1
|
Garoub M, Hefny AH, Omer WE, Elsaady MM, Abo-Aly MM, Sayqal AA, Alharbi A, Hameed A, Alessa H, Youssef AO, Mohamed EH, Gouda AA, Sheikh RE, Abou-Omar MN, El-Kemary MA, Attia MS. Highly Selective Optical Sensor Eu (TTA) 3 Phen Embedded in Poly Methylmethacrylate for Assessment of Total Prostate Specific Antigen Tumor Marker in Male Serum Suffering Prostate Diseases. Front Chem 2020; 8:561052. [PMID: 33324607 PMCID: PMC7724366 DOI: 10.3389/fchem.2020.561052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 09/01/2020] [Indexed: 11/13/2022] Open
Abstract
A low-cost, simple, and highly selective method was used for the assessment of total prostate specific antigen (tPSA) in the serum of prostate cancer patients. This method is based on quenching the intensity of luminescence displayed by the optical sensor Eu (TTA)3 phen/poly methylmethacrylate (PMMA) thin membrane or film upon adding different concentrations of tPSA. The luminescent optical sensor was synthesized and characterized through absorption, emission, scanning electron microscopy (SEM), and x-ray diffraction (XRD), and is tailored to present red luminescence at 614 nm upon excitation at 395 nm in water. The fabricated sensor fluorescence intensity is quenched in the presence of tPSA in aqueous media. The fluorescence resonance energy transfer (FRET) is the main mechanism by which the sensor performs. The sensor was successfully utilized to estimate tPSA in the serum of patients suffering prostate cancer in a time and cost effective way. The statistical results of the method were satisfactory with 0.0469 ng mL-1 as a detection limit and 0.99 as a correlation coefficient.
Collapse
Affiliation(s)
- Mohannad Garoub
- Chemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - A H Hefny
- Occupational Health Department, Faculty of Public Health and Health Informatics, Umm AL Qura University, Makkah, Saudi Arabia
| | - W E Omer
- Institute of Nanoscience & Nanotechnology, Kafrelsheikh University, Kafr ElSheikh, Egypt
| | - Mostafa M Elsaady
- Chemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Mohamed M Abo-Aly
- Chemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Ali A Sayqal
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ahmed Alharbi
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ahmed Hameed
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Hussain Alessa
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
| | - A O Youssef
- Chemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Ekram H Mohamed
- Department of Analytical Chemistry, Faculty of Pharmacy, The British University in Egypt (BUE), Cairo, Egypt
| | - Ayman A Gouda
- Occupational Health Department, Faculty of Public Health and Health Informatics, Umm AL Qura University, Makkah, Saudi Arabia.,Chemistry Department, Faculty of Science, Zagazig University, Zagazig, Egypt
| | - R El Sheikh
- Chemistry Department, Faculty of Science, Zagazig University, Zagazig, Egypt
| | - M N Abou-Omar
- Department of Chemistry, Faculty of Women for Arts, Science and Education, Ain Shams University, Cairo, Egypt
| | - Maged A El-Kemary
- Institute of Nanoscience & Nanotechnology, Kafrelsheikh University, Kafr ElSheikh, Egypt
| | - M S Attia
- Chemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| |
Collapse
|
2
|
Assari P, Rafati AA, Feizollahi A, Joghani RA. Fabrication of a sensitive label free electrochemical immunosensor for detection of prostate specific antigen using functionalized multi-walled carbon nanotubes/polyaniline/AuNPs. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 115:111066. [PMID: 32600691 DOI: 10.1016/j.msec.2020.111066] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/05/2020] [Accepted: 05/07/2020] [Indexed: 02/05/2023]
Abstract
The aim of this research is to introduce a novel label free electrochemical immunosensor based on glassy carbon electrode (GCE) modified with carboxylated carbon nanotubes (COOH-MWCNTs)/polyaniline (PANI)/gold nanoparticles (AuNPs) for the detection of prostate specific antigen (PSA). The AuNPs were utilized as a connector for PSA antibody immobilization through NH2 groups on antibody. Investigations on modified electrode surface were performed by FT-IR spectrum, scanning electron microscope (SEM) and energy dispersive X-ray spectroscopy (EDS) to evaluate the synthesized nanocomposite and modified electrode surface. As a sensitive analytical method for the detection of PSA, differential pulse voltammetry (DPV) was employed in different ranges of antigen concentration, 1.66 ag·mL-1 to 1.3 ng·mL-1. In addition, the detection limit was obtained 0.5 pg·mL-1, from the linear relationship between antigen concentration log and peak current. Also, the proposed immunosensor was carried out for the determination of PSA in human serum samples, indicating recoveries ranging from 92 to 104%. Finally, it should be noted that the reproducibility and specificity, along with the stability of the present immunosensor were examined, and satisfactory findings were obtained, thus proving it as a promising PSA immunosensor.
Collapse
Affiliation(s)
- Parnaz Assari
- Department of Physical Chemistry, Faculty of Chemistry, Bu-Ali Sina University, P.O. Box 65174, Hamedan, Iran
| | - Amir Abbas Rafati
- Department of Physical Chemistry, Faculty of Chemistry, Bu-Ali Sina University, P.O. Box 65174, Hamedan, Iran.
| | - Azizallah Feizollahi
- Department of Physical Chemistry, Faculty of Chemistry, Bu-Ali Sina University, P.O. Box 65174, Hamedan, Iran
| | - Roghayeh Asadpour Joghani
- Department of Physical Chemistry, Faculty of Chemistry, Bu-Ali Sina University, P.O. Box 65174, Hamedan, Iran
| |
Collapse
|
3
|
Li H, Wang D, Tang X, Zhang W, Zhang Q, Li P. Time-Resolved Fluorescence Immunochromatography Assay (TRFICA) for Aflatoxin: Aiming at Increasing Strip Method Sensitivity. Front Microbiol 2020; 11:676. [PMID: 32435234 PMCID: PMC7219281 DOI: 10.3389/fmicb.2020.00676] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 03/24/2020] [Indexed: 12/19/2022] Open
Abstract
Aflatoxin is the most harmful mycotoxin that is ubiquitous in foods and agro-products. Because of its high toxicity, maximum admissible levels of aflatoxins (AF) is regulated worldwide, and monitoring of their occurrence in several commodities is mandatory for assuring food safety and consumers' health. Considering that the strip method is very simple and convenient for users, in order to enhance strip assay's sensitivity, a lot of time-resolved fluorescence immunochromatography assays (TRFICAs) were developed recently with increasing several times of assay sensitivity compared with traditional gold nanoparticle-based strip assay (GNP-SA). This review briefly describes the newly developed TRFICA for aflatoxin determination, including TRFICA for aflatoxin B1 (AFB1) detection, TRFICA for aflatoxin M1 (AFM1) detection, TRFICA for total aflatoxins (AFB1 + B2 + G1 + G2) detection and the latest identification-nanobody-based TRFICA for aflatoxin detection. The application of TRFICA for aflatoxin detection in different agro-products is also concluded in this review. Reasonably, TRFICA has been becoming one of the most important tool for monitoring aflatoxin in foods and agro-products.
Collapse
Affiliation(s)
- Hui Li
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, China
- Laboratory of Quality & Safety Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture, Wuhan, China
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture, Wuhan, China
- Quality Inspection & Test Center for Oilseed Products, Ministry of Agriculture, Wuhan, China
| | - Du Wang
- Quality Inspection & Test Center for Oilseed Products, Ministry of Agriculture, Wuhan, China
| | - Xiaoqian Tang
- Quality Inspection & Test Center for Oilseed Products, Ministry of Agriculture, Wuhan, China
| | - Wen Zhang
- Quality Inspection & Test Center for Oilseed Products, Ministry of Agriculture, Wuhan, China
| | - Qi Zhang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, China
- Laboratory of Quality & Safety Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture, Wuhan, China
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture, Wuhan, China
- Quality Inspection & Test Center for Oilseed Products, Ministry of Agriculture, Wuhan, China
| | - Peiwu Li
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, China
- Laboratory of Quality & Safety Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture, Wuhan, China
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture, Wuhan, China
- Quality Inspection & Test Center for Oilseed Products, Ministry of Agriculture, Wuhan, China
| |
Collapse
|
4
|
Saghaeian Jazi M. A Mini-Review of Nanotechnology and Prostate Cancer: Approaches in Early Diagnosis. JOURNAL OF CLINICAL AND BASIC RESEARCH 2020. [DOI: 10.29252/jcbr.4.1.21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
5
|
Electrochemical prostate specific antigen aptasensor based on hemin functionalized graphene-conjugated palladium nanocomposites. Mikrochim Acta 2018; 185:159. [PMID: 29594519 DOI: 10.1007/s00604-018-2686-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 01/17/2018] [Indexed: 11/27/2022]
Abstract
An electrochemical aptasensor is described for the detection of prostate specific antigen (PSA). The aptasensor is based on the use of hemin-functionalized graphene-conjugated palladium nanoparticles (H-Gr/PdNPs) deposited on a glassy carbon electrode. The nanocomposites integrate the high electrical conductivity of graphene with the easily functionalized surface chemistry of PdNPs and their excellent catalytic property. The hemin placed on graphene acts as both a protective agent and an in-situ redox probe. The PdNPs provide numerous binding sites for the immobilization of DNA-biotin via coordinative binding between Pd and amino groups. A sensitive and specific PSA assay was attained by immobilizing the PSA aptamer via biotin-streptavidin interaction. The resulting aptasensor has a linear response that covers the PSA concentration range from 0.025 to 205 ng·mL-1, with a 8 pg·mL-1 lower detection limit (at -0.362 V, scan rate: 0.1 mV·s-1, S/N = 3). The method was applied to the quantitation of PSA in spiked serum samples, giving recoveries ranging from 95.0 to 100.3%. Graphical abstract A signal amplified and approving electrochemical aptasensor was constructed for the determination of prostate specific antigen (PSA) based on the use of hemin-functionalized graphene conjugated to palladium nanoparticles (H-Gr/PdNPs). The sensor has a wide linear range, a relatively low detection limit, satisfying stability and high specificity.
Collapse
|
6
|
Functional fusion proteins and prevention of electrode fouling for a sensitive electrochemical immunosensor. Anal Chim Acta 2017; 967:70-77. [DOI: 10.1016/j.aca.2017.02.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 02/24/2017] [Accepted: 02/27/2017] [Indexed: 01/09/2023]
|
7
|
Rahi A, Sattarahmady N, Heli H. Label-free electrochemical aptasensing of the human prostate-specific antigen using gold nanospears. Talanta 2016; 156-157:218-224. [PMID: 27260456 DOI: 10.1016/j.talanta.2016.05.029] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 04/03/2016] [Accepted: 05/05/2016] [Indexed: 12/22/2022]
Abstract
Gold nanospears were electrodeposited with the assistance of arginine as a soft template and precise selection of experimental parameters. The nanospears were then employed as a transducer to immobilize an aptamer of prostate-specific antigen (PSA) and fabrication of a label-free electrochemical aptasensor. The aptasensor was employed for the detection of PSA with a linear concentration range of 0.125-200ngmL(-1) and a limit of detection of 50pgmL(-1). The aptasensor was successfully applied to detect PSA in blood serum samples of healthy and patient persons.
Collapse
Affiliation(s)
- A Rahi
- Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - N Sattarahmady
- Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Medical Physics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - H Heli
- Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
8
|
Jenie SNA, Plush SE, Voelcker NH. Recent Advances on Luminescent Enhancement-Based Porous Silicon Biosensors. Pharm Res 2016; 33:2314-36. [PMID: 26916167 DOI: 10.1007/s11095-016-1889-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 02/17/2016] [Indexed: 12/31/2022]
Abstract
Luminescence-based detection paradigms have key advantages over other optical platforms such as absorbance, reflectance or interferometric based detection. However, autofluorescence, low quantum yield and lack of photostability of the fluorophore or emitting molecule are still performance-limiting factors. Recent research has shown the need for enhanced luminescence-based detection to overcome these drawbacks while at the same time improving the sensitivity, selectivity and reducing the detection limits of optical sensors and biosensors. Nanostructures have been reported to significantly improve the spectral properties of the emitting molecules. These structures offer unique electrical, optic and magnetic properties which may be used to tailor the surrounding electrical field of the emitter. Here, the main principles behind luminescence and luminescence enhancement-based detections are reviewed, with an emphasis on europium complexes as the emitting molecule. An overview of the optical porous silicon microcavity (pSiMC) as a biosensing platform and recent proof-of-concept examples on enhanced luminescence-based detection using pSiMCs are provided and discussed.
Collapse
Affiliation(s)
- S N Aisyiyah Jenie
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Future Industries Institute, University of South Australia, Mawson Lakes, SA, 5095, Australia.,Research Centre for Chemistry, Indonesian Institute of Sciences, PUSPIPTEK, Serpong, Tangerang, Banten, 15314, Indonesia
| | - Sally E Plush
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Nicolas H Voelcker
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Future Industries Institute, University of South Australia, Mawson Lakes, SA, 5095, Australia. .,, GPO Box 2471, Adelaide, South Australia, 5001, Australia.
| |
Collapse
|
9
|
Kang BJ, Jeun M, Jang GH, Song SH, Jeong IG, Kim CS, Searson PC, Lee KH. Diagnosis of prostate cancer via nanotechnological approach. Int J Nanomedicine 2015; 10:6555-69. [PMID: 26527873 PMCID: PMC4621223 DOI: 10.2147/ijn.s91908] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Prostate cancer is one of the leading causes of cancer-related deaths among the Caucasian adult males in Europe and the USA. Currently available diagnostic strategies for patients with prostate cancer are invasive and unpleasant and have poor accuracy. Many patients have been overly or underly treated resulting in a controversy regarding the reliability of current conventional diagnostic approaches. This review discusses the state-of-the-art research in the development of novel noninvasive prostate cancer diagnostics using nanotechnology coupled with suggested diagnostic strategies for their clinical implication.
Collapse
Affiliation(s)
- Benedict J Kang
- KIST Biomedical Research Institute, Korea University of Science and Technology (UST), Seoul, Republic of Korea ; Department of Biomedical Engineering, Korea University of Science and Technology (UST), Seoul, Republic of Korea
| | - Minhong Jeun
- KIST Biomedical Research Institute, Korea University of Science and Technology (UST), Seoul, Republic of Korea ; Department of Biomedical Engineering, Korea University of Science and Technology (UST), Seoul, Republic of Korea
| | - Gun Hyuk Jang
- KIST Biomedical Research Institute, Korea University of Science and Technology (UST), Seoul, Republic of Korea ; Department of Biomedical Engineering, Korea University of Science and Technology (UST), Seoul, Republic of Korea
| | - Sang Hoon Song
- Department of Urology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - In Gab Jeong
- Department of Urology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Choung-Soo Kim
- Department of Urology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Peter C Searson
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, USA
| | - Kwan Hyi Lee
- KIST Biomedical Research Institute, Korea University of Science and Technology (UST), Seoul, Republic of Korea ; Department of Biomedical Engineering, Korea University of Science and Technology (UST), Seoul, Republic of Korea
| |
Collapse
|
10
|
Shen Y, Xu S, He D. A Novel Europium Chelate Coated Nanosphere for Time-Resolved Fluorescence Immunoassay. PLoS One 2015; 10:e0129689. [PMID: 26056826 PMCID: PMC4461371 DOI: 10.1371/journal.pone.0129689] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 05/12/2015] [Indexed: 11/24/2022] Open
Abstract
A novel europium ligand 2,2',2'',2'''-(4,7-diphenyl-1,10-phenanthroline-2,9-diyl) bis (methylene) bis (azanetriyl) tetra acetic acid (BC-EDTA) was synthesized and characterized. It shows an emission spectrum peak at 610 nm when it is excited at 360 nm, with a large Stock shift (250 nm). It is covalently coated on the surface of a bare silica nanosphere containi free amino groups, using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride and N-Hydroxysuccinimide. We also observed an interesting phenomenon that when BC-EDTA is labeled with a silica nanosphere, the chelate shows different excitation spectrum peaks of about 295 nm. We speculate that the carboxyl has a significant influence on its excitation spectrum. The BC-EDTA/Eu3+coated nanosphere could be used as a fluorescent probe for time-resolved fluorescence immunoassay. We labeled the antibody with the fluorescent nanosphere to develop a nanosphere based hepatitis B surface antigen as a time-resolved fluorescence immunoassay reagent, which is very easy to operate and eliminates potential contamination of Eu3+ contained in the environment. The analytical and functional sensitivities are 0.0037 μg/L and 0.08 μg/L (S/N≥2.0) respectively. The detection range is 0.08-166.67 μg/L, which is much wider than that of ELISA (0.2-5 μg/L). It is comparable to the commercial dissociation-enhanced lanthanide fluoro-immunoassay system (DELFIA) reagents (0.2-145 μg/L). We propose that it can fulfill clinical applications.
Collapse
Affiliation(s)
- Yifeng Shen
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China
- Triplex International Bioscience (China) CO., Ltd., Xiamen, Fujian, China
| | - Shaohan Xu
- The First Affiliate Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Donghua He
- Triplex International Bioscience (China) CO., Ltd., Xiamen, Fujian, China
| |
Collapse
|
11
|
Madaboosi N, Soares RRG, Chu V, Conde JP. A microfluidic immunoassay platform for the detection of free prostate specific antigen: a systematic and quantitative approach. Analyst 2015; 140:4423-33. [DOI: 10.1039/c5an00364d] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A novel physisorption- and bio-affinity amplification-based microfluidic immunoassay platform for free PSA detection within a clinically relevant range is reported.
Collapse
Affiliation(s)
- Narayanan Madaboosi
- INESC Microsistemas e Nanotecnologias (INESC MN) and IN – Institute of Nanoscience and Nanotechnology
- Lisbon
- Portugal
| | - Ruben R. G. Soares
- INESC Microsistemas e Nanotecnologias (INESC MN) and IN – Institute of Nanoscience and Nanotechnology
- Lisbon
- Portugal
- iBB – Institute for Bioengineering and Biosciences
- Instituto Superior Técnico
| | - Virginia Chu
- INESC Microsistemas e Nanotecnologias (INESC MN) and IN – Institute of Nanoscience and Nanotechnology
- Lisbon
- Portugal
| | - João Pedro Conde
- INESC Microsistemas e Nanotecnologias (INESC MN) and IN – Institute of Nanoscience and Nanotechnology
- Lisbon
- Portugal
- Department of Bioengineering
- Instituto Superior Técnico
| |
Collapse
|
12
|
Sheng H, Hu ZG, Liu J, Yuan F, Li M, Zou Y, Chen Y. Determination of Anticyclic Citrullinated Peptide Based on Biotin-Streptavidin-Amplified Time-Resolved Fluoroimmunoassay. J Clin Lab Anal 2014; 29:474-9. [PMID: 25269884 DOI: 10.1002/jcla.21796] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2013] [Accepted: 06/25/2014] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND A rapid and sensitive time-resolved fluoroimmunoassay (TRFIA) based on the biotin-streptavidin amplification system was developed for the determination of anticyclic citrullinated peptide (anti-CCP). METHODS Europium-labeled streptavidin derivatives combined with europium and anhydride of diethylene triamine pentaacetic acid were used to label streptavidin, biotin was coupled with rabbit anti-human IgG to form a biotin-anti-human IgG bridge between streptavidin-europium and the anti-CCP antibody in the immunoassay. The anti-CCP assay was carried out by measuring the fluorescence of Eu(3+) -streptavidin at 615 nm. RESULTS The presented method produced a wide linear range from 0.58 to 9,463 U/ml, while it was only 591.4-18.48 U/ml when using an ELISA kit, and featured a detection limit up to 0.5 U/ml for anti-CCP. The values determined by the biotin-streptavidin-TRFIA and ELISA correlated well (R(2) = 0.8927). The method was applied to determine anti-CCP in serum samples with satisfied recoveries of 96.45-104.63%. CONCLUSION The assay results obtained by the present method showed that biotin-streptavidin-amplified TRFIA improve the traditional ELISA kit for anti-CCP detection. Therefore, it offers a better alternative immunoassay in rheumatoid arthritis management.
Collapse
Affiliation(s)
- Huiming Sheng
- Shanghai Tongren Hospital Affiliated to Shanghai Jiaotong University, School of Medicine, Shanghai, China
| | - Zhi-Gang Hu
- Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China.,Department of Laboratory Medicine, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jie Liu
- Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China
| | - Fenghong Yuan
- Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China
| | - Mei Li
- Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China
| | - Yaohong Zou
- Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China
| | - Yu Chen
- Department of Laboratory Medicine, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
13
|
Hou C, Zhang L, Wang Y, Wang Z. Synthesis and application of streptavidin functionalized organosilica microparticles. J Appl Polym Sci 2014. [DOI: 10.1002/app.41560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Cailing Hou
- Department of Plant Science; School of Agriculture and Biology, Shanghai Jiao Tong University; Shanghai 200240 China
| | - Linxia Zhang
- Department of Plant Science; School of Agriculture and Biology, Shanghai Jiao Tong University; Shanghai 200240 China
| | - Yue Wang
- Department of Plant Science; School of Agriculture and Biology, Shanghai Jiao Tong University; Shanghai 200240 China
| | - Zhimin Wang
- Department of Plant Science; School of Agriculture and Biology, Shanghai Jiao Tong University; Shanghai 200240 China
| |
Collapse
|
14
|
El-Mahdy AFM, Ejupi V, Shibata T, Kabashima T, Lu J, Kai M. Facile preparation of streptavidin-coated sephadex beads and their application to chemiluminescence detection of a target DNA. Mikrochim Acta 2014. [DOI: 10.1007/s00604-014-1348-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
Sapsford KE, Algar WR, Berti L, Gemmill KB, Casey BJ, Oh E, Stewart MH, Medintz IL. Functionalizing nanoparticles with biological molecules: developing chemistries that facilitate nanotechnology. Chem Rev 2013; 113:1904-2074. [PMID: 23432378 DOI: 10.1021/cr300143v] [Citation(s) in RCA: 834] [Impact Index Per Article: 69.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Kim E Sapsford
- Division of Biology, Department of Chemistry and Materials Science, Office of Science and Engineering Laboratories, U.S. Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | | | | | | | | | | | | | | |
Collapse
|
16
|
In vivo PEG modification of vascular surfaces for targeted delivery. J Vasc Surg 2011; 55:1087-95. [PMID: 22169667 DOI: 10.1016/j.jvs.2011.09.081] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Revised: 09/23/2011] [Accepted: 09/24/2011] [Indexed: 11/22/2022]
Abstract
OBJECTIVE Thrombosis and restenosis remain problematic for many intravascular procedures. Previously, it has been demonstrated that modifying an injured vascular surface with a protein-reactive polymer could block undesirable platelet deposition. As an added benefit, it would be advantageous if one could target therapeutics to the injured site. This study investigates a site-specific delivery system to target microspheres to vascular surfaces modified with a reactive polyethylene glycol tagged with biotin. METHODS Rabbit femoral arteries were injured with a 2F embolectomy catheter. Modification of the vascular surface was achieved using a channeled balloon catheter or small-diameter tube. Microspheres were injected intravenously through catheterization of the ear vein. Polymer modification on the injured surface and delivery of microspheres was quantified using epifluorescence microscopy at 0, 24, 48, and 72 hours. RESULTS Polymer modification of the vascular surface could be achieved using a channeled drug delivery catheter or small-diameter tube with similar results. Maximum polymer coverage occurred at 0 hours and decreased to 85% maximal at 24 hours, 72% at 48 hours, and 67% at 72 hours. The initial number of microspheres per mm(2) binding to modified, injured arteries was 304 versus 141 for the unmodified, damaged control (P < .01). At subsequent times, the number of adherent microspheres to modified, injured arteries decreased by 50%, 70%, and 84% at 24, 48, and 72 hours, respectively; while nonspecific binding to unmodified, injured arteries quickly decreased by 93%. Initial microsphere binding to modified, healthy arteries was 153 microspheres/mm(2) as opposed to 26 microspheres/mm(2) for the unmodified, healthy controls (P < .01). CONCLUSIONS Chemical modification of injured vessels following intravascular procedures can be readily accomplished in vivo to create a substrate for targeted delivery systems. As a proof of concept, targeted microspheres preferentially adhered to polymer-modified surfaces as opposed to injured, unmodified, or healthy vascular surfaces.
Collapse
|
17
|
Parracino A, Neves-Petersen MT, di Gennaro AK, Pettersson K, Lövgren T, Petersen SB. Arraying prostate specific antigen PSA and Fab anti-PSA using light-assisted molecular immobilization technology. Protein Sci 2011; 19:1751-9. [PMID: 20665692 DOI: 10.1002/pro.461] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
We here report for the first time the creation of prostate specific antigen (PSA) and Fab anti-PSA biosensor arrays using UV light-assisted molecular immobilization (LAMI), aiming at the detection and quantification of PSA, a cancer marker. The technology involves formation of free, reactive thiol groups upon UV excitation of protein aromatic residues located in spatial proximity of disulphide bridges, a conserved structural feature in both PSA and Fab molecules. The created thiol groups bind onto thiol reactive surfaces leading to oriented covalent protein immobilization. Protein activity was confirmed carrying out immunoassays: immobilized PSA was recognized by Fab anti-PSA in solution and immobilized Fab anti-PSA cross-reacted with PSA in solution. LAMI technology proved successful in immobilizing biomedically relevant molecules while preserving their activity, highlighting that insight into how light interacts with biomolecules may lead to new biophotonic technologies. Our work focused on the application of our new engineering principles to the design, analysis, construction, and manipulation of biological systems, and on the discovery and application of new engineering principles inspired by the properties of biological systems.
Collapse
|
18
|
|
19
|
Myyryläinen T, Talha SM, Swaminathan S, Vainionpää R, Soukka T, Khanna N, Pettersson K. Simultaneous detection of Human Immunodeficiency Virus 1 and Hepatitis B virus infections using a dual-label time-resolved fluorometric assay. J Nanobiotechnology 2010; 8:27. [PMID: 21108849 PMCID: PMC3001693 DOI: 10.1186/1477-3155-8-27] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Accepted: 11/26/2010] [Indexed: 02/08/2023] Open
Abstract
A highly specific and novel dual-label time-resolved immunofluorometric assay was developed exploiting the unique emission wavelengths of the intrinsically fluorescent terbium (Tb3+) and europium (Eu3+) tracers for the simultaneous detection of human immunodeficiency virus 1 (HIV-1) and hepatitis B virus (HBV) infections, respectively. HIV-1 infection was detected using a double antigen sandwich format wherein anti-HIV-1 antibodies were captured using an in vivo biotinylated version of a chimeric HIV-1 antigen and revealed using the same antigen labeled with Tb3+ chelate. Hepatitis B surface antigen (HBsAg), which served as the marker of HBV infection, was detected in a double antibody sandwich using two monoclonal antibodies (mAbs), one chemically biotinylated to capture, and the other labeled with Eu3+ nanoparticles, to reveal. The performance of the assay was evaluated using a collection (n = 60) of in-house and commercially available human sera panels. This evaluation showed the dual-label assay to possess high degrees of specificity and sensitivity, comparable to those of commercially available, single analyte-specific kits for the detection of HBsAg antigen and anti-HIV antibodies. This work demonstrates the feasibility of developing a potentially time- and resource-saving multiplex assay for screening serum samples for multiple infections in a blood bank setting.
Collapse
|
20
|
Yoo J, Jung YM, Hahn JH, Pyo D. QUANTITATIVE ANALYSIS OF A PROSTATE-SPECIFIC ANTIGEN IN SERUM USING FLUORESCENCE IMMUNOCHROMATOGRAPHY. J Immunoassay Immunochem 2010; 31:259-65. [DOI: 10.1080/15321819.2010.524855] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
21
|
Kim DJ, Lee NE, Park JS, Park IJ, Kim JG, Cho HJ. Organic electrochemical transistor based immunosensor for prostate specific antigen (PSA) detection using gold nanoparticles for signal amplification. Biosens Bioelectron 2010; 25:2477-82. [DOI: 10.1016/j.bios.2010.04.013] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Revised: 04/07/2010] [Accepted: 04/09/2010] [Indexed: 11/30/2022]
|
22
|
Soukka T, Härmä H. Lanthanide Nanoparticules as Photoluminescent Reporters. LANTHANIDE LUMINESCENCE 2010. [DOI: 10.1007/4243_2010_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
23
|
Study on nonspecificity of an immuoassay using Eu-doped polystyrene nanoparticle labels. J Immunol Methods 2009; 345:80-9. [DOI: 10.1016/j.jim.2009.04.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2008] [Revised: 03/06/2009] [Accepted: 04/14/2009] [Indexed: 11/16/2022]
|
24
|
Ouellette AL, Li JJ, Cooper DE, Ricco AJ, Kovacs GTA. Evolving Point-of-Care Diagnostics Using Up-Converting Phosphor Bioanalytical Systems. Anal Chem 2009; 81:3216-21. [DOI: 10.1021/ac900475u] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
25
|
Effect of biolinker on the detection of prostate specific antigen in an interferometry. BIOTECHNOL BIOPROC E 2009. [DOI: 10.1007/s12257-008-0108-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
26
|
Detection of anthrax toxin by an ultrasensitive immunoassay using europium nanoparticles. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2009; 16:408-13. [PMID: 19129473 DOI: 10.1128/cvi.00412-08] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We developed a europium nanoparticle-based immunoassay (ENIA) for the sensitive detection of anthrax protective antigen (PA). The ENIA exhibited a linear dose-dependent pattern within the detection range of 0.01 to 100 ng/ml and was approximately 100-fold more sensitive than enzyme-linked immunosorbent assay (ELISA). False-positive results were not observed with serum samples from healthy adults, mouse plasma without PA, or plasma samples collected from mice injected with anthrax lethal factor or edema factor alone. For the detection of plasma samples spiked with PA, the detection sensitivities for ENIA and ELISA were 100% (11/11 samples) and 36.4% (4/11 samples), respectively. The assay exhibited a linear but qualitative correlation between the PA injected and the PA detected in murine blood (r=0.97731; P<0.0001). Anthrax PA was also detected in the circulation of mice infected with spores from a toxigenic Sterne-like strain of Bacillus anthracis, but only in the later stages of infection. These results indicate that the universal labeling technology based on europium nanoparticles and its application may provide a rapid and sensitive testing platform for clinical diagnosis and laboratory research.
Collapse
|
27
|
Kokko T, Liljenbäck T, Peltola MT, Kokko L, Soukka T. Homogeneous Dual-Parameter Assay for Prostate-Specific Antigen Based on Fluorescence Resonance Energy Transfer. Anal Chem 2008; 80:9763-8. [DOI: 10.1021/ac801875a] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Tiina Kokko
- Department of Biotechnology, University of Turku, Turku, Finland
| | - Tuomo Liljenbäck
- Department of Biotechnology, University of Turku, Turku, Finland
| | - Mari T. Peltola
- Department of Biotechnology, University of Turku, Turku, Finland
| | - Leena Kokko
- Department of Biotechnology, University of Turku, Turku, Finland
| | - Tero Soukka
- Department of Biotechnology, University of Turku, Turku, Finland
| |
Collapse
|
28
|
Song JW, Xin Z, Yao L, Li XF, Tang JX, Zhou XJ, Wu B, Sun AJ, Wu ZQ. Development of clinical highly sensitive biosensor-based microarray system. Shijie Huaren Xiaohua Zazhi 2008; 16:1628-1633. [DOI: 10.11569/wcjd.v16.i15.1628] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To develop a sensitive and less instrument-dependent clinical microarray system, in which the microarray signal can be amplified in situ and identified by naked eyes.
METHODS: A group of capture probes for a specific target nucleic acid that was made according to a specific region such as hepatitis B virus (HBV) YMDD motif were arrayed on a thin-film biosensor in a well. A set of detected probes labeled with Au nanoparticle were used to take place of the fluorence labeled probes in classic microarray. The single-strand PCR product was reacted with the capture and detected probes and the deposition of capture-biotin-streptin-Au nanoparticle compound appeared on the surface of the microarray. After in situ amplification in this biosensor based system, we could read the signal on this chips by naked eyes or the digital camera. HBV YMDD mutation detection was applied to identify the sensitivity and specificity of the microarray system.
RESULTS: The signal of the biosensor microarray could be acquired by common camera or naked eyes without any instruments and we could determine the kind of mutation according to the place of the positive signal. The signal-noise ratio were high enough to make the signal absolutely yes and no both in synthesized target oligos and serum samples. The microarray could identify a single base change of selected lamivudine resistance-related mutation as well as multiple mutations at the same time with a high stability, sensitivity, and specificity. We used the biosensor system to test 23 serum samples with YMDD mutation, and the result was coincident with the sequencing result and the signal could be aquired by naked eyes.
CONCLUSION: The thin-film based microarray system which exploits nanoparticle material and biosensor technique can amplify the signal in situ that can be detected by simple instruments or even unaided eyes. Its attractive features are the nonintervention of instrumentation required to detect signal, as well as its high versatility and accuracy.
Collapse
|
29
|
Abstract
We critically evaluate the usefulness of different nanostructures described as labels, nanoscaffolds or separation media in immunoassays and nucleic-acid hybridization assays. Many of the great number of publications describe only theoretical aspects of using these nanostructures or nanoparticles, but do not verify their applicability in the presence of potential interferents that can be present in the sample matrix. We attempt a systematic study of the advantages and the limitations of using these new reagents in bioassays, the different assay formats for individual and multiplexed detection, and the capability of these assays in analyzing real samples.
Collapse
Affiliation(s)
- A. Gómez-Hens
- Department of Analytical Chemistry, “Marie Curie Annex” Building, Campus of Rabanales, University of Córdoba, E-14071 Córdoba, Spain
| | | | | |
Collapse
|
30
|
A nanoparticle label/immunochromatographic electrochemical biosensor for rapid and sensitive detection of prostate-specific antigen. Biosens Bioelectron 2008; 23:1659-65. [PMID: 18406127 DOI: 10.1016/j.bios.2008.01.037] [Citation(s) in RCA: 139] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2007] [Revised: 01/13/2008] [Accepted: 01/29/2008] [Indexed: 11/21/2022]
Abstract
We present a nanoparticle (NP) label/immunochromatographic electrochemical biosensor (IEB) for rapid and sensitive detection of prostate-specific antigen (PSA) in human serum. This IEB integrates the immunochromatographic strip with the electrochemical detector for transducing quantitative signals. The NP label, made of CdSe@ZnS, serves as a signal-amplifier vehicle. A sandwich immunoreaction was performed on the immunochromatographic strip. The captured NP labels in the test zone were determined by highly sensitive stripping voltammetric measurement of the dissolved metallic component (cadmium) with a disposable-screen-printed electrode, which is embedded underneath the membrane of the test zone. Several experimental parameters (e.g., immunoreaction time, the amount of anti-PSA-NP conjugations applied) and electrochemical detection conditions (e.g., preconcentration potential and time) were optimized using this biosensor for PSA detection. The analytical performance of this biosensor was evaluated with serum PSA samples according to the "figure-of-merits" (e.g., dynamic range, reproducibility, and detection limit). The results were validated with enzyme-linked immunosorbent assay (ELISA) and showed high consistency. It is found that this biosensor is very sensitive with the detection limit of 0.02ngmL(-1) PSA and is quite reproducible (with a relative standard deviation (R.S.D.) of 6.4%). This method is rapid, clinically practical, and less expensive than other diagnostic tools for PSA; therefore, this IEB coupled with a portable electrochemical analyzer shows great promise for simple, sensitive, quantitative point-of-care testing of disease-related protein biomarkers.
Collapse
|
31
|
Xu Y, Li Q. Multiple Fluorescent Labeling of Silica Nanoparticles with Lanthanide Chelates for Highly Sensitive Time-Resolved Immunofluorometric Assays. Clin Chem 2007; 53:1503-10. [PMID: 17556649 DOI: 10.1373/clinchem.2006.078485] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Abstract
Background: Time-resolved immunofluorometric assays (TrIFA) using lanthanide-labeled nanoparticles have greatly increased the sensitivity of immunoassays. Current labeling strategies, however, use either physical doping of lanthanide chelates into preformed nanoparticles or covalent linking of lanthanide chelates to precursors used for making nanoparticles; both these strategies have drawbacks.
Methods: Luminescent Eu(III) and Tb(III) chelates were covalently coated on the surface of preformed silica nanoparticles to which detection antibodies or bridging proteins for antibody binding were conjugated. We used the resulting conjugates in TrIFA for detection of hepatitis B surface antigen (HBsAg) and hepatitis B e antigen (HBeAg), both individually and simultaneously. We compared the results of the newly established method with results of an ELISA for serum samples. Positive samples identified by TrIFA but not by ELISA were confirmed by additional assays, including real-time PCR detection of viral DNA.
Results: The prepared nanoparticle conjugates were homogeneous in size, at ∼55 (5) nm in diameter [mean (SD)], were stable for long-time storage (>2 years), and contained more chelates [6.86 × 105 for Eu(III), 4.73 × 104 for Tb(III)] per nanoparticle than particles made as previously reported. The TrIFA established for HBsAg had a comparable or lower detection limit (0.0092 μg/L) than existing nanoparticle-based TrIFA or ELISA. The TrIFA for HBeAg had a much lower detection limit [10.0 National Centre Unit (NCU)/L] than ELISA and detected HBeAg in 5 samples missed by the ELISA method. Simultaneous TrIFA for both HBsAg and HBeAg was achieved with detection limits (0.033 μg/L for HBsAg and 27.0 NCU/L for HBeAg) close to those of the individual assays.
Conclusions: Covalent surface labeling of silica nanoparticles with lanthanide chelates provides good fluorescent labels that can be used in TrIFA for highly sensitive and robust detection of clinical targets.
Collapse
Affiliation(s)
- Ye Xu
- Molecular Diagnostics Laboratory, Department of Biomedical Sciences, and the Key Laboratory of the Ministration of Education for Cell Biology and Tumor Cell Engineering, School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, China
| | | |
Collapse
|
32
|
Dosev D, Nichkova M, Dumas RK, Gee SJ, Hammock BD, Liu K, Kennedy IM. Magnetic/luminescent core/shell particles synthesized by spray pyrolysis and their application in immunoassays with internal standard. NANOTECHNOLOGY 2007; 18:55102. [PMID: 18974844 PMCID: PMC2575348 DOI: 10.1088/0957-4484/18/5/055102] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Many types of fluorescent nanoparticles have been investigated as alternatives to conventional organic dyes in biochemistry; magnetic beads also have a long history of biological applications. In this work we apply flame spray pyrolysis in order to engineer a novel type of nanoparticle that has both luminescent and magnetic properties. The particles have magnetic cores of iron oxide doped with cobalt and neodymium and luminescent shells of europium-doped gadolinium oxide (Eu:Gd(2)O(3)). Measurements by vibrating sample magnetometry showed an overall paramagnetic response of these composite particles. Luminescence spectroscopy showed spectra typical of the Eu ion in a Gd(2)O(3) host-a narrow emission peak centred near 615 nm. Our synthesis method offers a low-cost, high-rate synthesis route that enables a wide range of biological applications of magnetic/luminescent core/shell particles. Using these particles we demonstrate a novel immunoassay format with internal luminescent calibration for more precise measurements.
Collapse
Affiliation(s)
- Dosi Dosev
- Department of Mechanical and Aeronautical Engineering, University of California Davis, One Shields Avenue, Davis, CA 95616, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Deglau TE, Johnson JD, Villanueva FS, Wagner WR. Targeting microspheres and cells to polyethylene glycol-modified biological surfaces. J Biomed Mater Res A 2007; 81:578-85. [PMID: 17177289 PMCID: PMC2873022 DOI: 10.1002/jbm.a.31092] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
It has previously been demonstrated that damaged arterial tissue can be acutely modified with protein-reactive polyethylene glycol (PEG) to block undesirable platelet deposition. This concept might be expanded by employing PEG-biotin and its strong interaction with avidin for site-specific targeted delivery. Toward this end, cultured endothelial cells (ECs) were surface modified with PEG-biotin and the available biotin was quantified with flow cytometry. NeutrAvidin-coated microspheres and PEG-biotin modified ECs with NeutrAvidin as a bridging molecule were delivered under arterial shear stress to PEG-biotin modified ECs on a coverslip as well as scrape-damaged bovine carotid arteries. After incubation with a 10 mM solution for 1 min, 8 x 10(7) PEG-biotin molecules/EC were found and persisted for up to 120 h. Perfused microspheres adhered to NHS-PEG-biotin treated bovine carotid arteries with 60 +/- 16 microspheres/mm(2) versus 11 +/- 4 microspheres/mm(2) for control arteries (p < 0.015). Similarly, 22 +/- 5 targeted ECs/mm(2) adhered to NHS-PEG-biotin treated bovine carotid arteries versus 6 +/- 2 ECs/mm(2) for control arteries (p < 0.01). The targeting strategy demonstrated here might ultimately find application for drug delivery, gene therapy, or cell therapy where localization to specific labeled vascular regions is desired following catheter-based or surgical procedures.
Collapse
Affiliation(s)
- Timothy E Deglau
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | | | | |
Collapse
|
34
|
Nichkova M, Dosev D, Gee SJ, Hammock BD, Kennedy IM. Microarray immunoassay for phenoxybenzoic acid using polymer encapsulated Eu:Gd2O3 nanoparticles as fluorescent labels. Anal Chem 2007; 77:6864-73. [PMID: 16255584 DOI: 10.1021/ac050826p] [Citation(s) in RCA: 181] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Currently, detection in microarray bioanalysis is based mainly on the use of organic dyes. To overcome photobleaching and spectral overlaps we applied a new type of fluorophore, crystalline europium-doped gadolinium oxide (Eu:Gd2O3) nanoparticles, as labels in immunoassay microarrays. The Eu:Gd2O3 nanoparticles synthesized by spray pyrolysis offer narrow red emission, large Stokes shift, photostable laser-induced fluorescence with a long lifetime (1 ms). The amino functionalization of the particles was achieved by poly(L-lysine) (PL) encapsulation. The formation of a stable PL shell was confirmed by TEM analysis, colloidal stability studies, and quantification of the surface reactive amino groups. The PL-encapsulated particles were covalently conjugated to antibodies and successfully applied as reporters in a competitive fluorescence microimmunoassay for phenoxybenzoic acid (PBA), a generic biomarker of human exposure to pyrethroid insecticides. Microarrays were fabricated by microcontact printing of BSA-PBA in line patterns (10 x 10 microm). Confocal fluorescence microscopy combined with internal standard (fluorescein) calibration was used for quantitative measurements. The microarray immunoassay demonstrated a limit of detection of 1.4 microg L(-1) PBA. This work suggests the potential application of lanthanide oxide nanoparticles as fluorescent probes in microarray and biosensor technology, immunodiagnostics, and high-throughput screening.
Collapse
Affiliation(s)
- Mikaela Nichkova
- Department of Entomology, University of California Davis, Davis, California 95616, USA
| | | | | | | | | |
Collapse
|
35
|
Ko S, Jang J. Protein Immobilization on Aminated Poly(glycidyl methacrylate) Nanofibers as Polymeric Carriers. Biomacromolecules 2007; 8:1400-3. [PMID: 17444683 DOI: 10.1021/bm070077g] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Recently, protein carriers based on nanomaterials have been highlighted in diverse biological applications such as protein extraction, separation, and delivery due to their facile gravimetric sedimentation in the aqueous phase and abundant surface functionalities, which were used as anchoring sites for proteins. From this viewpoint, poly(glycidyl methacrylate) nanofibers (PGMA NFs) can be an excellent candidate for protein support because PGMA NFs possess the activated epoxide functional groups on the surface. In addition, cured PGMA NFs (PGMA-NH2 NFs) reveal different surface functionalities such as primary amine groups. They can be linked with carboxylated proteins. Ferritin and streptavidin were selected as models of the pristine and biolinker-mediated proteins in this experiment and immobilized onto PGMA NFs and aminated PGMA-NH2 NFs. The successful conjugations of ferritin and streptavidin were confirmed with transmission electron microscopy and fluorescein-isothiocyanate-tagged molecules. Protein immobilization using the pristine and the cured PGMA NFs could be considered as an outstanding protocol for facile protein delivery.
Collapse
Affiliation(s)
- Sungrok Ko
- Hyperstructured Organic Materials Research Center, School of Chemical and Biological Engineering, College of Engineering, Seoul National University, 56-1 Shinlimdong, Seoul 151-742, South Korea
| | | |
Collapse
|
36
|
Fortina P, Kricka LJ, Graves DJ, Park J, Hyslop T, Tam F, Halas N, Surrey S, Waldman SA. Applications of nanoparticles to diagnostics and therapeutics in colorectal cancer. Trends Biotechnol 2007; 25:145-52. [PMID: 17316852 DOI: 10.1016/j.tibtech.2007.02.005] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2006] [Revised: 12/21/2006] [Accepted: 02/08/2007] [Indexed: 01/19/2023]
Abstract
Nanotechnology has considerable promise for the detection, staging and treatment of cancer. Here, we outline one such promising application: the use of nanostructures with surface-bound ligands for the targeted delivery and ablation of colorectal cancer (CRC), the third most common malignancy and the second most common cause of cancer-related mortality in the US. Normal colonic epithelial cells as well as primary CRC and metastatic tumors all express a unique surface-bound guanylyl cyclase C (GCC), which binds the diarrheagenic bacterial heat-stable peptide enterotoxin ST. This makes GCC a potential target for metastatic tumor ablation using ST-bound nanoparticles in combination with thermal ablation with near-infrared or radiofrequency energy absorption. Furthermore, the incorporation of iron or iron oxide into such structures would provide advantages for magnetic resonance imaging (MRI). Although the scenarios outlined in this article are hypothetical, they might stimulate ideas about how other cancers could be attacked using nanotechnology.
Collapse
Affiliation(s)
- Paolo Fortina
- Department of Cancer Biology, Kimmel Cancer Center, Thomas Jefferson University, Jefferson Medical College, Philadelphia, PA 19107, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Zhang Z, Zhu H, Tang Y, Cui T, Geng T, Chen C, Cui Y. Preparation and application of streptavidin magnetic particles. ACTA ACUST UNITED AC 2007. [DOI: 10.1007/s11426-007-2031-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
38
|
Healy DA, Hayes CJ, Leonard P, McKenna L, O'Kennedy R. Biosensor developments: application to prostate-specific antigen detection. Trends Biotechnol 2007; 25:125-31. [PMID: 17257699 DOI: 10.1016/j.tibtech.2007.01.004] [Citation(s) in RCA: 176] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2006] [Revised: 12/01/2006] [Accepted: 01/12/2007] [Indexed: 11/29/2022]
Abstract
Prostate-specific antigen (PSA) is the best serum marker currently available for the detection of prostate cancer and is the forensic marker of choice for determining the presence of azoospermic semen in some sexual assault cases. Most current assays for PSA detection are processed on large analyzers at dedicated testing sites, which require that samples be sent away for testing. This leads to delays in patient management and increased administration costs. The recent emphasis placed on the need for point-of-care patient management has led to the development of novel biosensor detection strategies that are suitable for the miniaturization of assays for various targets including PSA. This review highlights the current and novel analytical technologies used for PSA detection, which will benefit clinicians, patients and forensic workers in the future.
Collapse
Affiliation(s)
- Declan A Healy
- School of Biotechnology and Biomedical Diagnostics Institute, National Centre for Sensor Research, Dublin City University, Dublin 9, Ireland
| | | | | | | | | |
Collapse
|
39
|
Hun X, Zhang Z. A novel sensitive staphylococcal enterotoxin C1 fluoroimmunoassay based on functionalized fluorescent core-shell nanoparticle labels. Food Chem 2007. [DOI: 10.1016/j.foodchem.2007.03.068] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
40
|
Choi J, Lee JI, Lee YB, Hong JH, Kim IS, Park YK, Hur NH. Immobilization of biomolecules on biotinylated magnetic ferrite nanoparticles. Chem Phys Lett 2006. [DOI: 10.1016/j.cplett.2006.06.092] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
41
|
Abstract
Over the past 50 years the development of assays for the detection of protein analytes has been driven by continuing demands for higher levels of sensitivity and multiplexing. The result has been a progression of sandwich-type immunoassays, starting with simple radioisotopic, colorimetric, or fluorescent labeling systems to include various enzymatic or nanostructure-based signal amplification schemes, with a concomitant sensitivity increase of over 1 million fold. Multiplexing of samples and tests has been enabled by microplate and microarray platforms, respectively, or lately by various molecular barcoding systems. Two different platforms have emerged as the current front-runners by combining a nucleic acid amplification step with the standard two-sided immunoassay. In both, the captured protein analyte is replaced by a multiplicity of oligonucleotides that serve as surrogate targets. One of these platforms employs DNA or RNA polymerases for the amplification step, while detection is by fluorescence. The other is based on gold nanoparticles for both amplification as well as detection. The latter technology, now termed Biobarcode, is completely enzyme-free and offers potentially much higher multiplexing power.
Collapse
Affiliation(s)
- Uwe R Müller
- Nanosphere, Inc., 4088 Commercial Avenue, Northbrook, IL 60062, USA
| |
Collapse
|
42
|
Daigo K, Sugita S, Mochizuki Y, Iwanari H, Hiraishi K, Miyano K, Kodama T, Hamakubo T. A simple hybridoma screening method for high-affinity monoclonal antibodies using the signal ratio obtained from time-resolved fluorescence assay. Anal Biochem 2006; 351:219-28. [PMID: 16455037 DOI: 10.1016/j.ab.2005.12.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2005] [Accepted: 12/05/2005] [Indexed: 11/22/2022]
Abstract
In hybridoma screening, quantitative kinetic evaluation is difficult since the concentration of each antibody in the hybridoma supernatant is unknown. From modeling calculations, we hypothesized that the ratio of two different antigen-antibody concentrations might allow discrimination of high-affinity monoclonal antibodies irrespective of the antibody concentration. Using anti-alpha-fetoprotein monoclonal antibodies of known affinity, we set the signal ratio of a time-resolved assay at >0.1, in which the antigen concentrations were 10 and 100 ng/mL. From anti-alpha-fetoprotein hybridoma screening with this assay, it was possible to effectively select high-affinity monoclonal antibodies with KD values below 1x10(-8) M. High-sensitivity sandwich enzyme-linked immunosorbent assay which detects domain III of alpha-fetoprotein has been established using selected high-affinity monoclonal antibodies. This screening method is useful for selection of high-affinity monoclonal antibodies of potential diagnostic value.
Collapse
Affiliation(s)
- Kenji Daigo
- Laboratory for Systems Biology and Medicine, Research Center for Advanced Science and Technology, University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8904, Japan
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Cummins CM, Koivunen ME, Stephanian A, Gee SJ, Hammock BD, Kennedy IM. Application of europium(III) chelate-dyed nanoparticle labels in a competitive atrazine fluoroimmunoassay on an ITO waveguide. Biosens Bioelectron 2006; 21:1077-85. [PMID: 16368482 DOI: 10.1016/j.bios.2005.04.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2005] [Revised: 04/07/2005] [Accepted: 04/08/2005] [Indexed: 10/25/2022]
Abstract
We have demonstrated the use of an optical indium tin oxide (ITO) (quartz) waveguide as a new platform for immunosensors with fluorescent europium(III) chelate nanoparticle labels (Seradyn) in a competitive atrazine immunoassay. ITO as a solid surface facilitated the successful use of particulate labels in a competitive assay format. The limit of detection in the new nanoparticle assay was similar to a conventional ELISA. The effect of particle size on bioconjugate binding kinetics was studied using three sizes of bioconjugated particle labels (107, 304, and 396nm) and a rabbit IgG/anti-IgG system in a 96-well plate. A decrease in particle size resulted in faster binding but did not increase the assay sensitivity. Flux calculations based on the particle diffusivity prove that faster binding of the small particles in this study was primarily due to diffusion kinetics and not necessarily to a higher density of antibodies on the particle surface. The results suggest that ITO could make a good platform for an optical immunosensor using fluorescent nanoparticle labels in a competitive assay format for small molecule detection. However, when used in combination with fluorescent particulate labels, a highly sensitive excitation/detection system needs to be developed to fully utilize the kinetic advantage from small particle size. Different regeneration methods tested in this study showed that repeated washings with 0.1 M glycine-HCl facilitated the reuse of the ITO waveguide.
Collapse
Affiliation(s)
- C M Cummins
- Department of Biomedical Engineering, University of California Davis, Davis, CA 95616, USA
| | | | | | | | | | | |
Collapse
|
44
|
Joralemon MJ, Smith NL, Holowka D, Baird B, Wooley KL. Antigen-decorated shell cross-linked nanoparticles: synthesis, characterization, and antibody interactions. Bioconjug Chem 2005; 16:1246-56. [PMID: 16173805 DOI: 10.1021/bc0501505] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Antigen-decorated shell cross-linked knedel-like nanoparticles (SCKs) were synthesized and studied as multivalent nanoscale surfaces from which antibody-binding units were presented in a manner that was designed to approach virus particle surfaces. The SCK nanostructures were fabricated with control over the number of antigenic groups, from mixed micellization of amphiphilic diblock copolymer building blocks that contained either an antigen (2,4-dinitrophenyl) or an ethylpropionate group at the hydrophilic alpha-chain terminus. Amphiphilic diblock copolymers were synthesized by atom transfer radical polymerization of tert-butyl acrylate and methyl acrylate sequentially from either a 2,4-dinitrophenyl-functionalized initiator or ethyl 2-bromopropionate, followed by selective removal of the tert-butyl groups to afford 2,4-dinitrophenyl-poly(acrylic acid)60-b-poly(methyl acrylate)60 (DNP-PAA(60)-b-PMA60) and poly(acrylic acid)70-b-poly(methyl acrylate) (PAA70-b-PMA70). Micelles were assembled via addition of water to THF solutions of the polymers in 0:1, 1:1, and 1:0 molar ratios of DNP-PAA60-b-PMA60 to PAA70-b-PMA70, followed by dialysis against water. The acrylic acid groups of the micelle coronas were partially cross-linked (nominally 50%) with 2,2'-(ethylenedioxy)bis(ethylamine), in the presence of 1-(3'-dimethylaminopropyl)-3-ethylcarbodiimide methiodide. Following extensive dialysis against water, the 0%, 50%, and 100% dinitrophenylated shell cross-linked nanoparticles (DNP-SCKs) were characterized with dynamic light scattering (DLS), transmission electron microscopy (TEM), atomic force microscopy (AFM), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), infrared and UV-vis spectroscopies, and analytical ultracentrifugation (AU). The surface accessibility and bioavailability of the DNP units upon the DNP-SCKs were investigated by performing quenching titrations of fluorescein-labeled IgE antibody in solution and degranulation of IgE sensitized RBL-2H3 cells. The DNP antigens proved to be surface-available and able to form multivalent bonds with IgE antibodies, causing degranulation.
Collapse
Affiliation(s)
- Maisie J Joralemon
- Center for Materials Innovation and Department of Chemistry, Washington University in Saint Louis, One Brookings Drive, Saint Louis, Missouri 63130-4899, USA
| | | | | | | | | |
Collapse
|