1
|
Jiang R, Wang J, Feng B, Mou P, Zhou S, Zhang X, Zhou Y, Chen G, Lin D. Sensitive and specific detection of trace Al 3+ ions using an upconversion nanoparticle-xylenol orange complex via the inner filter effect. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:8027-8036. [PMID: 39485085 DOI: 10.1039/d4ay01581a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
We have developed a novel fluorescence sensor based on upconversion nanoparticles (UCNPs) for the rapid and sensitive detection of trace aluminum ions (Al3+). The sensor utilizes the inner filter effect (IFE) between the UCNPs and the xylenol orange-aluminum complex (XO-Al3+), resulting in significant fluorescence quenching at 543 nm upon Al3+ binding. This quenching correlates directly with the Al3+ concentration, allowing for quantitative detection within a range of 0-30 μM and achieving an ultra-low detection limit of 0.19 μM. Selectivity of the sensor is enhanced by the incorporation of ascorbic acid, which masks interfering Fe3+ ions, thus ensuring accurate determination of Al3+ even in the presence of other metal ions. The UCNPs-XO sensor exhibits excellent stability and reproducibility, and minimal interference from commonly co-existing substances. This makes it suitable for the detection of Al3+ in various matrices, including food products and environmental water samples. Our work offers a significant advancement in Al3+ detection, with potential applications in food safety, environmental monitoring, and public health.
Collapse
Affiliation(s)
- Rui Jiang
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Jinfeng Wang
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Bin Feng
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Panpan Mou
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Shuo Zhou
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Xianbo Zhang
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Yan Zhou
- School of Energy and Materials, Shanghai Thermophysical Properties Big Data Professional Technical Service Platform, Shanghai Engineering Research Center of Advanced Thermal Functional Materials, Shanghai Key Laboratory of Engineering Materials Application and Evaluation, Shanghai Polytechnic University, Shanghai 201209, China.
| | - Guosong Chen
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Donghai Lin
- School of Energy and Materials, Shanghai Thermophysical Properties Big Data Professional Technical Service Platform, Shanghai Engineering Research Center of Advanced Thermal Functional Materials, Shanghai Key Laboratory of Engineering Materials Application and Evaluation, Shanghai Polytechnic University, Shanghai 201209, China.
| |
Collapse
|
2
|
Son NN, Thanh VM, Huong NT. Synthesis of F127-GA@ZnO nanogel as a cisplatin drug delivery pH-sensitive system. RSC Adv 2024; 14:35005-35020. [PMID: 39497764 PMCID: PMC11533520 DOI: 10.1039/d4ra06514j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 10/26/2024] [Indexed: 11/07/2024] Open
Abstract
In this study, a novel drug delivery system based on zinc oxide nanoparticles (ZnO NPs) was developed for the enhanced delivery of cisplatin (CPT) to improve cancer treatment. The ZnO NPs were synthesized from guava leaf extract and then surface-functionalized with gallic acid (GA) to improve their biocompatibility and drug loading capacity. Pluronic F127, a biocompatible polymer, was then conjugated to the GA-modified ZnO NPs to further enhance their stability and cellular uptake. The resulting NPs were characterized by various techniques, including FT-IR, UV-Vis, SEM, TEM, 1H NMR, and DLS. The drug loading and release profiles of CPT from the NPs were investigated, showing high CPT loading capacity and pH-dependent release behavior. The in vitro cytotoxicity of the NPs was evaluated against various cancer cell lines, demonstrating enhanced cytotoxicity compared to free CPT. Overall, this study highlights the potential of GA and Pluronic-modified ZnO NPs as a promising drug delivery system for enhanced CPT delivery and improved cancer therapy.
Collapse
Affiliation(s)
- Nguyen Ngoc Son
- Institute of Chemistry and Materials 17 Hoang Sam, Cau Giay Hanoi Vietnam
| | - Vu Minh Thanh
- Institute of Chemistry and Materials 17 Hoang Sam, Cau Giay Hanoi Vietnam
| | - Nguyen Thi Huong
- Institute of Chemistry and Materials 17 Hoang Sam, Cau Giay Hanoi Vietnam
| |
Collapse
|
3
|
Vilamová Z, Šimonová Z, Bednář J, Mikeš P, Cieslar M, Svoboda L, Dvorský R, Rosenbergová K, Kratošová G. Silver-loaded poly(vinyl alcohol)/polycaprolactone polymer scaffold as a biocompatible antibacterial system. Sci Rep 2024; 14:11093. [PMID: 38750188 PMCID: PMC11096175 DOI: 10.1038/s41598-024-61567-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 05/07/2024] [Indexed: 05/18/2024] Open
Abstract
A chronic nonhealing wound poses a significant risk for infection and subsequent health complications, potentially endangering the patient's well-being. Therefore, effective wound dressings must meet several crucial criteria, including: (1) eliminating bacterial pathogen growth within the wound, (2) forming a barrier against airborne microbes, (3) promoting cell proliferation, (4) facilitating tissue repair. In this study, we synthesized 8 ± 3 nm Ag NP with maleic acid and incorporated them into an electrospun polycaprolactone (PCL) matrix with 1.6 and 3.4 µm fiber sizes. The Ag NPs were anchored to the matrix via electrospraying water-soluble poly(vinyl) alcohol (PVA), reducing the average sphere size from 750 to 610 nm in the presence of Ag NPs. Increasing the electrospraying time of Ag NP-treated PVA spheres demonstrated a more pronounced antibacterial effect. The resultant silver-based material exhibited 100% inhibition of gram-negative Escherichia coli and gram-positive Staphylococcus aureus growth within 6 h while showing non-cytotoxic effects on the Vero cell line. We mainly discuss the preparation method aspects of the membrane, its antibacterial properties, and cytotoxicity, suggesting that combining these processes holds promise for various medical applications.
Collapse
Affiliation(s)
- Zuzana Vilamová
- Nanotechnology Centre, CEET, VSB-Technical University of Ostrava, 17. listopadu 15/2172, Poruba, 708 00, Ostrava, Czech Republic.
- Faculty of Materials Science and Technology, FMT, VSB-Technical University of Ostrava, 17. listopadu 2172/15, Poruba, 708 00, Ostrava, Czech Republic.
| | - Zuzana Šimonová
- Nanotechnology Centre, CEET, VSB-Technical University of Ostrava, 17. listopadu 15/2172, Poruba, 708 00, Ostrava, Czech Republic
- Faculty of Material Science and Technology, Center for Advanced Innovation Technologies, VSB-Technical University of Ostrava, Ostrava, 17. listopadu 15/2172, 708 00, Ostrava, Czech Republic
| | - Jiří Bednář
- Nanotechnology Centre, CEET, VSB-Technical University of Ostrava, 17. listopadu 15/2172, Poruba, 708 00, Ostrava, Czech Republic
| | - Petr Mikeš
- Department of Physics, Faculty of Science, Humanities and Education, Technical University of Liberec, Studentská 5, 461 17, Liberec, Czech Republic
| | - Miroslav Cieslar
- Department of Physics of Materials, Faculty of Mathemathics and Physics, Charles University, Ke Karlovu 3, 121 16, Prague, Czech Republic
| | - Ladislav Svoboda
- Nanotechnology Centre, CEET, VSB-Technical University of Ostrava, 17. listopadu 15/2172, Poruba, 708 00, Ostrava, Czech Republic
| | - Richard Dvorský
- Nanotechnology Centre, CEET, VSB-Technical University of Ostrava, 17. listopadu 15/2172, Poruba, 708 00, Ostrava, Czech Republic
- Faculty of Material Science and Technology, Center for Advanced Innovation Technologies, VSB-Technical University of Ostrava, Ostrava, 17. listopadu 15/2172, 708 00, Ostrava, Czech Republic
| | - Kateřina Rosenbergová
- National Institute for Nuclear, Biological and Chemical Protection, V.V.I., Kamenná 71, 262 31, Milín, Czech Republic
| | - Gabriela Kratošová
- Nanotechnology Centre, CEET, VSB-Technical University of Ostrava, 17. listopadu 15/2172, Poruba, 708 00, Ostrava, Czech Republic
| |
Collapse
|
4
|
Borah N, Kaka MN, Tamuly C. "AND"-Logic gate-based colorimetric detection of thiocyanate in milk samples using AgNP-EBF as plasmonic nano sensor. Food Chem 2023; 425:136522. [PMID: 37295214 DOI: 10.1016/j.foodchem.2023.136522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/26/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023]
Abstract
At present, the uses of food additives globally are much of a concern due to their after effects upon consumption in higher proportions. Although different sensing strategies are available for their detection, a need for simple, rapid and cost-effective strategy is much of a concern. Herein, we developed a plasmonic nano sensor i.e., AgNP-EBF which was considered as the transducer component for the AND logic gate-based system with Cu2+ and thiocyanate as inputs. Optimization and detection of thiocyanates were performed through UV-visible colorimetric sensing procedures where the logic gate allowed the detection of thiocyanate in the range of 100 nM-1 µM with LOD of 53.60 nM within 5-10 min. The proposed system showed high selectivity towards the detection of thiocyanate rather than other interferences. To check the credibility of the proposed system, the logic gate was applied for detection of thiocyanates in real milk samples.
Collapse
Affiliation(s)
- Nirangkush Borah
- Natural Product Chemistry Section, CSIR-North East Institute of Science and Technology. Branch Itanagar, Arunachal Pradesh 791110, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Maga Nana Kaka
- Natural Product Chemistry Section, CSIR-North East Institute of Science and Technology. Branch Itanagar, Arunachal Pradesh 791110, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Chandan Tamuly
- Natural Product Chemistry Section, CSIR-North East Institute of Science and Technology. Branch Itanagar, Arunachal Pradesh 791110, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
5
|
On Recent Developments in Biosynthesis and Application of Au and Ag Nanoparticles from Biological Systems. JOURNAL OF NANOTECHNOLOGY 2022. [DOI: 10.1155/2022/5560244] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Gold nanoparticles (AuNPs) and silver nanoparticles (AgNPs) are extensively studied nanoparticles (NPs) and are known to have profound applications in medicine. The researcher made continuous efforts for the environmental-friendly and economical methods, such as biogenic methods known as green synthesis. There are many strategies for separating and applying gold (Au) and silver (Ag) nanoparticles, of which biological routes have emerged as efficient, low-cost, and environmentally friendly techniques. This review focuses on recent developments of green synthesized AuNPs and AgNPs using biogenic sources such as algae, animals, plants, microbes, bacteria, fungi, and so on. Hence, it discusses their numerous biomedical applications and separating Au and Ag nanoparticles from plants, bacteria, fungi, and algae.
Collapse
|
6
|
Taheri H, Khayatian G. Smartphone-based microfluidic chip modified using pyrrolidine-1-dithiocarboxylic acid for simultaneous colorimetric determination of Cr 3+ and Al 3+ ions. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 272:121000. [PMID: 35151170 DOI: 10.1016/j.saa.2022.121000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/13/2022] [Accepted: 02/01/2022] [Indexed: 06/14/2023]
Abstract
A portable µ-chip-based colorimetric device was developed for the determination of Cr3+ and Al3+ ions. The silver nanoparticles were modified with pyrrolidine-1-dithiocarboxylic acid ammonium salt as a novel ligand for the first time. The color of modified AgNPs in the test zone immediately changes after the addition of Cr3+ and Al3+ ions. The resulting color changes were detected by the naked eye or were taken by a smartphone camera. The obtained images were analyzed by RGB software to assay the Cr3+ and Al3+ ions concentration. Under optimized experimental conditions, the linear ranges are 0.1-220 and 0.01-250 µM for Cr3+ and Al3+ ions, respectively. The probe has a limit of detections of 10.66 and 3.55 nM for Cr3+ and Al3+ in an aqueous solution. In the case of µ-chip, the concentration ranges are 0.1-200 μM and 0.01-220 μM for Cr3+ and Al3+ ions, with detection limits of 9.18 and 2.30 nM, respectively. The µ-chip showed great potential as a fast detection tool for the monitoring of Cr3+ and Al3+ ions in real samples such as river water samples.
Collapse
Affiliation(s)
- Hoda Taheri
- Department of Chemistry, Faculty of Science, University of Kurdistan, Sanandaj P.O. Box 416, 66177-15175, Iran
| | - Gholamreza Khayatian
- Department of Chemistry, Faculty of Science, University of Kurdistan, Sanandaj P.O. Box 416, 66177-15175, Iran.
| |
Collapse
|
7
|
Afolabi TA, Ejeromedoghene O, Olorunlana GE, Afolabi TA, Alli YA. A selective and efficient chemosensor for the rapid detection of arsenic ions in aqueous medium. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04665-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
8
|
Šimonová Z, Krbečková V, Vilamová Z, Dobročka E, Klejdus B, Cieslar M, Svoboda L, Bednář J, Dvorský R, Seidlerová J. The Effects of Nature-Inspired Synthesis on Silver Nanoparticle Generation. ACS OMEGA 2022; 7:4850-4858. [PMID: 35187305 PMCID: PMC8851446 DOI: 10.1021/acsomega.1c05308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
A wide range of methods can be used for nature-inspired metallic nanoparticle (NP) synthesis. These syntheses, however, are ongoing in the presence of diverse mixtures of different chemical compounds, and all or only a few of these contribute to resultant particle properties. Herein, the linden (Tilia sp.) inflorescence leachate and pure citric and protocatechuic acids were chosen for Ag-AgCl nanoparticle (NP) synthesis, and the resultant particles were then compared. We focused on the following four issues: (1) preparation of Ag-AgCl NPs using the Tilia sp.-based phytosynthetic protocol, (2) analytical determination of the common phenolic, nonphenolic, and inorganic profiles of three Tilia sp. types from different harvesting locations, (3) preparation of Ag-AgCl NPs using a mixture of citric and protocatechuic acids based on chromatographic evaluation, and (4) comparison of Tilia-based and organic acid-based syntheses. Our research confirms that the Tilia organic and inorganic profiles in biomasses are influenced by the harvesting location, and the three sites influenced both the morphology and final NP size. Our processing method was uniform, and this enabled great Ag-AgCl NP reproducibility for each specific biomass. We were then able to prove that the simplified organic acid-based synthesis produced even smaller NPs than Tilia-based synthesis. These findings provide better understanding of the significant influence on NP final properties resulting from other organic acids contained in the linden.
Collapse
Affiliation(s)
- Zuzana Šimonová
- Nanotechnology
Centre, CEET, VSB−Technical University
of Ostrava, 17. listopadu 15/2172, Ostrava 708 00, Czech Republic
- ENET
Centre, CEET, VSB−Technical University
of Ostrava, 17. listopadu 15/2172, Ostrava 708 00, Czech Republic
- Department
of Machining, Assembly and Engineering Metrology, Faculty of Mechanical
Engineering, VSB−Technical University
of Ostrava, 17. listopadu 15/2172, Ostrava 708 00, Czech Republic
| | - Veronika Krbečková
- Laboratory
of Growth Regulators, Faculty of Science, Palacký University & Institute of Experimental Botany
ASCR, Šlechtitelů
27, Olomouc 783 71, Czech Republic
| | - Zuzana Vilamová
- Nanotechnology
Centre, CEET, VSB−Technical University
of Ostrava, 17. listopadu 15/2172, Ostrava 708 00, Czech Republic
| | - Edmund Dobročka
- Institute
of Electrical Engineering, Slovak Academy
of Sciences, Dúbravská cesta 9, Bratislava 841 04, Slovak Republic
| | - Bořivoj Klejdus
- Department
of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1665/1, Brno 613 00, Czech
Republic
| | - Miroslav Cieslar
- Department
of Physics of Materials, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, Prague 121 16, Czech Republic
| | - Ladislav Svoboda
- Nanotechnology
Centre, CEET, VSB−Technical University
of Ostrava, 17. listopadu 15/2172, Ostrava 708 00, Czech Republic
- IT4Innovations, VSB−Technical University
of Ostrava, 17. listopadu 2172/15, Ostrava 708 00, Czech Republic
| | - Jiří Bednář
- Nanotechnology
Centre, CEET, VSB−Technical University
of Ostrava, 17. listopadu 15/2172, Ostrava 708 00, Czech Republic
- IT4Innovations, VSB−Technical University
of Ostrava, 17. listopadu 2172/15, Ostrava 708 00, Czech Republic
| | - Richard Dvorský
- Nanotechnology
Centre, CEET, VSB−Technical University
of Ostrava, 17. listopadu 15/2172, Ostrava 708 00, Czech Republic
- IT4Innovations, VSB−Technical University
of Ostrava, 17. listopadu 2172/15, Ostrava 708 00, Czech Republic
| | - Jana Seidlerová
- Nanotechnology
Centre, CEET, VSB−Technical University
of Ostrava, 17. listopadu 15/2172, Ostrava 708 00, Czech Republic
- Department
of Physical Chemistry and Theory of Technological Processes, Faculty
of Materials Science and Technology, VSB−Technical
University of Ostrava, 17. listopadu 2172/15, Ostrava 708 00, Czech Republic
| |
Collapse
|
9
|
Borah N, Kalita AJ, Guha AK, Das MR, Tamuly C. Dual colorimetric sensing of ascorbic acid and thyroxine using Ag-EGCG-CTAB via a DFT approach. RSC Adv 2021; 11:36698-36706. [PMID: 35494345 PMCID: PMC9043532 DOI: 10.1039/d1ra04204a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 10/19/2021] [Indexed: 01/06/2023] Open
Abstract
In this work, a colorimetric approach for the detection of ascorbic acid (AA) and thyroxine (TH) was developed by synthesizing cost-effective silver nanoparticles (AgNPs) decorated with epigallocatechin gallate (EGCG) and CTAB. EGCG is the major bioactive chemical constituent that played a significant role in this study. The environment around the nanoparticle (NP) was controlled by adding CTAB surfactants. The synthesized NPs were characterized by different advanced techniques including XRD, XPS, SEM, and TEM. UV-visible spectra were thoroughly analyzed for sensing of AA and TH and the colour change of the solution can be visually monitored. The change in the localized surface plasmon resonance (LSPR) properties was used as an asset for the detection of AA and TH. A good linear relationship was obtained in both the sensing schemes with a limit of detection (LoD) of 0.67 μM and 0.33 μM for AA and TH respectively. Furthermore, the nanoparticles (NP) were implemented for real-sample analysis (pharmaceutical tablets). A cost-effective filter paper strip-based method coupled with smartphone scanning sensing was developed for the detection of AA. The interaction of AA and TH with the probe was depicted by a density functional theory (DFT) analysis. The synthesized NPs show tremendous selectivity towards AA and TH and excellent potential for practical applications.
Collapse
Affiliation(s)
- Nirangkush Borah
- Natural Product Chemistry Section, CSIR-North East Institute of Science and Technology, Branch Itanagar Arunachal Pradesh-791110 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad-201002 India
| | | | - Ankur Kanti Guha
- Department of Chemistry, Cotton University Guwahati Assam-781001 India
| | - Manash R Das
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad-201002 India
- Material Science & Technology Division, CSIR-North East Institute of Science & Technology Jorhat Assam-785006 India
| | - Chandan Tamuly
- Natural Product Chemistry Section, CSIR-North East Institute of Science and Technology, Branch Itanagar Arunachal Pradesh-791110 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad-201002 India
| |
Collapse
|
10
|
Kumari S, Sharma KS, Nemiwal M, Khan S, Kumar D. Simultaneous detection of aqueous aluminum(III) and chromium(III) using Persea americana reduced and capped silver nanoparticles. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2021; 24:808-821. [PMID: 34559600 DOI: 10.1080/15226514.2021.1977911] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
There is a significant interest to develop sensing devices that detect water toxins, especially heavy metal ions. Although there have already been numerical reports on detecting toxic heavy metal ions, the use of adaptable devices could enable a broader range of sensing applications. Here, we used fresh peel extract (PeA) and dried peel extract (DPeA) of Persea americana (Avocado) as a reducing and capping agent to synthesize and stabilize AgNPs. The dimensions of NPs were controlled by tuning pH, temperature, and volume of the reducing agent. The sensitivity and selectivity of the AgNPs toward various metal ions viz. Ni(II), Cd(II), Al(III), Hg(II), Cr(III), Ba(II), Pb(II), Zn(II), Co(II), Mn(II), Cu(II), Ca(II), Mg(II), and K(I) were studied. The detection probe was found to be selective and sensitive toward Al(III) and Cr(III) ions with the detection limit of 0.04 ppm and 0.05 ppm, respectively. High-resolution transmission electron microscope (HRTEM), ultraviolet-visible (UV-Vis) spectroscopy, and dynamic light scattering (DLS) analysis results confirm an agglomeration-based mechanism for sensing both metal ions. This method can be exploited for the colorimetric detection of toxic heavy metals in real water samples.
Collapse
Affiliation(s)
- Sandhya Kumari
- School of Chemical Sciences, Central University of Gujarat, Gandhinagar, India
| | - Kritika S Sharma
- School of Chemical Sciences, Central University of Gujarat, Gandhinagar, India
| | - Meena Nemiwal
- Department of Chemistry, Malaviya National Institute of Technology, Jaipur, India
| | - Suphiya Khan
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Banasthali, India
| | - Dinesh Kumar
- School of Chemical Sciences, Central University of Gujarat, Gandhinagar, India
| |
Collapse
|
11
|
Villalobos-Noriega JMA, Rodríguez-León E, Rodríguez-Beas C, Larios-Rodríguez E, Plascencia-Jatomea M, Martínez-Higuera A, Acuña-Campa H, García-Galaz A, Mora-Monroy R, Alvarez-Cirerol FJ, Rodríguez-Vázquez BE, Carillo-Torres RC, Iñiguez-Palomares RA. Au@Ag Core@Shell Nanoparticles Synthesized with Rumex hymenosepalus as Antimicrobial Agent. NANOSCALE RESEARCH LETTERS 2021; 16:118. [PMID: 34292415 PMCID: PMC8298724 DOI: 10.1186/s11671-021-03572-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 07/12/2021] [Indexed: 05/15/2023]
Abstract
In this work, we used a sequential method of synthesis for gold-silver bimetallic nanoparticles with core@shell structure (Au@AgNPs). Rumex hymenosepalus root extract (Rh), which presents high content in catechins and stilbenes, was used as reductor agent in nanoparticles synthesis. Size distribution obtained by Transmission Electron Microscopy (TEM) gives a mean diameter of 36 ± 11 nm for Au@AgNPs, 24 ± 4 nm for gold nanoparticles (AuNPs), and 13 ± 3 nm for silver nanoparticles (AgNPs). The geometrical shapes of NPs were principally quasi-spherical. The thickness of the silver shell over AuNPs is around 6 nm and covered by active biomolecules onto the surface. Nanoparticles characterization included high angle annular dark field images (HAADF) recorded with a scanning transmission electron microscope (STEM), Energy-Dispersive X-ray Spectroscopy (EDS), X-Ray Diffraction (XRD), UV-Vis Spectroscopy, Zeta Potential, and Dynamic Light Scattering (DLS). Fourier Transform Infrared Spectrometer (FTIR), and X-ray Photoelectron Spectroscopy (XPS) show that nanoparticles are stabilized by extract molecules. A growth kinetics study was performed using the Gompertz model for microorganisms exposed to nanomaterials. The results indicate that AgNPs and Au@AgNPs affect the lag phase and growth rate of Escherichia coli and Candida albicans in a dose-dependent manner, with a better response for Au@AgNPs.
Collapse
Affiliation(s)
| | - Ericka Rodríguez-León
- Nanotechnology Graduate Program, Department of Physics, University of Sonora, Rosales and Transversal, 83000, Hermosillo, Sonora, Mexico.
| | - César Rodríguez-Beas
- Nanotechnology Graduate Program, Department of Physics, University of Sonora, Rosales and Transversal, 83000, Hermosillo, Sonora, Mexico
| | - Eduardo Larios-Rodríguez
- Department of Chemical Engineering and Metallurgy, University of Sonora, Rosales and Transversal, 83000, Hermosillo, Sonora, Mexico
| | - Maribel Plascencia-Jatomea
- Department of Research and Postgraduate in Food, University of Sonora, Rosales and Transversal, 83000, Hermosillo, Sonora, Mexico
| | - Aarón Martínez-Higuera
- Nanotechnology Graduate Program, Department of Physics, University of Sonora, Rosales and Transversal, 83000, Hermosillo, Sonora, Mexico
| | - Heriberto Acuña-Campa
- Department of Physics, University of Sonora, Rosales and Transversal, 83000, Hermosillo, Sonora, Mexico
| | - Alfonso García-Galaz
- Food Science Coordination, Research Center in Food and Development (CIAD), Road Gustavo Enrique Astiazarán Rosas, No. 46, Col. La Victoria, 83304, Hermosillo, Sonora, Mexico
| | - Roberto Mora-Monroy
- Department of Physic Researching, University of Sonora, Rosales and Transversal, 83000, Hermosillo, Sonora, Mexico
| | | | | | - Roberto Carlos Carillo-Torres
- Nanotechnology Graduate Program, Department of Physics, University of Sonora, Rosales and Transversal, 83000, Hermosillo, Sonora, Mexico
| | - Ramón A Iñiguez-Palomares
- Nanotechnology Graduate Program, Department of Physics, University of Sonora, Rosales and Transversal, 83000, Hermosillo, Sonora, Mexico.
| |
Collapse
|
12
|
Tannic acid-coated gold nanorod as a spectrometric probe for sensitive and selective detection of Al3+ in aqueous system. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2020.11.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
13
|
Exploiting Fruit Waste Grape Pomace for Silver Nanoparticles Synthesis, Assessing Their Antioxidant, Antidiabetic Potential and Antibacterial Activity Against Human Pathogens: A Novel Approach. NANOMATERIALS 2020; 10:nano10081457. [PMID: 32722404 PMCID: PMC7466627 DOI: 10.3390/nano10081457] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/20/2020] [Accepted: 07/22/2020] [Indexed: 02/06/2023]
Abstract
Grape pomace, a most abundant and renewable wine industry waste product was utilized as a suitable reducing, capping, and stabilizing biomolecules for green synthesis of silver nanoparticles (AgNPs). The physicochemical properties of biosynthesized grape pomace extract (GPE)-AgNPs were duly appraised via UV-Visible spectroscopy, X-ray diffractometer (XRD), Fourier-transform infrared spectroscopy (FTIR), and transmission electron microscopy. The analytical studies revealed that the GPE-AgNPs were well formed and stable in nature. The functional groups of organic molecules of GPE are present on the surface of AgNPs with average NPs diameter in the range of 20-35 nm. GPE-AgNPs exhibited significant free radical scavenging activity mainly DPPH radical (IC50, 50.0 ± 2.25 μg/mL) and ABTS radical (IC50, 38.46 ± 1.14 μg/mL). Additionally, the synthesized AgNPs showed noticeable inhibition of carbohydrate hydrolyzing enzymes mainly, α-amylase (IC50, 60.2 ± 2.15 μg/mL) and α-glucosidase (IC50, 62.5 ± 2.75 μg/mL). The GPE fabricated AgNPs showed noteworthy antibacterial potential against infectious bacteria viz., Escherichia coli and Staphylococcus aureus. The reaction mechanism of antibacterial activity was studied by measuring the bacterial cell membrane breakage and cytoplasmic contents, mainly, nucleic acid, proteins, and reducing sugar. Therefore, this research attempt illustrated the potential of GPE as a novel source intended for the biosynthesis of AgNPs that may open up new horizons in the field of nanomedicine.
Collapse
|
14
|
Moradi F, Sedaghat S, Moradi O, Arab Salmanabadi S. Review on green nano-biosynthesis of silver nanoparticles and their biological activities: with an emphasis on medicinal plants. INORG NANO-MET CHEM 2020. [DOI: 10.1080/24701556.2020.1769662] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Fatemeh Moradi
- Department of Chemistry, College of Science, Shahr-e-Qods Branch, Islamic Azad University, Shahr-e-Qods, Iran
| | - Sajjad Sedaghat
- Department of Chemistry, College of Science, Shahr-e-Qods Branch, Islamic Azad University, Shahr-e-Qods, Iran
| | - Omid Moradi
- Department of Chemistry, College of Science, Shahr-e-Qods Branch, Islamic Azad University, Shahr-e-Qods, Iran
| | - Samira Arab Salmanabadi
- Department of Chemistry, College of Science, Shahr-e-Qods Branch, Islamic Azad University, Shahr-e-Qods, Iran
| |
Collapse
|