1
|
Haider S, Ullah S, Kazi M, Qamar F, Siddique T, Anwer R, Khan SA, Salman S. Ion-Exchange Resin/Carrageenan-Copper-Based Nanocomposite: Artificial Neural Network, Advanced Thermodynamic Profiling, and Anticoagulant Studies. ACS OMEGA 2024; 9:23873-23891. [PMID: 38854529 PMCID: PMC11154903 DOI: 10.1021/acsomega.4c01540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/21/2024] [Accepted: 04/29/2024] [Indexed: 06/11/2024]
Abstract
Carrageenan (CG) and ion exchange resins (IERs) are better metal chelators. Kappa (κ) CG and IERs were synthesized and subjected to copper ion (Cu2+) adsorption to obtain DMSCH/κ-Cu, DC20H/κ-Cu, and IRP69H/κ-Cu nanocomposites (NCs). The NCs were studied using statistical physics formalism (SPF) at 315-375 K and a multilayer perceptron with five input nodes. The percentage of Cu2+ uptake efficiency was used as an outcome variable. Via the grand canonical ensemble, SPF gives models for both monolayer and multilayer sorption layers. For in vitro anticoagulant activity (ACA), the activated partial thromboplastin time were calculated using 100 μL of rabbit plasma incubated at 37 °C. After 2 min, 100 L of 0.025 M CaCl2 was added, and the clotting time was recorded for each group (n = 6). The results demonstrated that the key covariables for the adsorption process were pH and concentration. The results of artificial neural network models were comparable with the experimental findings. The error rates varied between 4.3 and 1.0%. The prediction analysis results ranged from 43.6 to 89.2. The ΔG and ΔS values for IRP69H/κ-Cu obtained were -18.91 and -16.32 and 26.21 and 22.74 kJ/mol for the temperatures 315 and 345 K, respectively. Adsorbate species were perpendicular to the adsorbent surfaces, notwithstanding the apparent importance of macro- and micropore volumes. These adsorbents typically fluctuate with temperature changes and contain one or more layers of sorption. Negative and positive sorption energies correspond to endothermic and exothermic processes. The biosorption energy (E1 and E2) values in this experiment have a value of less than 23 kJ mol-1. Complex SPF models' energy distributions validate surface properties and interactions with adsorbates. At a concentration of 100 μg/mL, DC20H/κ-Cu2+ exhibited an ACA of only 8 s. These NCs demonstrated better greater ACA with the order DC20H/κ < DMSCH/κ < IRP69H/κ. More research is needed to rule out the chemical processes behind the ACA of CG/IER-Cu NCs.
Collapse
Affiliation(s)
- Sana Haider
- Department
of Pharmacy, University of Peshawar, Peshawar 25120, Pakistan
| | - Sami Ullah
- Department
of Pharmacy, University of Peshawar, Peshawar 25120, Pakistan
| | - Mohsin Kazi
- Department
of Pharmaceutics, College of Pharmacy, King
Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Fouzia Qamar
- Department
of Biology, Lahore Garrison University, Main Campus, Lahore 54000, Pakistan
| | - Tariq Siddique
- Faculty
of Pharmacy, Ibadat International University, Islamabad 44000, Pakistan
| | - Rubia Anwer
- Faculty
of Pharmacy, Ibadat International University, Islamabad 44000, Pakistan
| | - Saeed Ahmad Khan
- Sharjah
Institute of Medical Research, Dubai 500001, United Arab Emirates
- Department
of Pharmacy, Kohat University of Science
and Technology, Kohat 26000, Pakistan
| | - Saad Salman
- Department
of Pharmacy, CECOS University of IT and
Emerging Sciences, Hayatabad,
Peshawar, Khyber Pakhtunkhwa 25000, Pakistan
| |
Collapse
|
2
|
Zhang L, Yang L, Chen J, Zhang Y, Zhou X. Enhancing efficient reclaim of phosphorus from simulated urine by magnesium-functionalized biochar: Adsorption behaviors, molecular-level mechanistic explanations and its potential application. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167293. [PMID: 37742963 DOI: 10.1016/j.scitotenv.2023.167293] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/04/2023] [Accepted: 09/21/2023] [Indexed: 09/26/2023]
Abstract
Magnesium-functionalized Magnolia grandiflora Linn leaf-derived biochar (MBC) capable of efficiently reclaiming phosphorus from urine was synthesized by slow co-pyrolysis. Four adsorption kinetic and seven adsorption isotherm models were fitted to the batch adsorption and desorption experimental data, and it was found that pseudo-first-order kinetic model and multilayer model with saturation best described the phosphate-phosphorus (PO43--P) adsorption process by MBC. MBC and phosphorus-saturated MBC (P-MBC) were found to offer outstanding phosphorus adsorption and slow release properties, respectively. Based on material characterization, statistical physics, adsorption energy distribution and statistical thermodynamics, a multi-ionic, inclined orientation, entropy-driven spontaneous endothermic process of MBC on PO43--P was proposed, involving physicochemical interactions (porous filling, electrostatic attraction, ligand exchange and surface precipitation). Further, seed germination and early seedling growth experiments proved that P-MBC can be used as a slow-release fertilizer. Overall, MBC offers prospective applications as an efficient phosphorus adsorbent and then as a slow-release fertilizer.
Collapse
Affiliation(s)
- Lei Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Key Laboratory of Yangtze Water Environment, Ministry of Education, Tongji University, Shanghai 200092, PR China
| | - Libin Yang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Key Laboratory of Yangtze Water Environment, Ministry of Education, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, PR China.
| | - Jiabin Chen
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Key Laboratory of Yangtze Water Environment, Ministry of Education, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, PR China
| | - Yalei Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Key Laboratory of Yangtze Water Environment, Ministry of Education, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, PR China
| | - Xuefei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Key Laboratory of Yangtze Water Environment, Ministry of Education, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, PR China; Key Laboratory of Rural Toilet and Sewage Treatment Technology, Ministry of Agriculture and Rural Affairs, Shanghai 200092, PR China.
| |
Collapse
|
3
|
Alves MO, Ortega PFR, Carvalho FS, Braga JP. Modelling the adsorption on oxidized carbon nanotubes using a statistical mechanics approach. J Mol Model 2022; 28:318. [DOI: 10.1007/s00894-022-05307-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 08/30/2022] [Indexed: 10/14/2022]
|
4
|
Imgharn A, Anchoum L, Hsini A, Naciri Y, Laabd M, Mobarak M, Aarab N, Bouziani A, Szunerits S, Boukherroub R, Lakhmiri R, Albourine A. Effectiveness of a novel polyaniline@Fe-ZSM-5 hybrid composite for Orange G dye removal from aqueous media: Experimental study and advanced statistical physics insights. CHEMOSPHERE 2022; 295:133786. [PMID: 35114254 DOI: 10.1016/j.chemosphere.2022.133786] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 01/05/2022] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
A polyaniline@Fe-ZSM-5 composite was synthesized via an in situ interfacial polymerization procedure. The morphology, crystallinity, and structural features of the as-developed PANI@Fe-ZSM-5 composite were assessed using scanning electron microscopy - energy dispersive spectroscopy (SEM-EDS), X-ray diffraction (XRD), Fourier-transform infrared (FTIR) spectroscopy, and X-ray photoelectron spectroscopy (XPS). The composite was efficiently employed for the first time as an adsorbent Orange G (OG) dyestuff from water. The OG dye adsorption performance was investigated as a function of several operating conditions. The kinetic study demonstrated that a pseudo-second-order model was appropriate to anticipate the OG adsorption process. The maximum adsorption capacity was found to be 217 mg/g. The adsorption equilibrium data at different temperatures were calculated via advanced statistical physics formalism. The entropy function indicated that the disorder of OG molecules improved at low concentrations and lessened at high concentrations. The free enthalpy and internal energy functions suggested that the OG adsorption was a spontaneous process and physisorption in nature. Regeneration investigation showed that the PANI@Fe-ZSM-5 could be effectively reused up to five cycles. The main results of this work provided a deep insight on the experimental study supported by advanced statistical physics prediction for the adsorption of Orange G dye onto the novel polyaniline@Fe-ZSM-5 hybrid composite. Additionally, the experimental and advanced statistical physics findings stated in this study may arouse research interest in the field of wastewater treatment.
Collapse
Affiliation(s)
- Abdelaziz Imgharn
- Laboratory of Materials and Environment, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco.
| | - Lahoucine Anchoum
- Laboratory of Materials and Environment, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
| | - Abdelghani Hsini
- Laboratory of Materials and Environment, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco; National HigheNational Higher School of Chemistry (NHSC), University Ibn Tofail, BP. 133-14000, Kenitra, Morocco; Laboratory of Advanced Materials and Process Engineering (LAMPE), Faculty of Science, Ibn Tofail University, BP 133, 14000, Kenitra, Morocco
| | - Yassine Naciri
- Laboratory of Materials and Environment, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
| | - Mohamed Laabd
- Laboratory of Materials and Environment, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
| | - Mohamed Mobarak
- Physics Department, Faculty of Science, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Nouh Aarab
- Laboratory of Materials and Environment, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
| | - Asmae Bouziani
- Chemical Engineering Department, Middle East Technical University, Ankara, Turkey
| | - Sabine Szunerits
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520 - IEMN, Lille F, 59000, France
| | - Rabah Boukherroub
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520 - IEMN, Lille F, 59000, France
| | - Rajae Lakhmiri
- Laboratory of Chemical Engineering and Valorization Resources, Faculty of Sciences and Techniques, Abdelmalek Essaadi University, Tangier, Morocco
| | - Abdallah Albourine
- Laboratory of Materials and Environment, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco.
| |
Collapse
|
5
|
Laabd M, Imgharn A, Hsini A, Naciri Y, Mobarak M, Szunerits S, Boukherroub R, Albourine A. Efficient detoxification of Cr(VI)-containing effluents by sequential adsorption and reduction using a novel cysteine-doped PANi@faujasite composite: Experimental study supported by advanced statistical physics prediction. JOURNAL OF HAZARDOUS MATERIALS 2022; 422:126857. [PMID: 34399223 DOI: 10.1016/j.jhazmat.2021.126857] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/30/2021] [Accepted: 08/05/2021] [Indexed: 06/13/2023]
Abstract
Nowadays, the global spreading of hazardous heavy metals becomes a top-priority environmental challenge, owing to its serious detrimental health outcomes. Herein, a novel cysteine-doped polyaniline@faujasite hybrid composite (Cys-PANi@FAU-50) was synthesized via a facile in-situ polymerization route for the effective detoxification of Cr(VI)-bearing wastewaters. The Cys-PANi@FAU-50 composite displayed an open mesoporous structure richly decorated with nitrogen/oxygen-containing functional groups, which consequently boosted the diffusion, adsorption and reduction of Cr(VI) oxyanions. The Cr(VI) adsorption behavior was satisfactorily tailored via pseudo-second-order law and Langmuir model with a maximum uptake capacity of 384.6 mg/g. Based on the advanced statistical physics theory, the monolayer model with two distinct receptor sites provided a reliable microscopic and macroscopic prediction of the Cr(VI) adsorption process. Stereographically, the Cr(VI) ions were adsorbed through horizontal multi-anchorage and vertical multi-molecular mechanisms on the amine and hydroxyl groups of Cys-PANi@FAU-50, respectively. The thermodynamic functions evidenced that the Cr(VI) adsorption was an endothermic spontaneous process. XPS analysis proved that Cr(VI) ions were electrostatically adsorbed, and subsequently reduced to Cr(III), which were in turn immobilized by chelation with imine/sulfonate groups and electrostatic interactions with carboxylate groups. The Cys-PANi@FAU-50 featured an effortless regenerability and good reusability. Overall, the Cys-PANi@FAU-50 composite owns outstanding potentiality for detoxifying Cr(VI)-laden effluents.
Collapse
Affiliation(s)
- Mohamed Laabd
- Laboratory of Materials and Environment, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco.
| | - Abdelaziz Imgharn
- Laboratory of Materials and Environment, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
| | - Abdelghani Hsini
- Laboratory of Materials and Environment, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
| | - Yassine Naciri
- Laboratory of Materials and Environment, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
| | - Mohamed Mobarak
- Physics Department, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Sabine Szunerits
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520 - IEMN, F-59000 Lille, France
| | - Rabah Boukherroub
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520 - IEMN, F-59000 Lille, France
| | - Abdallah Albourine
- Laboratory of Materials and Environment, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
| |
Collapse
|