1
|
López A, Fuentes-Ferragud E, Mora MJ, Blasco-Ferre J, Barber G, Lopez-Labrador FX, Camaró M, Coscollà C. Air quality of health facilities in Spain. CHEMOSPHERE 2024; 362:142615. [PMID: 38880262 DOI: 10.1016/j.chemosphere.2024.142615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 06/18/2024]
Abstract
The present study examines indoor air pollution in health facilities, focusing on compounds from various sources, such as industrial products, healthcare activities and building materials. It assesses chemical and microbiological concentrations in two public hospitals, two public healthcare centres, and one public health laboratory in Spain. Measurements included indoor air quality, microbiological contaminants, ambient parameters and non-target analysis across ten different locations. Outdoor air quality was also assessed in the surroundings of the hospitals. The results showed that around 350 substances were tentatively identified at a high confidence level, with over 50 % of compounds classified as of high toxicological risk. Three indoor and 26 outdoor compounds were fully confirmed with standards. These confirmed substances were linked to medical, industrial and agricultural activities. Indoor Air Quality (IAQ) results revealed that CO, CO2, formaldehyde (HCHO), O3 and total volatile organic compounds (TVOCs) showed average values above the recommended guideline levels in at least one of the evaluated locations. Moreover, maximum concentrations detected for CO, HCHO, O3 and TVOCs in hospitals surpassed those previously reported in the literature. SARS-CoV-2 was detected in three air environments, corresponding to COVID-19 patient areas. Fungi and bacteria concentrations were acceptable in all assessed locations, identifying different fungi genera, such as Penicillium, Cladosporium, Aspergillus, Alternaria and Botrytis.
Collapse
Affiliation(s)
- Antonio López
- Foundation for the Promotion of Health and Biomedical Research in the Valencia Region, FISABIO-Public Health, 21, Avenida Catalunya, 46020, Valencia, Spain.
| | - Esther Fuentes-Ferragud
- Foundation for the Promotion of Health and Biomedical Research in the Valencia Region, FISABIO-Public Health, 21, Avenida Catalunya, 46020, Valencia, Spain; Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water, University Jaume I, S/N, Avenida Sos Baynat, 12071 Castelló de la Plana, Spain
| | - María José Mora
- Foundation for the Promotion of the Health and Biomedical Research in the Valencian Region, FISABIO-Xativa/Ontinyent Department, 21, Ctra. Xàtiva-Silla, km. 2, Xàtiva, 46800, Valencia, Spain; Foundation for the Promotion of the Health and Biomedical Research in the Valencian Region, FISABIO-Alcoy Departament, Polígono Caramanxell, s/n. 03804 Alcoy, Alicante, Spain
| | - Jordi Blasco-Ferre
- Foundation for the Promotion of the Health and Biomedical Research in the Valencian Region, FISABIO-Xativa/Ontinyent Department, 21, Ctra. Xàtiva-Silla, km. 2, Xàtiva, 46800, Valencia, Spain
| | - Gema Barber
- Foundation for the Promotion of the Health and Biomedical Research in the Valencian Region, FISABIO-Xativa/Ontinyent Department, 21, Ctra. Xàtiva-Silla, km. 2, Xàtiva, 46800, Valencia, Spain
| | - F Xavier Lopez-Labrador
- Foundation for the Promotion of Health and Biomedical Research in the Valencia Region, FISABIO-Public Health, 21, Avenida Catalunya, 46020, Valencia, Spain; Microbiology Department, University of Valencia Medical School, 13, Av. Blasco Ibáñez, 46010, Valencia, Spain; CIBERESP, Instituto de Salud Carlos III (Institute of Health Carlos III), Madrid, Spain
| | - Marisa Camaró
- Public Health Laboratory of Valencia, 21, Avenida Catalunya, 46020 Valencia, Spain
| | - Clara Coscollà
- Foundation for the Promotion of Health and Biomedical Research in the Valencia Region, FISABIO-Public Health, 21, Avenida Catalunya, 46020, Valencia, Spain
| |
Collapse
|
2
|
Giri P, Lim S, Khobragade TP, Pagar AD, Patil MD, Sarak S, Jeon H, Joo S, Goh Y, Jung S, Jang YJ, Choi SB, Kim YC, Kang TJ, Heo YS, Yun H. Biocatalysis enables the scalable conversion of biobased furans into various furfurylamines. Nat Commun 2024; 15:6371. [PMID: 39075048 PMCID: PMC11286754 DOI: 10.1038/s41467-024-50637-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 07/17/2024] [Indexed: 07/31/2024] Open
Abstract
Biobased furans have emerged as chemical building blocks for the development of materials because of their diverse scaffolds and as they can be directly prepared from sugars. However, selective, efficient, and cost-effective scalable conversion of biobased furans remains elusive. Here, we report a robust transaminase (TA) from Shimia marina (SMTA) that enables the scalable amination of biobased furanaldehydes with high activity and broad substrate specificity. Crystallographic and mutagenesis analyses provide mechanistic insights and a structural basis for understanding SMTA, which enables a higher substrate conversion. The enzymatic cascade process established in this study allows one-pot synthesis of 2,5-bis(aminomethyl)furan (BAMF) and 5-(aminomethyl)furan-2-carboxylic acid from 5-hydroxymethylfurfural. The biosynthesis of various furfurylamines, including a one-pot cascade reaction for BAMF generation using whole cells, demonstrates their practical application in the pharmaceutical and polymer industries.
Collapse
Affiliation(s)
- Pritam Giri
- Department of Systems Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Seonga Lim
- Department of Systems Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Taresh P Khobragade
- Department of Systems Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Amol D Pagar
- Department of Systems Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Mahesh D Patil
- Chemical Engineering and Process Development Division, CSIR- National Chemical Laboratory, Pune, 411008, India
| | - Sharad Sarak
- Department of Systems Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Hyunwoo Jeon
- Department of Systems Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Sangwoo Joo
- Department of Systems Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Younghwan Goh
- Department of Systems Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Seohee Jung
- Department of Systems Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Yu-Jeong Jang
- Department of Chemistry, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Seung Beom Choi
- Department of Chemistry, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Ye Chan Kim
- School of Chemical and Biological Engineering, Seoul National University, Seoul, Republic of Korea
| | - Taek Jin Kang
- Department of Chemical and Biochemical Engineering, Dongguk University, Seoul, 04620, Republic of Korea
| | - Yong-Seok Heo
- Department of Chemistry, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea.
| | - Hyungdon Yun
- Department of Systems Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea.
| |
Collapse
|
3
|
Qi YK, Pan J, Zhang ZJ, Xu JH. Whole-cell one-pot biosynthesis of dodecanedioic acid from renewable linoleic acid. BIORESOUR BIOPROCESS 2024; 11:55. [PMID: 38780695 PMCID: PMC11116355 DOI: 10.1186/s40643-024-00770-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Dodecanedioic acid (DDA), a typical medium-chain dicarboxylic fatty acid with widespread applications, has a great synthetic value and a huge industrial market demand. Currently, a sustainable, eco-friendly and efficient process is desired for dodecanedioic acid production. RESULTS Herein, a multi-enzymatic cascade was designed and constructed for the production of DDA from linoleic acid based on the lipoxygenase pathway in plants. The cascade is composed of lipoxygenase, hydroperoxide lyase, aldehyde dehydrogenase, and unidentified double-bond reductase in E. coli for the main cascade reactions, as well as NADH oxidase for cofactor recycling. The four component enzymes involved in the cascade were co-expressed in E. coli, together with the endogenous double-bond reductase of E. coli. After optimizing the reaction conditions of the rate-limiting step, 43.8 g L- 1 d- 1 of DDA was obtained by a whole-cell one-pot process starting from renewable linoleic acid. CONCLUSIONS Through engineering of the reaction system and co-expressing the component enzymes, a sustainable and eco-friendly DDA biosynthesis route was set up in E. coli, which afforded the highest space time yield for DDA production among the current artificial multi-enzymatic routes derived from the LOX-pathway, and the productivity achieved here ranks the second highest among the current research progress in DDA biosynthesis.
Collapse
Affiliation(s)
- Yi-Ke Qi
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
- College of Food Science and Biology, Hebei University of Science and Technology, 26 Yuxiang Street, Shijiazhuang, 050018, China
| | - Jiang Pan
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Zhi-Jun Zhang
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| | - Jian-He Xu
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| |
Collapse
|
4
|
Gu S, Zhu F, Zhang L, Wen J. Mid-Long Chain Dicarboxylic Acid Production via Systems Metabolic Engineering: Progress and Prospects. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:5555-5573. [PMID: 38442481 DOI: 10.1021/acs.jafc.4c00002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Mid-to-long-chain dicarboxylic acids (DCAi, i ≥ 6) are organic compounds in which two carboxylic acid functional groups are present at the terminal position of the carbon chain. These acids find important applications as structural components and intermediates across various industrial sectors, including organic compound synthesis, food production, pharmaceutical development, and agricultural manufacturing. However, conventional petroleum-based DCA production methods cause environmental pollution, making sustainable development challenging. Hence, the demand for eco-friendly processes and renewable raw materials for DCA production is rising. Owing to advances in systems metabolic engineering, new tools from systems biology, synthetic biology, and evolutionary engineering can now be used for the sustainable production of energy-dense biofuels. Here, we explore systems metabolic engineering strategies for DCA synthesis in various chassis via the conversion of different raw materials into mid-to-long-chain DCAs. Subsequently, we discuss the future challenges in this field and propose synthetic biology approaches for the efficient production and successful commercialization of these acids.
Collapse
Affiliation(s)
- Shanna Gu
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072,China
- Frontiers Science Center for Synthetic Biology (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072,China
- SINOPEC Dalian Research Institute of Petroleum and Petrochemicals Co., Ltd, Dalian 116045, China
| | - Fuzhou Zhu
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072,China
- Frontiers Science Center for Synthetic Biology (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072,China
| | - Lin Zhang
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072,China
- Frontiers Science Center for Synthetic Biology (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072,China
- SINOPEC Dalian Research Institute of Petroleum and Petrochemicals Co., Ltd, Dalian 116045, China
| | - Jianping Wen
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072,China
- Frontiers Science Center for Synthetic Biology (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072,China
| |
Collapse
|
5
|
Multienzymatic synthesis of nylon monomers from vegetable oils. Trends Biotechnol 2023; 41:150-153. [PMID: 36180355 DOI: 10.1016/j.tibtech.2022.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/18/2022] [Accepted: 08/22/2022] [Indexed: 01/24/2023]
Abstract
Nylons are important polyamide (PA) materials that can be polymerized from different monomers. Bio-based nylon monomers are traditionally obtained through chemical conversion from vegetable oils, but they can be more sustainably obtained through multienzymatic catalysis. For large-scale application of this process, enzyme engineering and process innovation must be combined.
Collapse
|
6
|
Sharma VK, Hutchison JM, Allgeier AM. Redox Biocatalysis: Quantitative Comparisons of Nicotinamide Cofactor Regeneration Methods. CHEMSUSCHEM 2022; 15:e202200888. [PMID: 36129761 PMCID: PMC10029092 DOI: 10.1002/cssc.202200888] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 08/06/2022] [Indexed: 06/15/2023]
Abstract
Enzymatic processes, particularly those capable of performing redox reactions, have recently been of growing research interest. Substrate specificity, optimal activity at mild temperatures, high selectivity, and yield are among the desirable characteristics of these oxidoreductase catalyzed reactions. Nicotinamide adenine dinucleotide (phosphate) or NAD(P)H-dependent oxidoreductases have been extensively studied for their potential applications like biosynthesis of chiral organic compounds, construction of biosensors, and pollutant degradation. One of the main challenges associated with making these processes commercially viable is the regeneration of the expensive cofactors required by the enzymes. Numerous efforts have pursued enzymatic regeneration of NAD(P)H by coupling a substrate reduction with a complementary enzyme catalyzed oxidation of a co-substrate. While offering excellent selectivity and high total turnover numbers, such processes involve complicated downstream product separation of a primary product from the coproducts and impurities. Alternative methods comprising chemical, electrochemical, and photochemical regeneration have been developed with the goal of enhanced efficiency and operational simplicity compared to enzymatic regeneration. Despite the goal, however, the literature rarely offers a meaningful comparison of the total turnover numbers for various regeneration methodologies. This comprehensive Review systematically discusses various methods of NAD(P)H cofactor regeneration and quantitatively compares performance across the numerous methods. Further, fundamental barriers to enhanced cofactor regeneration in the various methods are identified, and future opportunities are highlighted for improving the efficiency and sustainability of commercially viable oxidoreductase processes for practical implementation.
Collapse
Affiliation(s)
- Victor K Sharma
- Chemical and Petroleum Engineering, The University of Kansas, 1530 W 15th St, 66045, Lawrence, Kansas, United States
| | - Justin M Hutchison
- Civil, Environmental and Architectural Engineering, The University of Kansas, 1530 W 15th St, 66045, Lawrence, Kansas, United States
| | - Alan M Allgeier
- Chemical and Petroleum Engineering, The University of Kansas, 1530 W 15th St, 66045, Lawrence, Kansas, United States
| |
Collapse
|
7
|
Biocatalytic Cascade of Sebacic Acid Production with In Situ Co-Factor Regeneration Enabled by Engineering of an Alcohol Dehydrogenase. Catalysts 2022. [DOI: 10.3390/catal12111318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Sebacic acid (1,10-decanedioic acid) is an important chemical intermediate. Traditional chemical oxidation methods for sebacic acid production do not conform with “green” manufacturing. With the rapid development of enzymatic technologies, a biocatalytic cascade method based on the Baeyer–Villiger monooxygenase was developed. The most attractive point of the method is the oleic acid that can be utilized as raw material, which is abundant in nature. However, this bio-catalysis process needs co-factor electron carriers, and the high cost of the co-factor limits its progress. In this piece of work, a co-factor in situ regeneration system between ADH from Micrococcus luteus WIUJH20 (MlADH) and BVMO is proposed. Since the co-factors of both enzymes are different, switching the co-factor preference of native MlADH from NAD+ to NADP+ is necessary. Switching research was carried out based on in silico simulation, and the sites of Tyr36, Asp 37, Ala38, and Val39 were selected for mutation investigation. The experimental results demonstrated that mutants of MlADH_D37G and MlADH_D37G/A38T/V39K would utilize NADP+ efficiently, and the mutant of MlADH_D37G/A38T/V39K demonstrated the highest sebacic acid yield with the combination of BVMO. The results indicated that the in situ co-factor generation system is successfully developed, which would improve the efficiency of the biocatalytic cascade for sebacic acid production and is helpful for simplifying product isolation, thus, reducing the cost of the enzymatic transformations process.
Collapse
|
8
|
Velasco-Lozano S, Santiago-Arcos J, Grazia Rubanu M, López-Gallego F. Cell-Free Biosynthesis of ω-Hydroxy Acids Boosted by a Synergistic Combination of Alcohol Dehydrogenases. CHEMSUSCHEM 2022; 15:e202200397. [PMID: 35348296 DOI: 10.1002/cssc.202200397] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/28/2022] [Indexed: 06/14/2023]
Abstract
The activity orchestration of an unprecedented cell-free enzyme system with self-sufficient cofactor recycling enables the stepwise transformation of aliphatic diols into ω-hydroxy acids at the expense of molecular oxygen as electron acceptor. The efficiency of the biosynthetic route was maximized when two compatible alcohol dehydrogenases were selected as specialist biocatalysts for each one of the oxidative steps required for the oxidative lactonization of diols. The cell-free system reached up to 100 % conversion using 100 mM of linear C5 diols and performed the desymmetrization of prochiral branched diols into the corresponding ω-hydroxy acids with an exquisite enantioselectivity (ee>99 %). Green metrics demonstrate superior sustainability of this system compared to traditional metal catalysts and even to whole cells for the synthesis of 5-hydroxypetanoic acid. Finally, the cell-free system was assembled into a consortium of heterogeneous biocatalysts that allowed the enzyme reutilization. This cascade illustrates the potential of systems biocatalysis to access new heterofunctional molecules such as ω-hydroxy acids.
Collapse
Affiliation(s)
- Susana Velasco-Lozano
- Heterogeneous biocatalysis group, CIC biomaGUNE, Edificio Empresarial "C", Paseo de Miramón 182, 20009, Donostia, Spain
| | - Javier Santiago-Arcos
- Heterogeneous biocatalysis group, CIC biomaGUNE, Edificio Empresarial "C", Paseo de Miramón 182, 20009, Donostia, Spain
| | - Maria Grazia Rubanu
- Heterogeneous biocatalysis group, CIC biomaGUNE, Edificio Empresarial "C", Paseo de Miramón 182, 20009, Donostia, Spain
| | - Fernando López-Gallego
- Heterogeneous biocatalysis group, CIC biomaGUNE, Edificio Empresarial "C", Paseo de Miramón 182, 20009, Donostia, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|