of Science and Technology, Jorhat 785006, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Debasish Borah
- Chemical Engineering Group, Engineering Sciences and Technology Division, CSIR-NorthEast Institute of Science and Technology, Jorhat 785006, Assam, India
| | - Anuranjit Gogoi
- Chemical Engineering Group, Engineering Sciences and Technology Division, CSIR-NorthEast Institute of Science and Technology, Jorhat 785006, Assam, India
| | - Subrata Goswami
- Chemical Engineering Group, Engineering Sciences and Technology Division, CSIR-NorthEast Institute of Science and Technology, Jorhat 785006, Assam, India
| | - Gauri Hazarika
- Chemical Engineering Group, Engineering Sciences and Technology Division, CSIR-NorthEast Institute of Science and Technology, Jorhat 785006, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Sachin Karki
- Chemical Engineering Group, Engineering Sciences and Technology Division, CSIR-NorthEast Institute of Science and Technology, Jorhat 785006, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Moucham Borpatra Gohain
- Chemical Engineering Group, Engineering Sciences and Technology Division, CSIR-NorthEast Institute of Science and Technology, Jorhat 785006, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Saurabh V Sawake
- Chemical Engineering Group, Engineering Sciences and Technology Division, CSIR-NorthEast Institute of Science and Technology, Jorhat 785006, Assam, India
| | - Sumit V Jadhav
- Government Polytechnic, Hol Tarfe Haveli, Nandurbar 425412, Maharashtra, India
| | - Soumya Chatterjee
- Defence Research Laboratory, Defence Research and Development Organisation (DRDO), Tezpur 784001, Assam, India
| | - Pravin G Ingole
- Chemical Engineering Group, Engineering Sciences and Technology Division, CSIR-NorthEast Institute of Science and Technology, Jorhat 785006, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| |
Collapse
|
6
|
Gurusamy M, Thangavel S, Čespiva J, Ryšavý J, Yan WM, Jadlovec M, Arthanareeswaran G. An Assessment of the Catalytic and Adsorptive Performances of Cellulose Acetate-Based Composite Membranes for Oil/Water Emulsion Separation. Polymers (Basel) 2024; 16:3108. [PMID: 39599199 PMCID: PMC11597927 DOI: 10.3390/polym16223108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/29/2024] [Accepted: 10/30/2024] [Indexed: 11/29/2024] Open
Abstract
Cellulose acetate (CA) mixed-matrix membranes incorporating polyvinylpyrrolidone (PVP), bentonite (B or Ben), graphene oxide (GO), and titanium dioxide (TiO2) were prepared by the phase inversion separation technique for oil/water separation. An investigation was performed where the mixed-matrix membrane was tested for the separation performance of hydrophilic and hydrophobic surface properties. An ultrafiltration experiment at the laboratory scale was used to test dead-end ultrafiltration models developed for the treatment performances of oily wastewater under dynamic full-scale operating conditions. Artificial oily wastewater solutions were prepared from hexane, toluene, and engine oil with Tween80 emulsions for oil removal treatment using composite membranes. The impacts of material hydrophilicity, weight loss, permeability, and pore size were investigated, and it was found that the oil retention of membranes with larger pore sizes enabled much more sophisticated water flux. The CA-GO-, CA-B-, and CA-TiO2-incorporated membranes achieved pure water flux (PWF) values of 45.19, 53.41, and 100.25 L/m2h, respectively. The performance of CA-TiO2 in oil/water emulsion rejection was assessed, and the rejection of engine oil/water, toluene/water, and hexane/water mixtures was determined to be 95.21%, 90.33%, and 92.4%, respectively. The CA-based mixed-matrix membrane portrayed better antifouling properties due to enhanced hydrophilicity and water molecules. The CA-TiO2-incorporated membrane possessed the potential to provide high separation efficiency for oily wastewater treatment. This study demonstrates the potential of fine-tuning membrane performances through material hybridization to achieve efficient wastewater treatment.
Collapse
Affiliation(s)
- Mahendran Gurusamy
- Membrane Research Laboratory, Department of Chemical Engineering, National Institute of Technology, Tiruchirappalli 620 015, Tamil Nadu, India
- Department of Energy and Refrigerating, Air-Conditioning Engineering, National Taipei University of Technology, Taipei 10608, Taiwan
| | - Sangeetha Thangavel
- Department of Energy and Refrigerating, Air-Conditioning Engineering, National Taipei University of Technology, Taipei 10608, Taiwan
- Research Center of Energy Conservation for New Generation of Residential, Commercial, and Industrial Sectors, National Taipei University of Technology, Taipei 10608, Taiwan
| | - Jakub Čespiva
- Energy Research Centre, Centre for Energy and Environmental Technologies, VSB–Technical University of Ostrava, 17. Listopadu 2172/15, 70800 Ostrava-Poruba, Czech Republic;
| | - Jiří Ryšavý
- Energy Research Centre, Centre for Energy and Environmental Technologies, VSB–Technical University of Ostrava, 17. Listopadu 2172/15, 70800 Ostrava-Poruba, Czech Republic;
| | - Wei-Mon Yan
- Department of Energy and Refrigerating, Air-Conditioning Engineering, National Taipei University of Technology, Taipei 10608, Taiwan
- Research Center of Energy Conservation for New Generation of Residential, Commercial, and Industrial Sectors, National Taipei University of Technology, Taipei 10608, Taiwan
| | - Marek Jadlovec
- Energy Department, Faculty of Mechanical Engineering, VSB–Technical University of Ostrava, 17. Listopadu 2172/15, 70800 Ostrava-Poruba, Czech Republic;
| | - Gangasalam Arthanareeswaran
- Membrane Research Laboratory, Department of Chemical Engineering, National Institute of Technology, Tiruchirappalli 620 015, Tamil Nadu, India
| |
Collapse
|
7
|
Arundhathi B, Pabba M, Raj SS, Sahu N, Sridhar S. Advancements in Mixed-Matrix Membranes for Various Separation Applications: State of the Art and Future Prospects. MEMBRANES 2024; 14:224. [PMID: 39590610 PMCID: PMC11596774 DOI: 10.3390/membranes14110224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 11/28/2024]
Abstract
Integrating nanomaterials into membranes has revolutionized selective transport processes, offering enhanced properties and functionalities. Mixed-matrix membranes (MMMs) are nanocomposite membranes (NCMs) that incorporate inorganic nanoparticles (NPs) into organic polymeric matrices, augmenting mechanical strength, thermal stability, separation performance, and antifouling characteristics. Various synthesis methods, like phase inversion, layer-by-layer assembly, electrospinning, and surface modification, enable the production of tailored MMMs. A trade-off exists between selectivity and flux in pristine polymer membranes or plain inorganic ceramic/zeolite membranes. In contrast, in MMMs, NPs exert a profound influence on membrane performance, enhancing both permeability and selectivity simultaneously, besides exhibiting profound antibacterial efficacy. Membranes reported in this work find application in diverse separation processes, notably in niche membrane-based applications, by addressing challenges such as membrane fouling and degradation, low flux, and selectivity, besides poor rejection properties. This review comprehensively surveys recent advances in nanoparticle-integrated polymeric membranes across various fields of water purification, heavy metal removal, dye degradation, gaseous separation, pervaporation (PV), fuel cells (FC), and desalination. Efforts have been made to underscore the role of nanomaterials in advancing environmental remediation efforts and addressing drinking water quality concerns through interesting case studies reported in the literature.
Collapse
Affiliation(s)
- Bhoga Arundhathi
- Membrane Separations Lab, Chemical Engineering and Process Technology Division, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500007, TS, India; (B.A.); (M.P.); (S.S.R.); (N.S.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, UP, India
| | - Manideep Pabba
- Membrane Separations Lab, Chemical Engineering and Process Technology Division, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500007, TS, India; (B.A.); (M.P.); (S.S.R.); (N.S.)
| | - Shrisha S. Raj
- Membrane Separations Lab, Chemical Engineering and Process Technology Division, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500007, TS, India; (B.A.); (M.P.); (S.S.R.); (N.S.)
| | - Nivedita Sahu
- Membrane Separations Lab, Chemical Engineering and Process Technology Division, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500007, TS, India; (B.A.); (M.P.); (S.S.R.); (N.S.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, UP, India
| | - Sundergopal Sridhar
- Membrane Separations Lab, Chemical Engineering and Process Technology Division, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500007, TS, India; (B.A.); (M.P.); (S.S.R.); (N.S.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, UP, India
| |
Collapse
|
8
|
Arshad N, Batool SR, Razzaq S, Arshad M, Rasheed A, Ashraf M, Nawab Y, Nazeer MA. Recent advancements in polyurethane-based membranes for gas separation. ENVIRONMENTAL RESEARCH 2024; 252:118953. [PMID: 38636643 DOI: 10.1016/j.envres.2024.118953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/30/2024] [Accepted: 04/14/2024] [Indexed: 04/20/2024]
Abstract
Gas separation membranes are critical in a variety of environmental research and industrial applications. These membranes are designed to selectively allow some gases to flow while blocking others, allowing for the separation and purification of gases for a variety of applications. Therefore, the demand for fast and energy-efficient gas separation techniques is of central interest for many chemical and energy production diligences due to the intensified levels of greenhouse and industrial gases. This encourages the researchers to innovate techniques for capturing and separating these gases, including membrane separation techniques. Polymeric membranes play a significant role in gas separations by capturing gases from the fuel combustion process, purifying chemical raw material used for plastic production, and isolating pure and noncombustible gases. Polyurethane-based membrane technology offers an excellent knack for gas separation applications and has also been considered more energy-efficient than conventional phase change separation methodologies. This review article reveals a thorough delineation of the current developments and efforts made for PU membranes. It further explains its uses for the separation of valuable gases such as carbon dioxide (CO2), hydrogen (H2), nitrogen (N2), methane (CH4), or a mixture of gases from a variety of gas spillages. Polyurethane (PU) is an excellent choice of material and a leading candidate for producing gas-separating membranes because of its outstanding chemical chemistry, good mechanical abilities, higher permeability, and variable microstructure. The presence of PU improves several characteristics of gas-separating membranes. Selectivity and separation efficiency of PU-centered membranes are enhanced through modifications such as blending with other polymers, use of nanoparticles (silica, metal oxides, alumina, zeolite), and interpenetrating polymer networks (IPNs) formation. This manuscript critically analyzes the various gas transport methods and selection criteria for the fabrication of PU membranes. It also covers the challenges facing the development of PU-membrane-based separation procedures.
Collapse
Affiliation(s)
- Noureen Arshad
- School of Engineering and Technology, National Textile University, Faisalabad, 37610, Pakistan; Liberty Mills Limited, Karachi, 75700, Pakistan.
| | - Syeda Rubab Batool
- School of Engineering and Technology, National Textile University, Faisalabad, 37610, Pakistan
| | - Sadia Razzaq
- School of Engineering and Technology, National Textile University, Faisalabad, 37610, Pakistan
| | - Mubeen Arshad
- Department of Prosthodontics, Baqai Medical University, Karachi, 74600, Pakistan
| | - Abher Rasheed
- School of Engineering and Technology, National Textile University, Faisalabad, 37610, Pakistan
| | - Munir Ashraf
- School of Engineering and Technology, National Textile University, Faisalabad, 37610, Pakistan; Functional Textile Research Group, National Textile University, Faisalabad, 37610, Pakistan
| | - Yasir Nawab
- School of Engineering and Technology, National Textile University, Faisalabad, 37610, Pakistan; National Center for Composite Materials, National Textile University, Faisalabad, 37610, Pakistan
| | - Muhammad Anwaar Nazeer
- School of Engineering and Technology, National Textile University, Faisalabad, 37610, Pakistan; Biomaterials and Tissue Engineering Research Laboratory, National Textile University, Faisalabad, 37610, Pakistan.
| |
Collapse
|
9
|
Kanbargi N, Damron JT, Gao Y, Kearney LT, Carrillo JM, Keum JK, Sumpter BG, Naskar AK. Amplifying Nanoparticle Reinforcement through Low Volume Topologically Controlled Chemical Coupling. ACS Macro Lett 2024; 13:280-287. [PMID: 38346266 DOI: 10.1021/acsmacrolett.3c00739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
We present a streamlined method to covalently bond hydroxylated carbon nanotubes (CNOH) within a polyphenol matrix, all achieved through a direct, solvent-free process. Employing an extremely small concentration of CNOH (0.01% w/w) along with topologically contrasting linkers led to a maximum of 5-fold increase in modulus and a 25% enhancement in tensile strength compared to the unaltered matrix, an order of magnitude greater reinforcement (w/w) compared to state-of-the-art melt-processed nanocomposites. Through dynamic mechanical analysis, low field solid-state nuclear magnetic resonance spectroscopy, and molecular dynamics simulations, we uncovered the profound influence of linker's conformational degrees of freedom on the segmental dynamics and therefore the material's properties.
Collapse
Affiliation(s)
- Nihal Kanbargi
- Chemical Sciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, Tennessee 37831, United States
| | - Joshua T Damron
- Chemical Sciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, Tennessee 37831, United States
| | - Yawei Gao
- Chemical Sciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, Tennessee 37831, United States
| | - Logan T Kearney
- Chemical Sciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, Tennessee 37831, United States
| | - Jan Michael Carrillo
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, Tennessee 37831, United States
| | - Jong K Keum
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, Tennessee 37831, United States
| | - Bobby G Sumpter
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, Tennessee 37831, United States
| | - Amit K Naskar
- Chemical Sciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
10
|
Sani MNH, Amin M, Siddique AB, Nasif SO, Ghaley BB, Ge L, Wang F, Yong JWH. Waste-derived nanobiochar: A new avenue towards sustainable agriculture, environment, and circular bioeconomy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:166881. [PMID: 37678534 DOI: 10.1016/j.scitotenv.2023.166881] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/17/2023] [Accepted: 09/04/2023] [Indexed: 09/09/2023]
Abstract
The greatest challenge for the agriculture sector in the twenty-first century is to increase agricultural production to feed the burgeoning global population while maintaining soil health and the integrity of the agroecosystem. Currently, the application of biochar is widely implemented as an effective means for boosting sustainable agriculture while having a negligible influence on ecosystems and the environment. In comparison to traditional biochar, nano-biochar (nano-BC) boasts enhanced specific surface area, adsorption capacity, and mobility properties within soil, allowing it to promote soil properties, crop growth, and environmental remediation. Additionally, carbon sequestration and reduction of methane and nitrous oxide emissions from agriculture can be achieved with nano-BC applications, contributing to climate change mitigation. Nonetheless, due to cost-effectiveness, sustainability, and environmental friendliness, waste-derived nano-BC may emerge as the most viable alternative to conventional waste management strategies, contributing to the circular bioeconomy and the broader goal of achieving the Sustainable Development Goals (SDGs). However, it's important to note that research on nano-BC is still in its nascent stages. Potential risks, including toxicity in aquatic and terrestrial environments, necessitate extensive field investigations. This review delineates the potential of waste-derived nano-BC for sustainable agriculture and environmental applications, outlining current advancements, challenges, and possibilities in the realms from a sustainability and circular bioeconomy standpoint.
Collapse
Affiliation(s)
- Md Nasir Hossain Sani
- Department of Biosystems and Technology, Swedish University of Agricultural Sciences (SLU), 234 56 Alnarp, Sweden.
| | - Mehedi Amin
- Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka 1207, Bangladesh.
| | - Abu Bakar Siddique
- Tasmanian Institute of Agriculture, University of Tasmania, Prospect 7250, Tasmania, Australia.
| | - Saifullah Omar Nasif
- Global Centre for Environmental Remediation, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia.
| | - Bhim Bahadur Ghaley
- Department of Plant and Environmental Sciences, University of Copenhagen, Højbakkegård Alle 30, 2630 Taastrup, Denmark.
| | - Liya Ge
- Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore.
| | - Feng Wang
- Environmental Resources and Soil Fertilizer Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310000, China.
| | - Jean Wan Hong Yong
- Department of Biosystems and Technology, Swedish University of Agricultural Sciences (SLU), 234 56 Alnarp, Sweden.
| |
Collapse
|
11
|
Alam J, Shukla AK, Arockiasamy L, Alhoshan M. Scale Design of Dual-Layer Polyphenylsulfone/Sulfonated Polyphenylsulfone Hollow Fiber Membranes for Nanofiltration. MEMBRANES 2023; 13:714. [PMID: 37623775 PMCID: PMC10456652 DOI: 10.3390/membranes13080714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/21/2023] [Accepted: 07/25/2023] [Indexed: 08/26/2023]
Abstract
This study focuses on the synthesis and characterization of dual-layer sulfonated polyphenylenesulfone (SPPSu) nanocomposite hollow fiber nanofiltration membranes incorporating titanium dioxide (TiO2) nanoparticles through the phase inversion technique. Advanced tools and methods were employed to systematically evaluate the properties and performance of the newly developed membranes. The investigation primarily centered on the impact of TiO2 addition in the SPPSu inner layer on pure water permeability and salt rejection. The nanocomposite membranes exhibited a remarkable three-fold increase in pure water permeability, achieving a flux of 5.4 L/m2h.bar compared to pristine membranes. The addition of TiO2 also enhanced the mechanical properties, with an expected tensile strength increase from 2.4 to 3.9 MPa. An evaluation of salt rejection performance using a laboratory-scale filtration setup revealed a maximal rejection of 95% for Mg2SO4, indicating the effective separation capabilities of the modified dual-layer hollow fiber nanocomposite membranes for divalent ions. The successful synthesis and characterization of these membranes highlight their potential for nanofiltration processes, specifically in selectively separating divalent ions from aqueous solutions, owing to their improved pure water flux, mechanical strength, and salt rejection performance.
Collapse
Affiliation(s)
- Javed Alam
- King Abdullah Institute for Nanotechnology, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (A.K.S.); (L.A.); (M.A.)
| | - Arun Kumar Shukla
- King Abdullah Institute for Nanotechnology, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (A.K.S.); (L.A.); (M.A.)
| | - Lawrence Arockiasamy
- King Abdullah Institute for Nanotechnology, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (A.K.S.); (L.A.); (M.A.)
| | - Mansour Alhoshan
- King Abdullah Institute for Nanotechnology, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (A.K.S.); (L.A.); (M.A.)
- Department of Chemical Engineering, College of Engineering, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
12
|
Covaliu-Mierlă CI, Păunescu O, Iovu H. Recent Advances in Membranes Used for Nanofiltration to Remove Heavy Metals from Wastewater: A Review. MEMBRANES 2023; 13:643. [PMID: 37505009 PMCID: PMC10385156 DOI: 10.3390/membranes13070643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/30/2023] [Accepted: 07/01/2023] [Indexed: 07/29/2023]
Abstract
The presence of heavy metal ions in polluted wastewater represents a serious threat to human health, making proper disposal extremely important. The utilization of nanofiltration (NF) membranes has emerged as one of the most effective methods of heavy metal ion removal from wastewater due to their efficient operation, adaptable design, and affordability. NF membranes created from advanced materials are becoming increasingly popular due to their ability to depollute wastewater in a variety of circumstances. Tailoring the NF membrane's properties to efficiently remove heavy metal ions from wastewater, interfacial polymerization, and grafting techniques, along with the addition of nano-fillers, have proven to be the most effective modification methods. This paper presents a review of the modification processes and NF membrane performances for the removal of heavy metals from wastewater, as well as the application of these membranes for heavy metal ion wastewater treatment. Very high treatment efficiencies, such as 99.90%, have been achieved using membranes composed of polyvinyl amine (PVAM) and glutaraldehyde (GA) for Cr3+ removal from wastewater. However, nanofiltration membranes have certain drawbacks, such as fouling of the NF membrane. Repeated cleaning of the membrane influences its lifetime.
Collapse
Affiliation(s)
- Cristina Ileana Covaliu-Mierlă
- Faculty of Biotechnical Systems Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania
| | - Oana Păunescu
- Faculty of Biotechnical Systems Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania
| | - Horia Iovu
- Advanced Polymer Materials Group, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 132 Calea Grivitei, 010737 Bucharest, Romania
| |
Collapse
|
13
|
Eskhan A, AlQasas N, Johnson D. Interaction Mechanisms and Predictions of the Biofouling of Polymer Films: A Combined Atomic Force Microscopy and Quartz Crystal Microbalance with Dissipation Monitoring Study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:6592-6612. [PMID: 37104647 PMCID: PMC10173465 DOI: 10.1021/acs.langmuir.3c00587] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/17/2023] [Indexed: 05/10/2023]
Abstract
Biofouling of polymeric membranes is a severe problem in water desalination and treatment applications. A fundamental understanding of biofouling mechanisms is necessary to control biofouling and develop more efficient mitigation strategies. To shed light on the type of forces that govern the interactions between biofoulants and membranes, biofoulant-coated colloidal AFM probes were employed to investigate the biofouling mechanisms of two model biofoulants, BSA and HA, toward an array of polymer films commonly used in membrane synthesis, which included CA, PVC, PVDF, and PS. These experiments were combined with quartz crystal microbalance with dissipation monitoring (QCM-D) measurements. The Derjaguin, Landau, Verwey, and Overbeek (DLVO) and the extended-DLVO (XDLVO) theoretical models were applied to decouple the overall adhesion interactions between the biofoulants and the polymer films into their component interactions, i.e., electrostatic (El), Lifshitz-van der Waals (LW), and Lewis acid-base (AB) interactions. The XDLVO model was found to predict better the AFM colloidal probe adhesion data and the QCM-D adsorption behavior of BSA onto the polymer films than the DLVO model. The ranking of the polymer films' adhesion strengths and adsorption quantities was inversely proportional to their γ- values. Higher normalized adhesion forces were quantified for the BSA-coated colloidal probes with the polymer films than the HA-coated colloidal probes. Similarly, in QCM-D measurements, BSA was found to cause larger adsorption mass shifts, faster adsorption rates, and more condensed fouling layers than HA. A linear correlation (R2 = 0.96) was obtained between the adsorption standard free energy changes (ΔGads°) estimated for BSA from the equilibrium QCM-D adsorption experiments and the AFM normalized adhesion energies (WAFM/R) estimated for BSA from the AFM colloidal probe measurements. Eventually, an indirect approach was presented to calculate the surface energy components of biofoulants characterized by high porosities from Hansen dissolution tests to perform the DLVO/XDLVO analyses.
Collapse
Affiliation(s)
- Asma Eskhan
- NYUAD
Water Research Center, New York University
Abu Dhabi (NYUAD), 129188 Abu Dhabi, UAE
| | - Neveen AlQasas
- NYUAD
Water Research Center, New York University
Abu Dhabi (NYUAD), 129188 Abu Dhabi, UAE
| | - Daniel Johnson
- NYUAD
Water Research Center, New York University
Abu Dhabi (NYUAD), 129188 Abu Dhabi, UAE
- Division
of Engineering, New York University Abu
Dhabi, 129188 Abu Dhabi, UAE
| |
Collapse
|
14
|
Xia C, Li X, Wu Y, Suharti S, Unpaprom Y, Pugazhendhi A. A review on pollutants remediation competence of nanocomposites on contaminated water. ENVIRONMENTAL RESEARCH 2023; 222:115318. [PMID: 36693465 DOI: 10.1016/j.envres.2023.115318] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/08/2023] [Accepted: 01/16/2023] [Indexed: 06/17/2023]
Abstract
Clean freshwater has been required for drinking, sanitation, agricultural activities, and industry, as well as for the development and maintenance of the eco - systems on which all livelihoods rely. Water contamination is currently a significant concern for researchers all over the world; hence it is essential that somehow this issue is resolved as soon as possible. It is now recognised as one of the most important research areas in the world. Current wastewater treatment techniques degrade a wide range of wastewaters efficiently; however, such methods have some limitations. Recently, nanotechnology has emerged as a wonderful solution, and researchers are conducting research in this water remediation field with a variety of potential applications. The pollutants remediation capability of nanocomposites as adsorbents, photocatalysts, magnetic separation, and so on for contaminant removal from contaminated water has been examined in this study. This study has spotlighted the most significant nanocomposites invention reported to date for contaminated and effluent remediation, as well as a research gap as well as possible future perspectives.
Collapse
Affiliation(s)
- Changlei Xia
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Xiang Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Yingji Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Suharti Suharti
- Department of Chemistry, State University of Malang, Malang, East Java, Indonesia
| | - Yuwalee Unpaprom
- Program in Biotechnology, Maejo University, Chiang Mai, Thailand
| | - Arivalagan Pugazhendhi
- School of Engineering, Lebanese American University, Byblos, Lebanon; University Centre for Research & Development, Department of Civil Engineering, Chandigarh University, Mohali, India.
| |
Collapse
|
15
|
Rekik SB, Gassara S, Deratani A. Green Fabrication of Sustainable Porous Chitosan/Kaolin Composite Membranes Using Polyethylene Glycol as a Porogen: Membrane Morphology and Properties. MEMBRANES 2023; 13:378. [PMID: 37103805 PMCID: PMC10143062 DOI: 10.3390/membranes13040378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/14/2023] [Accepted: 03/21/2023] [Indexed: 06/19/2023]
Abstract
One of the major challenges in membrane manufacturing today is to reduce the environmental footprint by promoting biobased raw materials and limiting the use of toxic solvents. In this context, environmentally friendly chitosan/kaolin composite membranes, prepared using phase separation in water induced by a pH gradient, have been developed. Polyethylene glycol (PEG) with a molar mass ranging from 400 to 10,000 g·mol-1 was used as a pore forming agent. The addition of PEG to the dope solution strongly modified the morphology and properties of the formed membranes. These results indicated that PEG migration induced the formation of a network of channels promoting the penetration of the non-solvent during the phase separation process, resulting in an increase in porosity and the formation of a finger-like structure surmounted by a denser structure of interconnected pores of 50-70 nm in diameter. The hydrophilicity of the membrane surface increased likely related to PEG trapping in the composite matrix. Both phenomena were more marked as the PEG polymer chain was longer, resulting in a threefold improvement in filtration properties.
Collapse
Affiliation(s)
- Sonia Bouzid Rekik
- Institut Européen des membranes, IEM, UMR-5635, ENSCM, CNRS, Université Montpellier, 34095 Montpellier, France
- Bioengineering, Tissues and Neuroplasticity, EA 7377, Faculté de Santé, EPISEN, Université Paris-Est Créteil, 8 rue du Général Sarrail, 94010 Créteil, France
| | - Sana Gassara
- Institut Européen des membranes, IEM, UMR-5635, ENSCM, CNRS, Université Montpellier, 34095 Montpellier, France
| | - André Deratani
- Institut Européen des membranes, IEM, UMR-5635, ENSCM, CNRS, Université Montpellier, 34095 Montpellier, France
| |
Collapse
|
16
|
Perry LA, Chew NGP, Grzebyk K, Cay-Durgun P, Lind ML, Sitaula P, Soukri M, Coronell O. Correlating the Role of Nanofillers with Active Layer Properties and Performance of Thin-Film Nanocomposite Membranes. DESALINATION 2023; 550:116370. [PMID: 37274380 PMCID: PMC10237506 DOI: 10.1016/j.desal.2023.116370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Thin-film nanocomposite (TFN) membranes are emerging water-purification membranes that could provide enhanced water permeance with similar solute removal over traditional thin-film composite (TFC) membranes. However, the effects of nanofiller incorporation on active layer physico-chemical properties have not been comprehensively studied. Accordingly, we aimed to understand the correlation between nanofillers, active layer physico-chemical properties, and membrane performance by investigating whether observed performance differences between TFN and control TFC membranes correlated with observed differences in physico-chemical properties. The effects of nanofiller loading, surface area, and size on membrane performance, along with active layer physico-chemical properties, were characterized in TFN membranes incorporated with Linde Type A (LTA) zeolite and zeolitic imidazole framework-8 (ZIF-8). Results show that nanofiller incorporation up to ~0.15 wt% resulted in higher water permeance and unchanged salt rejection, above which salt rejection decreased 0.9-25.6% and 26.1-48.3% for LTA-TFN and ZIF-8-TFN membranes, respectively. Observed changes in active layer physico-chemical properties were generally unsubstantial and did not explain observed changes in TFN membrane performance. Therefore, increased water permeance in TFN membranes could be due to preferential water transport through porous structures of nanofillers or along polymer-nanofiller interfaces. These findings offer new insights into the development of high-performance TFN membranes for water/ion separations.
Collapse
Affiliation(s)
- Lamar A. Perry
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7431, USA
- Curriculum in Applied Sciences and Engineering, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7431, USA
| | - Nick Guan Pin Chew
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7431, USA
| | - Kasia Grzebyk
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7431, USA
| | - Pinar Cay-Durgun
- School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ 85287, USA
| | - Mary Laura Lind
- School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ 85287, USA
| | - Paban Sitaula
- RTI International, 3040 East Cornwallis Road, Research Triangle Park, Durham, NC 27709-2194, USA
| | - Mustapha Soukri
- RTI International, 3040 East Cornwallis Road, Research Triangle Park, Durham, NC 27709-2194, USA
| | - Orlando Coronell
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7431, USA
| |
Collapse
|
17
|
Cheng Y, Xia C, Garalleh HA, Garaleh M, Lan Chi NT, Brindhadevi K. A review on optimistic development of polymeric nanocomposite membrane on environmental remediation. CHEMOSPHERE 2023; 315:137706. [PMID: 36592836 DOI: 10.1016/j.chemosphere.2022.137706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/13/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
Current health and environmental concerns about the abundance and drawbacks of municipal wastewater as well as industrial effluent have prompted the development of novel and innovative treatment processes. A global shortage of clean water poses significant challenges to the survival of all life forms. For the removal of both biodegradable and non-biodegradable harmful wastes/pollutants from water, sophisticated wastewater treatment technologies are required. Polymer membrane technology is critical to overcoming this major challenge. Polymer matrix-based nanocomposite membranes are among the most popular in polymer membrane technology in terms of convenience. These membranes and their major components are environmentally friendly, energy efficient, cost effective, operationally versatile, and feasible. This review provides an overview of the drawbacks as well as promising developments in polymer membrane and nanocomposite membranes for environmental remediation, with a focus on wastewater treatment. Additionally, the advantages of nanocomposite membranes such as stability, antimicrobial properties, and adsorption processes have been discussed. The goal of this review was to summarize the remediation of harmful pollutants from water and wastewater/effluent using polymer matrix-based nanocomposite membrane technology, and to highlight its shortcomings and future prospects.
Collapse
Affiliation(s)
- Yueqin Cheng
- Nanjing Station of Quality Protection in Cultivated Land, Nanjing, 210036, China
| | - Changlei Xia
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Hakim Al Garalleh
- Department of Mathematical Science, College of Engineering, University of Business and Technology-Dahban, Jeddah, 21361, Saudi Arabia
| | - Mazen Garaleh
- Department of Mathematical Science, College of Engineering, University of Business and Technology-Dahban, Jeddah, 21361, Saudi Arabia; Department of Applied Chemistry, Faculty of Science, Tafila Technical University, Tafila, 66141, Jordan
| | - Nguyen Thuy Lan Chi
- School of Engineering and Technology, Van Lang University, Ho Chi Minh City, Vietnam
| | - Kathirvel Brindhadevi
- Computational Engineering and Design Research Group, School of Engineering and Technology, Van Lang University, Ho Chi Minh City, Vietnam.
| |
Collapse
|
18
|
Research Progress of Water Treatment Technology Based on Nanofiber Membranes. Polymers (Basel) 2023; 15:polym15030741. [PMID: 36772042 PMCID: PMC9920505 DOI: 10.3390/polym15030741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/25/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023] Open
Abstract
In the field of water purification, membrane separation technology plays a significant role. Electrospinning has emerged as a primary method to produce nanofiber membranes due to its straightforward, low cost, functional diversity, and process controllability. It is possible to flexibly control the structural characteristics of electrospun nanofiber membranes as well as carry out various membrane material combinations to make full use of their various properties, including high porosity, high selectivity, and microporous permeability to obtain high-performance water treatment membranes. These water separation membranes can satisfy the fast and efficient purification requirements in different water purification applications due to their high filtration efficiency. The current research on water treatment membranes is still focused on creating high-permeability membranes with outstanding selectivity, remarkable antifouling performance, superior physical and chemical performance, and long-term stability. This paper reviewed the preparation methods and properties of electrospun nanofiber membranes for water treatment in various fields, including microfiltration, ultrafiltration, nanofiltration, reverse osmosis, forward osmosis, and other special applications. Lastly, various antifouling technologies and research progress of water treatment membranes were discussed, and the future development direction of electrospun nanofiber membranes for water treatment was also presented.
Collapse
|
19
|
Advanced Polymeric Nanocomposite Membranes for Water and Wastewater Treatment: A Comprehensive Review. Polymers (Basel) 2023; 15:polym15030540. [PMID: 36771842 PMCID: PMC9920371 DOI: 10.3390/polym15030540] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/24/2023] Open
Abstract
Nanomaterials have been extensively used in polymer nanocomposite membranes due to the inclusion of unique features that enhance water and wastewater treatment performance. Compared to the pristine membranes, the incorporation of nanomodifiers not only improves membrane performance (water permeability, salt rejection, contaminant removal, selectivity), but also the intrinsic properties (hydrophilicity, porosity, antifouling properties, antimicrobial properties, mechanical, thermal, and chemical stability) of these membranes. This review focuses on applications of different types of nanomaterials: zero-dimensional (metal/metal oxide nanoparticles), one-dimensional (carbon nanotubes), two-dimensional (graphene and associated structures), and three-dimensional (zeolites and associated frameworks) nanomaterials combined with polymers towards novel polymeric nanocomposites for water and wastewater treatment applications. This review will show that combinations of nanomaterials and polymers impart enhanced features into the pristine membrane; however, the underlying issues associated with the modification processes and environmental impact of these membranes are less obvious. This review also highlights the utility of computational methods toward understanding the structural and functional properties of the membranes. Here, we highlight the fabrication methods, advantages, challenges, environmental impact, and future scope of these advanced polymeric nanocomposite membrane based systems for water and wastewater treatment applications.
Collapse
|
20
|
Cao DQ, Liu XD, Han JL, Zhang WY, Hao XD, Iritani E, Katagiri N. Recovery of Extracellular Polymeric Substances from Excess Sludge Using High-Flux Electrospun Nanofiber Membranes. MEMBRANES 2023; 13:74. [PMID: 36676881 PMCID: PMC9862183 DOI: 10.3390/membranes13010074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 12/29/2022] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
The recycling of extracellular polymeric substances (EPSs) from excess sludge in wastewater treatment plants has received increasing attention in recent years. Although membrane separation has great potential for use in EPS concentration and recovery, conventional membranes tend to exhibit low water flux and high energy consumption. Herein, electrospun nanofiber membranes (ENMs) were fabricated using polyvinylidene fluoride (PVDF) and used for the recovery of EPSs extracted from the excess sludge using the cation exchange resin (CER) method. The fabricated ENM containing 14 wt.% PVDF showed excellent properties, with a high average water flux (376.8 L/(m2·h)) and an excellent EPS recovery rate (94.1%) in the dead-end filtration of a 1.0 g/L EPS solution at 20 kPa. The ENMs displayed excellent mechanical strength, antifouling properties, and high reusability after five recycles. The filtration pressure had a negligible effect on the average EPS recovery rate and water flux. The novel dead-end filtration with an EPS filter cake on the ENM surface was effective in removing heavy-metal ions, with the removal rates of Pb2+, Cu2+, and Cr6+ being 89.5%, 73.5%, and 74.6%, respectively. These results indicate the potential of nanofiber membranes for use in effective concentration and recycling of EPSs via membrane separation.
Collapse
Affiliation(s)
- Da-Qi Cao
- Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies/Key Laboratory of Urban Stormwater System and Water Environment, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Xiao-Dan Liu
- Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies/Key Laboratory of Urban Stormwater System and Water Environment, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Jia-Lin Han
- Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies/Key Laboratory of Urban Stormwater System and Water Environment, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Wen-Yu Zhang
- Institute of Soil Environment and Pollution Remediation, Beijing Municipal Research Institute of Environmental Protection, Beijing 100037, China
| | - Xiao-Di Hao
- Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies/Key Laboratory of Urban Stormwater System and Water Environment, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Eiji Iritani
- Department of Chemical Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Nobuyuki Katagiri
- Department of Environmental Technology, Meijo University, 1-501 Shiogamaguchi, Tempaku-ku, Nagoya 468-8502, Japan
| |
Collapse
|
21
|
Yang E, Park S, Kim Y, Yanar N, Choi H. Fabrication and Investigation of Acid Functionalized CNT Blended Nanocomposite Hollow Fiber Membrane for High Filtration and Antifouling Performance in Ultrafiltration Process. MEMBRANES 2023; 13:70. [PMID: 36676876 PMCID: PMC9867267 DOI: 10.3390/membranes13010070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 12/30/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
In this study, we fabricated a nanocomposite polyethersulfone (PES) HF membrane by blending acid functionalized carbon nanotubes (FCNT) to address the issue of reduced membrane life, increased energy consumption, and operating costs due to low permeability and membrane fouling in the ultrafiltration process. Additionally, we investigated the effect of FCNT blending on the membrane in terms of the physicochemical properties of the membrane and the filtration and antifouling performance. The FCNT/PES nanocomposite HF membrane exhibited increased water permeance from 110.1 to 194.3 LMH/bar without sacrificing rejection performance and increased the flux recovery ratio from 89.0 to 95.4%, compared to a pristine PES HF membrane. This study successfully developed a high filtration and antifouling polymer-based HF membrane by blending FCNT. Furthermore, it was validated that blending FCNT into the membrane enhances the filtration and antifouling performance in the ultrafiltration process.
Collapse
Affiliation(s)
- Eunmok Yang
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), 261 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Shinyun Park
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), 261 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
- Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, CO 80523, USA
| | - Yeji Kim
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), 261 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
- Department of Civil, Architectural, and Environmental Engineering, University of Texas at Austin, Austin, TX 78712, USA
| | - Numan Yanar
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), 261 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Heechul Choi
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), 261 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| |
Collapse
|
22
|
Abedi F, Dubé MA, Emadzadeh D, Kruczek B. Improving nanofiltration performance using modified cellulose nanocrystal-based TFN membranes. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
23
|
Effects of carbon nanotubes on structure, performance and properties of polymer nanocomposite membranes for water/wastewater treatment applications: a comprehensive review. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04635-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
24
|
Mushtaq A, Cho H, Ryu H, Ahmed MA, Saif Ur Rehman M, Han JI. Novel metallic stainless-steel mesh-supported conductive membrane and its performance in the electro-filtration process. CHEMOSPHERE 2022; 308:136160. [PMID: 36030940 DOI: 10.1016/j.chemosphere.2022.136160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/06/2022] [Accepted: 08/19/2022] [Indexed: 06/15/2023]
Abstract
In this study, we demonstrate the fabrication of a thoroughly metallic electro-conductive membrane by using simple filtration to uniformly coat AgNWs dispersion through stainless steel (SUS)-mesh, which functions both as filter and a flexible conductive substrate. The as-prepared AgNWs networks layer on the SUS-mesh was further strengthened by electroplating Ag layers (P-SUS membrane); exhibiting an overall electrical conductivity of 9.2 × 104 S/m, which is up to 42 times greater than the conductivity of pristine SUS-mesh. The P-SUS membrane exhibited adequate physical durability against chemical and mechanical stresses under prolonged filtration, and high pure water flux of 534 ± 54 LMH/bar. This electro-membrane displayed the anticipated flux recovery in harvesting microalgae (Chlorella sp. HS-2) when filtration was done with the membrane used as a cathode: micro-sized bubbles, generated from the cathodic membrane, functioned to detach the foulants and recover the relative flux to a significant level. The P-SUS membrane indeed possesses necessary traits that the polymer-support membrane lacks, in terms of not only electrical conductivity and mechanical strength but also filtration performance with anti-fouling capability, all of which are of necessity to be considered workable electroconductive membrane.
Collapse
Affiliation(s)
- Azeem Mushtaq
- Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea; Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, Pakistan
| | - Hoon Cho
- Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Hoyoung Ryu
- Department of Chemical and Biomolecular Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Muhammad Ajaz Ahmed
- Graduate School of International Agricultural Technology, Institute of Green-Bio Science and Technology, Seoul National University, Pyeongchang, 232-916, Republic of Korea
| | - Muhammad Saif Ur Rehman
- Department of Chemical Engineering, Khawaja Fareed University of Engineering & Information Technology, Rahim Yar Khan, Pakistan
| | - Jong-In Han
- Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
| |
Collapse
|
25
|
Zhang H, Chen Y, Tang S, Sun H, Li P, Hou Y, Niu QJ. Regulation of interfacial polymerization process based on reversible enamine reaction for high performance nanofiltration membrane. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
26
|
Samavati Z, Samavati A, Goh PS, Ismail AF, Abdullah MS. A comprehensive review of recent advances in nanofiltration membranes for heavy metal removal from wastewater. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.11.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
27
|
Li M, Yang Y, Zhu L, Wang G, Zeng Z, Xue L. Anti-fouling and highly permeable thin-film composite forward osmosis membranes based on the reactive polyvinylidene fluoride porous substrates. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
28
|
Jahn P, Zelner M, Freger V, Ulbricht M. Polystyrene Sulfonate Particles as Building Blocks for Nanofiltration Membranes. MEMBRANES 2022; 12:1138. [PMID: 36422130 PMCID: PMC9697654 DOI: 10.3390/membranes12111138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/07/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
Today the standard treatment for wastewater is secondary treatment. This procedure cannot remove salinity or some organic micropollutants from water. In the future, a tertiary cleaning step may be required. An attractive solution is membrane processes, especially nanofiltration (NF). However, currently available NF membranes strongly reject multivalent ions, mainly due to the dielectric effect. In this work, we present a new method for preparing NF membranes, which contain negatively and positively charged domains, obtained by the combination of two polyelectrolytes with opposite charge. The negatively charged polyelectrolyte is provided in the form of particles (polystyrene sulfonate (PSSA), d ~300 nm). As a positively charged polyelectrolyte, polyethyleneimine (PEI) is used. Both buildings blocks and glycerol diglycidyl ether as crosslinker for PEI are applied to an UF membrane support in a simple one-step coating process. The membrane charge (zeta potential) and salt rejection can be adjusted using the particle concentration in the coating solution/dispersion that determine the selective layer composition. The approach reported here leads to NF membranes with a selectivity that may be controlled by a different mechanism compared to state-of-the-art membranes.
Collapse
Affiliation(s)
- Philipp Jahn
- Institute of Technical Chemistry II and Center for Water and Environmental Research, University of Duisburg-Essen, 45117 Essen, Germany
| | - Michael Zelner
- Wolfson Department of Chemical Engineering, Technion-Israel Institute of Technology, 3200003 Haifa, Israel
| | - Viatcheslav Freger
- Wolfson Department of Chemical Engineering, Technion-Israel Institute of Technology, 3200003 Haifa, Israel
| | - Mathias Ulbricht
- Institute of Technical Chemistry II and Center for Water and Environmental Research, University of Duisburg-Essen, 45117 Essen, Germany
| |
Collapse
|
29
|
Milovanovic M, Tabakoglu F, Saki F, Pohlkoetter E, Buga D, Brandt V, Tiller JC. Organic-inorganic double networks as highly permeable separation membranes with a chiral selector for organic solvents. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
30
|
Chen Y, Luan Z, Liu Y, Xia X, Ma K, Lin J, Geng B, Li H. The Preparation of a Colorful Aluminum Flake Powder with Smart Anticorrosion Properties by Encapsulation of Composited Metal–Organic Framework-Derived Layers. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c02752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Yezhen Chen
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, University of Jinan, Jinan 250022, China
| | - Zhenchao Luan
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, University of Jinan, Jinan 250022, China
| | - Yifei Liu
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, China
| | - Xianger Xia
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, University of Jinan, Jinan 250022, China
| | - Kunkai Ma
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, University of Jinan, Jinan 250022, China
| | - Junzhi Lin
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, University of Jinan, Jinan 250022, China
| | - Bing Geng
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, University of Jinan, Jinan 250022, China
| | - Hui Li
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, University of Jinan, Jinan 250022, China
| |
Collapse
|
31
|
Al Harby NF, El-Batouti M, Elewa MM. Prospects of Polymeric Nanocomposite Membranes for Water Purification and Scalability and their Health and Environmental Impacts: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12203637. [PMID: 36296828 PMCID: PMC9610978 DOI: 10.3390/nano12203637] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/09/2022] [Accepted: 10/12/2022] [Indexed: 05/26/2023]
Abstract
Water shortage is a major worldwide issue. Filtration using genuine polymeric membranes demonstrates excellent pollutant separation capabilities; however, polymeric membranes have restricted uses. Nanocomposite membranes, which are produced by integrating nanofillers into polymeric membrane matrices, may increase filtration. Carbon-based nanoparticles and metal/metal oxide nanoparticles have received the greatest attention. We evaluate the antifouling and permeability performance of nanocomposite membranes and their physical and chemical characteristics and compare nanocomposite membranes to bare membranes. Because of the antibacterial characteristics of nanoparticles and the decreased roughness of the membrane, nanocomposite membranes often have greater antifouling properties. They also have better permeability because of the increased porosity and narrower pore size distribution caused by nanofillers. The concentration of nanofillers affects membrane performance, and the appropriate concentration is determined by both the nanoparticles' characteristics and the membrane's composition. Higher nanofiller concentrations than the recommended value result in deficient performance owing to nanoparticle aggregation. Despite substantial studies into nanocomposite membrane manufacturing, most past efforts have been restricted to the laboratory scale, and the long-term membrane durability after nanofiller leakage has not been thoroughly examined.
Collapse
Affiliation(s)
- Nouf F. Al Harby
- Department of Chemistry, College of Science, Qassim University, Qassim 52571, Saudi Arabia
| | - Mervette El-Batouti
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria 21526, Egypt
| | - Mahmoud M. Elewa
- Arab Academy for Science, Technology and Maritime Transport, Alexandria P.O. Box 1029, Egypt
| |
Collapse
|
32
|
An Evolving MOF Thin-Film Nanocomposite Tubular Ceramic Membrane for Desalination Pretreatment. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02501-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
33
|
Xu Y, Zeng X, Qiu L, Yang F. 2D nanoneedle-like ZnO/SiO2 Janus membrane with asymmetric wettability for highly efficient separation of various oil/water mixtures. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129352] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
34
|
Lazarenko NS, Golovakhin VV, Shestakov AA, Lapekin NI, Bannov AG. Recent Advances on Membranes for Water Purification Based on Carbon Nanomaterials. MEMBRANES 2022; 12:915. [PMID: 36295674 PMCID: PMC9606928 DOI: 10.3390/membranes12100915] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/13/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
Every year the problem of water purification becomes more relevant. This is due to the continuous increase in the level of pollution of natural water sources, an increase in the population, and sharp climatic changes. The growth in demand for affordable and clean water is not always comparable to the supply that exists in the water treatment market. In addition, the amount of water pollution increases with the increase in production capacity, the purification of which cannot be fully handled by conventional processes. However, the application of novel nanomaterials will enhance the characteristics of water treatment processes which are one of the most important technological problems. In this review, we considered the application of carbon nanomaterials in membrane water purification. Carbon nanofibers, carbon nanotubes, graphite, graphene oxide, and activated carbon were analyzed as promising materials for membranes. The problems associated with the application of carbon nanomaterials in membrane processes and ways to solve them were discussed. Their efficiency, properties, and characteristics as a modifier for membranes were analyzed. The potential directions, opportunities and challenges for application of various carbon nanomaterials were suggested.
Collapse
|
35
|
Thermodynamic analysis of polymeric membrane formation by non-solvent induced phase separation in the presence of different nanoparticles. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
36
|
Kumar S, Shandilya M, Uniyal P, Thakur S, Parihar N. Efficacy of polymeric nanofibrous membranes for proficient wastewater treatment. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04417-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
37
|
Abstract
Cancerous diseases are rightfully considered among the most lethal, which have a consistently negative effect when considering official statistics in regular health reports around the globe. Nowadays, metallic nanoparticles can be potentially applied in medicine as active pharmaceuticals, adjustable carriers, or distinctive enhancers of physicochemical properties if combined with other drugs. Boron dipyrromethene (BODIPY) molecules have been considered for future applications in theranostics in the oncology field, thus expanding the potential of conceivable applicability. Hence, taking into account positive practical features of both metal-based nanostructures and BODIPY derivatives, the present study aims to gather recent results connected to BODIPY-conjugated metallic nanoparticles. This is with respect to their expediency in the diagnosis and treatment of tumor ailments as well as in sensing of heavy metals. To fulfill the designated objectives, multiple research documents were analyzed concerning the latest discoveries within the scope of BODIPY-based nanomaterials with particular emphasis on their utilization for diagnostical sensing as well as cancer diagnostics and therapy. In addition, collected examples of mentioned conjugates were presented in order to draw the attention of the scientific community to their practical applications, elucidate the topic in a consistent manner, and inspire fellow researchers for new findings.
Collapse
|
38
|
Ormancı-Acar T, Korkut S, Keskin B, Ağtaş M, Taş CE, Mutlu-Salmanlı Ö, Türken T, Menceloğlu YZ, Ünal S, Koyuncu İ. Combining S-DADPS monomer and halloysite nanotube for fabrication superior nanofiltration membrane. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
39
|
Hybrid nanofiltration thin film hollow fiber membranes with adsorptive supports containing bentonite and LDH nanoclays for boron removal. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120576] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
40
|
Mahdhi N, Alsaiari NS, Amari A, Chakhoum MA. Effect of TiO 2 Nanoparticles on Capillary-Driven Flow in Water Nanofilters Based on Chitosan Cellulose and Polyvinylidene Fluoride Nanocomposites: A Theoretical Study. Polymers (Basel) 2022; 14:polym14142908. [PMID: 35890682 PMCID: PMC9320925 DOI: 10.3390/polym14142908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/08/2022] [Accepted: 07/12/2022] [Indexed: 11/16/2022] Open
Abstract
In this study, a novel concept of nanofiltration process of drinking water based on capillary-driven nanofiltration is demonstrated using a bio-based nanocomposites’ nanofilter as free power: a green and sustainable solution. Based on Lifshitz and Young–Laplace theories, we show that the chitosan (CS), cellulose acetate (CLA), and Polyvinylidene fluoride (PVDF) polymer matrixes demonstrate hydrophobic behavior, which leads to the draining of water from nanopores when negative capillary pressure is applied and consequently prevents the capillary-driven nanofiltration process. By incorporating 10%, 20%, and 30% volume fraction of titanium dioxide (TiO2) nanoparticles (NPs) to the polymers’ matrixes, we demonstrate a wetting conversion from hydrophobic to hydrophilic behavior of these polymer nanocomposites. Subsequently, the threshold volume fraction of the TiO2 NPs for the conversion from draining (hydrophobic) to filling (hydrophilic) by capillary pressure were found to be equal to 5.1%, 10.9%, and 13.9%, respectively, for CS/TiO2, CLA/TiO2, and PVDF/TiO2 nanocomposites. Then, we demonstrated the negligible effect of the gravity force on capillary rise as well as the capillary-driven flow for nanoscale pore size. For nanofilters with the same effective nanopore radius, porosity, pore shape factor, and tortuosity, results from the modified Lucas–Washburn model show that the capillary rise as well as the capillary-driven water volume increase with increased volume fraction of the TiO2 NPs for all nanocomposite nanofilter. Interestingly, the capillary-driven water volume was in range (5.26–6.39) L/h·m2 with 30% volume fraction of TiO2 NPs, which support our idea for capillary-driven nanofiltration as zero energy consumption nano-filtration process. Correspondingly, the biodegradable CS/TiO2 and CLA/TiO2 nanocomposites nanofilter demonstrate capillary-driven water volume higher, ~1.5 and ~1.2 times, respectively, more than the synthetic PVDF/TiO2 nanocomposite.
Collapse
Affiliation(s)
- Noureddine Mahdhi
- Laboratory Materials Organizations and Properties, Tunis El Manar University, Tunis 2092, Tunisia
- Correspondence: (N.M.); (A.A.)
| | - Norah Salem Alsaiari
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia;
| | - Abdelfattah Amari
- Department of Chemical Engineering, College of Engineering, King Khalid University, Abha 61411, Saudi Arabia
- Research Laboratory of Processes, Energetics, Environment and Electrical Systems, National School of Engineers, Gabes University, Gabes 6072, Tunisia
- Correspondence: (N.M.); (A.A.)
| | - Mohamed Ali Chakhoum
- Laboratoire des Sciences de la Matière Condensée (LSMC), Université Oran 1 Ahmed Ben Bella, Oran 31100, Algeria;
| |
Collapse
|
41
|
Cascading in-situ generation of H2O2 and Fenton-like reaction in photocatalytic composite ultrafiltration membrane for high self-cleaning performance in wastewater treatment. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
42
|
Wu H, Geng Q, Li Y, Song Y, Chu J, Zhou R, Ning X, Dong S, Yuan D. CuMOF-decorated biodegradable nanofibrous membrane: facile fabrication, high-efficiency filtration/separation and effective antibacterial property. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.07.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
43
|
Liu X, Graham N, Yu W, Shi Y, Sun K, Liu T. Preparation and evaluation of a high performance Ti3C2Tx-MXene membrane for drinking water treatment. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
44
|
Zhang K, Wu HH, Huo HQ, Ji YL, Zhou Y, Gao CJ. Recent advances in nanofiltration, reverse osmosis membranes and their applications in biomedical separation field. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2022.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
45
|
Immobilization of poly(vinyl pyrrolidone) in Polysulfone Membranes by Radically-Initiated Crosslinking Using Potassium Persulfate. MEMBRANES 2022; 12:membranes12070664. [PMID: 35877867 PMCID: PMC9315698 DOI: 10.3390/membranes12070664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/20/2022] [Accepted: 06/23/2022] [Indexed: 02/04/2023]
Abstract
Polysulfone (PSU) membranes with poly(vinyl pyrrolidone) (PVP) as a pore-forming and hydrophilic additive were prepared using the non-solvent-induced phase separation (NIPS) technique. PVP immobilization by radical-initiated crosslinking using potassium persulfate (KPS) was studied in view of obtaining membranes with high and long-lasting surface hydrophilicity. A method based on the ATR-FTIR technique was developed to discriminate crosslinked PVP from unreacted PVP in the membrane. The crosslinking progress was investigated as a function of temperature, KPS concentration, and reaction time. The results showed that temperature was the main factor influencing the crosslinking reaction since radical formation is temperature-dependent. Increasing the concentration of KPS and the reaction time led to an increase in the crosslinking rate. The effect of the degree of PVP crosslinking on the structure and properties of the prepared membranes was examined by studying mechanical properties, morphology by SEM, surface hydrophilicity by contact angle measurements, and water permeability.
Collapse
|
46
|
Mahdavi H, Zeinalipour N, Heidari AA. Fabrication of
PVDF
mixed matrix nanofiltration membranes incorporated with
TiO
2
nanoparticles and an amphiphilic
PVDF‐g‐PMMA
copolymer. J Appl Polym Sci 2022. [DOI: 10.1002/app.52740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Hossein Mahdavi
- School of Chemistry, College of Science University of Tehran Tehran Iran
| | | | - Ali Akbar Heidari
- School of Chemistry, College of Science University of Tehran Tehran Iran
| |
Collapse
|
47
|
Heidari AA, Mahdavi H. TFC organic solvent nanofiltration membrane fabricated by a novel HDPE membrane support covered by manganese dioxide /tannic acid-Fe3+layers. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2022.104363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
48
|
Bassyouni M, Zoromba MS, Abdel-Aziz MH, Mosly I. Extraction of Nanocellulose for Eco-Friendly Biocomposite Adsorbent for Wastewater Treatment. Polymers (Basel) 2022; 14:polym14091852. [PMID: 35567021 PMCID: PMC9099637 DOI: 10.3390/polym14091852] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/20/2022] [Accepted: 04/26/2022] [Indexed: 02/04/2023] Open
Abstract
In the present study, nanocellulose was extracted from palm leaves to synthesize nanocellulose/chitosan nanocomposites for the removal of dyes from textile industrial wastewater. Nanocellulose is of interest in water purification technologies because of its high surface area and versatile surface chemistry. Following bleach, alkali, and acid treatments on palm leaves, nanocellulose is obtained as a white powder. The produced nanocellulose was investigated. The adsorption capacity of chitosan, nanocellulose, and novel synthetic nanocellulose/chitosan microbeads (CCMB) for direct blue 78 dye (DB78) removal was studied. A series of batch experiments were conducted in terms of adsorbent concentration, mixing time, pH, dye initial concentration, and nanocellulose concentration in synthetic microbeads. The CCMB was characterized by using physicochemical analysis, namely Brunauer–Emmett–Teller (BET), scanning electron microscope (SEM), zeta potential analysis, and Fourier-transform infrared spectroscopy (FTIR). It was found that the surface area of synthetic CCMB is 10.4 m2/g, with a positive net surface charge. The adsorption tests showed that the dye removal efficiency increases with an increasing adsorbent concentration. The maximum removal efficiencies were 91.5% and 88.4%, using 14 and 9 g/L of CCMB-0.25:1. The initial dye concentrations were 50 and 100 mg/L under acidic conditions (pH = 3.5) and an optimal mixing time of 120 min. The equilibrium studies for CCMB-0.25:1 showed that the equilibrium data were best fitted to Langmuir isothermal model with R2 = 0.99. These results revealed that nanocellulose/chitosan microbeads are an effective eco-adsorbent for the removal of direct blue 78 dye and provide a new platform for dye removal.
Collapse
Affiliation(s)
- Mohamed Bassyouni
- Department of Chemical and Materials Engineering, King Abdulaziz University, Rabigh 21911, Saudi Arabia
- Department of Chemical Engineering, Faculty of Engineering, Port Said University, Port Said 42526, Egypt
| | - Mohamed Sh Zoromba
- Department of Chemical and Materials Engineering, King Abdulaziz University, Rabigh 21911, Saudi Arabia
- Chemistry Department, Faculty of Science, Port Said University, Port Said 42521, Egypt
| | - Mohamed H Abdel-Aziz
- Department of Chemical and Materials Engineering, King Abdulaziz University, Rabigh 21911, Saudi Arabia
- Chemical Engineering Department, Faculty of Engineering, Alexandria University, Alexandria 21544, Egypt
| | - Ibrahim Mosly
- Department of Civil Engineering, King Abdulaziz University, Rabigh 21911, Saudi Arabia
| |
Collapse
|
49
|
Applications of Polymeric Membranes with Carbon Nanotubes: A Review. MEMBRANES 2022; 12:membranes12050454. [PMID: 35629780 PMCID: PMC9144913 DOI: 10.3390/membranes12050454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/07/2022] [Accepted: 04/18/2022] [Indexed: 02/01/2023]
Abstract
Nanomaterials have been commonly employed to enhance the performance of polymeric membrane materials that are used in several industrial applications. Carbon nanotubes (CNTs) have gained notable attention over the years for use in membrane technology due to their anti-biofouling properties, salt rejection capability, exceptional electrical conductivity, and mechanical properties. This paper aims to discuss some of the recent applications of CNTs in membrane technology and their effect on a larger scale. The paper reviews successful case studies of incorporation of CNTs in membranes and their impact on water purification, desalination, gas separations, and energy storage, in an effort to provide a better understanding of their capabilities. Regarding the future trends of this technology, this review emphasizes improving the large-scale production processes and addressing environmental and health-related hazards of CNTs during production and usage.
Collapse
|
50
|
Azo-Dye-Functionalized Polycarbonate Membranes for Textile Dye and Nitrate Ion Removal. MICROMACHINES 2022; 13:mi13040577. [PMID: 35457883 PMCID: PMC9030370 DOI: 10.3390/mi13040577] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/01/2022] [Accepted: 04/04/2022] [Indexed: 12/21/2022]
Abstract
Challenges exist in the wastewater treatment of dyes produced by the world’s growing textiles industry. Common problems facing traditional wastewater treatments include low retention values and breaking the chemical bonds of some dye molecules, which in some cases can release byproducts that can be more harmful than the original dye. This research illustrates that track-etched polycarbonate filtration membranes with 100-nanometer diameter holes can be functionalized with azo dye direct red 80 at 1000 µM, creating a filter that can then be used to remove the entire negatively charged azo dye molecule for a 50 µM solution of the same dye, with a rejection value of 96.4 ± 1.4%, at a stable flow rate of 114 ± 5 µL/min post-functionalization. Post-functionalization, Na+ and NO3− ions had on average 17.9%, 26.0%, and 31.1% rejection for 750, 500, and 250 µM sodium nitrate solutions, respectively, at an average flow rate of 177 ± 5 µL/min. Post-functionalization, similar 50 µM azo dyes had increases in rejection from 26.3% to 53.2%. Rejection measurements were made using ultraviolet visible-light spectroscopy for dyes, and concentration meters using ion selective electrodes for Na+ and NO3− ions.
Collapse
|