1
|
Song Y, Zhou Y, Zhang K, Fan Z, Zhang F, Wei M. Microfluidic programmable strategies for channels and flow. LAB ON A CHIP 2024; 24:4483-4513. [PMID: 39120605 DOI: 10.1039/d4lc00423j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
This review summarizes programmable microfluidics, an advanced method for precise fluid control in microfluidic technology through microchannel design or liquid properties, referring to microvalves, micropumps, digital microfluidics, multiplexers, micromixers, slip-, and block-based configurations. Different microvalve types, including electrokinetic, hydraulic/pneumatic, pinch, phase-change and check valves, cater to diverse experimental needs. Programmable micropumps, such as passive and active micropumps, play a crucial role in achieving precise fluid control and automation. Due to their small size and high integration, microvalves and micropumps are widely used in medical devices and biological analysis. In addition, this review provides an in-depth exploration of the applications of digital microfluidics, multiplexed microfluidics, and mixer-based microfluidics in the manipulation of liquid movement, mixing, and splitting. These methodologies leverage the physical properties of liquids, such as capillary forces and dielectric forces, to achieve precise control over fluid dynamics. SlipChip technology, which branches into rotational SlipChip and translational SlipChip, controls fluid through sliding motion of the microchannel. On the other hand, innovative designs in microfluidic systems pursue better modularity, reconfigurability and ease of assembly. Different assembly strategies, from one-dimensional assembly blocks and two-dimensional Lego®-style blocks to three-dimensional reconfigurable modules, aim to enhance flexibility and accessibility. These technologies enhance user-friendliness and accessibility by offering integrated control systems, making them potentially usable outside of specialized technical labs. Microfluidic programmable strategies for channels and flow hold promising applications in biomedical research, chemical analysis and drug screening, providing theoretical and practical guidance for broader utilization in scientific research and practical applications.
Collapse
Affiliation(s)
- Yongxian Song
- School of Electronic Engineering, Nanjing Xiaozhuang University, Nanjing, Jiangsu 211171, China.
| | - Yijiang Zhou
- School of Electrical and Information Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| | - Kai Zhang
- School of Automation, Huaiyin Institute of Technology, Huaian, 223003, China.
| | - Zhaoxuan Fan
- Research Institute of Chemical Defence, Beijing 102205, China.
| | - Fei Zhang
- School of Electrical and Information Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| | - Mingji Wei
- School of Electrical and Information Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| |
Collapse
|
2
|
Abstract
Despite huge efforts in sample analysis, the measurement of marker nucleic acids within tissues remains largely nonquantitative. Gene analyses have benefited from sensitivity gains through in vitro gene amplification, including PCR. However, whilst these processes are intrinsically suited to highly reproducible, accurate and precise gene measurement, the term semiquantitative analysis is still commonly used, suggesting that other fundamental limitations preclude a generic quantitative basis to gene analysis. The most poorly defined aspect of gene analysis relates to the sample itself. The amount of cells and, particularly, cell subtype composition are rarely annotated before analysis; indeed, they are often extrapolated after analysis. To advance our understanding of pathogenesis, assay formats will benefit from resembling the dimensions of the cell, to assist in the analysis of cellular components of tissue complexes. This review is partly a perspective on how current miniaturization technologies, in association with molecular biology, microfluidics and surface chemistries, may evolve from the parts of a paradigm to enable the unambiguous quantitative analysis of complex biologic matter.
Collapse
Affiliation(s)
- Philip J R Day
- The University of Manchester, Centre for Integrated Genomic Medical Research (CIGMR), Stopford Building, Oxford Road, Manchester, M13 9PT, UK.
| |
Collapse
|
3
|
Zhang D, Men L, Chen Q. Microfabrication and applications of opto-microfluidic sensors. SENSORS (BASEL, SWITZERLAND) 2011; 11:5360-82. [PMID: 22163904 PMCID: PMC3231365 DOI: 10.3390/s110505360] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 04/12/2011] [Accepted: 05/13/2011] [Indexed: 01/08/2023]
Abstract
A review of research activities on opto-microfluidic sensors carried out by the research groups in Canada is presented. After a brief introduction of this exciting research field, detailed discussion is focused on different techniques for the fabrication of opto-microfluidic sensors, and various applications of these devices for bioanalysis, chemical detection, and optical measurement. Our current research on femtosecond laser microfabrication of optofluidic devices is introduced and some experimental results are elaborated. The research on opto-microfluidics provides highly sensitive opto-microfluidic sensors for practical applications with significant advantages of portability, efficiency, sensitivity, versatility, and low cost.
Collapse
Affiliation(s)
- Daiying Zhang
- Department of Physics and Physical Oceanography, Memorial University of Newfoundland, St. John’s, Newfoundland, A1B 3X7, Canada; E-Mail:
| | - Liqiu Men
- CREAIT Network, Memorial University of Newfoundland, St. John’s, Newfoundland, A1C 5S7, Canada; E-Mail:
| | - Qiying Chen
- Department of Physics and Physical Oceanography, Memorial University of Newfoundland, St. John’s, Newfoundland, A1B 3X7, Canada; E-Mail:
- Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John’s, Newfoundland, A1B 3X5, Canada
| |
Collapse
|
4
|
Legendre LA, Morris CJ, Bienvenue JM, Barron A, McClure R, Landers JP. Toward a Simplified Microfluidic Device for Ultra-Fast Genetic Analysis with Sample-In/Answer-Out Capability: Application to T-Cell Lymphoma Diagnosis. ACTA ACUST UNITED AC 2008. [DOI: 10.1016/j.jala.2008.08.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
If microfluidic devices capable of rapid genetic analysis are to affect clinical diagnostics, they ultimately must be capable of carrying out more than ultra-rapid electrophoretic separations. The last half decade has seen a groundswell of activity in defining miniaturized DNA sample preparation methodologies that can be integrated with chip-based electrophoretic separations. Successfull integration of PCR-based DNA amplification and solid-phase DNA sets the stage for integrated microminiaturized analytical systems with sample in-answer out capabilities. Here we provide a brief review of the state of the art on the microfluidic integration of sample preparation processes with discussion of several systems with highly integrated capabilities, including one capable of detection of infectious agents present in complex biofluids in less than 30 min. This overview is used as a launch point to discuss the design and functionality of similar devices capable of accepting a whole blood or fine-needle aspirate sample, purifying the DNA, amplifying target sequences of the T-cell receptor-γ gene, and eletrophoretically resolving the products for detection of a signature consistent with monoclonality. We describe the details of the early experimental success in defining the individual chip-based processes required for an integrated T-cell lymphoma chip, with a vision to a device that provide sample in-answer out capabilities for diagnosing certain blood cancers in roughly 1 h.
Collapse
Affiliation(s)
- Lindsay A. Legendre
- University of Virginia, Charlottesville, VA
- University of Virginia Health Science Center, Charlottesville, VA
| | | | | | - Annelise Barron
- University of Virginia, Charlottesville, VA
- University of Virginia Health Science Center, Charlottesville, VA
| | - Rebecca McClure
- University of Virginia, Charlottesville, VA
- University of Virginia Health Science Center, Charlottesville, VA
| | - James P. Landers
- University of Virginia, Charlottesville, VA
- University of Virginia Health Science Center, Charlottesville, VA
| |
Collapse
|
5
|
Abstract
Treatment for patients with myeloma has changed unrecognisably over the last two decades and now includes a sequence of treatments including chemotherapy, biological targeted therapy with or without consideration for high-dose therapy (autologous and allogeneic stem cell transplantation for younger and fit patients). As patients can now expect a doubling of median survival and a 20-30% chance of surviving longer than 10 years, the focus of treatment is shifting to long-term quality of life. This article focuses on future challenges facing clinicians treating myeloma and how best we may optimize our resources.
Collapse
Affiliation(s)
- B Sirohi
- Department of Medical Oncology, Royal Marsden NHS Foundation Trust, London, UK
| | | |
Collapse
|
6
|
VanDijken J, Kaigala GV, Lauzon J, Atrazhev A, Adamia S, Taylor BJ, Reiman T, Belch AR, Backhouse CJ, Pilarski LM. Microfluidic chips for detecting the t(4;14) translocation and monitoring disease during treatment using reverse transcriptase-polymerase chain reaction analysis of IgH-MMSET hybrid transcripts. J Mol Diagn 2007; 9:358-67. [PMID: 17591936 PMCID: PMC1899427 DOI: 10.2353/jmoldx.2007.060149] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Diagnosis platforms incorporating low-cost microfluidic chips enable sensitive, rapid, and accurate genetic analysis that could facilitate customized therapies tailored to match the vulnerabilities of any types of cancer. Using ex vivo cancer cells, we have detected the unique molecular signature and a chromosomal translocation in multiple myeloma. Multiple myeloma is characterized by IgH rearrangements and translocations that enable unequivocal identification of malignant cells, detected here with integrated microfluidic chips incorporating genetic amplification via reverse transcriptase-polymerase chain reaction and capillary electrophoresis. On microfluidic chips, we demonstrated accurate and versatile detection of molecular signatures in individual cancer cells, with value for monitoring response to therapy, detecting residual cancer cells that mediate relapse, and evaluating prognosis. Thus, testing for two clinically important molecular biomarkers, the IgH VDJ signature and hybrid transcripts signaling the t(4;14) chro-mosomal translocation, with predictive value in diagnosis, treatment decisions, and monitoring has been efficiently implemented on a miniaturized microfluidic system.
Collapse
MESH Headings
- Algorithms
- Bone Marrow/metabolism
- Chromosomes, Human, Pair 14
- Chromosomes, Human, Pair 4
- Disease Progression
- Gene Expression Profiling/methods
- Genes, Immunoglobulin Heavy Chain
- Genes, Neoplasm
- Humans
- Microfluidic Analytical Techniques/methods
- Monitoring, Physiologic/methods
- Multiple Myeloma/diagnosis
- Multiple Myeloma/genetics
- Oncogene Proteins, Fusion/analysis
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- Reverse Transcriptase Polymerase Chain Reaction/methods
- Sensitivity and Specificity
- Translocation, Genetic
Collapse
Affiliation(s)
- Jaron VanDijken
- Department of Oncology and Cross Cancer Institute, Edmonton, AB T6G1Z2, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Abstract
A goal of modern biology is to understand the molecular mechanisms underlying cellular function. The ability to manipulate and analyze single cells is crucial for this task. The advent of microengineering is providing biologists with unprecedented opportunities for cell handling and investigation on a cell-by-cell basis. For this reason, lab-on-a-chip (LOC) technologies are emerging as the next revolution in tools for biological discovery. In the current discussion, we seek to summarize the state of the art for conventional technologies in use by biologists for the analysis of single, mammalian cells, and then compare LOC devices engineered for these same single-cell studies. While a review of the technical progress is included, a major goal is to present the view point of the practicing biologist and the advances that might increase adoption by these individuals. The LOC field is expanding rapidly, and we have focused on areas of broad interest to the biology community where the technology is sufficiently far advanced to contemplate near-term application in biological experimentation. Focus areas to be covered include flow cytometry, electrophoretic analysis of cell contents, fluorescent-indicator-based analyses, cells as small volume reactors, control of the cellular microenvironment, and single-cell PCR.
Collapse
Affiliation(s)
- Christopher E Sims
- Department of Physiology and Biophysics, University of California, Irvine, California 92697, USA
| | | |
Collapse
|
8
|
Keats JJ, Reiman T, Belch AR, Pilarski LM. Ten years and counting: so what do we know about t(4;14)(p16;q32) multiple myeloma. Leuk Lymphoma 2007; 47:2289-300. [PMID: 17107900 DOI: 10.1080/10428190600822128] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Multiple myeloma is a genetically heterogenous disease with a wide variety of characterized genetic aberrations. Until recently, the impact of these aberrations on patient outcome was not known. However, in the last 5-10 years, several genetic markers have been linked to patient outcome. One of the strongest predictors of outcome identified to date is t(4;14)(p16;q32). Although this translocation is tightly linked to chromosome 13 deletions, another poor prognosis marker, it is becoming apparent that the translocation and not the deletion of 13 is the important factor. Unfortunately, despite the known association with outcome, an understanding of the mechanism(s) whereby the translocation contributes to developing and maintaining this aggressive form of myeloma remains elusive.
Collapse
Affiliation(s)
- Jonathan J Keats
- Department of Oncology, University of Alberta & Cross Cancer Institute, Edmonton, Canada.
| | | | | | | |
Collapse
|
9
|
Kaigala GV, Huskins RJ, Preiksaitis J, Pang XL, Pilarski LM, Backhouse CJ. Automated screening using microfluidic chip-based PCR and product detection to assess risk of BK virus-associated nephropathy in renal transplant recipients. Electrophoresis 2007; 27:3753-63. [PMID: 16960845 DOI: 10.1002/elps.200600061] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The cost-effective detection of viral particles in bodily fluids could enable more effective responses to viral outbreaks, whether isolated clinical cases, or influenza epidemics. In renal transplant recipients, complications arising from high levels of BK virus can lead to graft dysfunction, graft loss, and/or reduced patient survival. We describe a microfluidic system for the sensitive analysis of BK virus (viral load) in unprocessed urine samples that are applied directly onto the chip, thus avoiding labor-intensive processing and sources of inter-assay variability. Integration of small volume genetic amplification (PCR) and electrophoretic analysis detects as few as 1-2 viral copies, distinguishes between high, medium and low levels of virus and reliably identifies viral loads requiring clinical intervention. As a first step to wider application in the clinic and in the field, the present work presents an entirely microchip-based system, validated against conventional clinical methods using clinical samples.
Collapse
Affiliation(s)
- Govind V Kaigala
- Applied Miniaturization Laboratory, Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB, Canada
| | | | | | | | | | | |
Collapse
|
10
|
Pilarski PM, Adamia S, Backhouse CJ. An adaptable microvalving system for on-chip polymerase chain reactions. J Immunol Methods 2005; 305:48-58. [PMID: 16150457 DOI: 10.1016/j.jim.2005.07.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/12/2005] [Indexed: 11/21/2022]
Abstract
On-chip genetic analysis systems are beginning to provide a viable alternative to conventional gene profiling and amplification devices, through minimal reagent use, high detection resolution, and the potential for high-throughput parallel testing of the genetic material, even from single cells. Despite the advantages, there are many difficulties inherent in creating an integrated microfluidic diagnostic platform. One major challenge is the accurate control and manipulation of fluid, and particularly the immobilization of reaction mixtures during heating phases of polymerase chain reactions (PCR). In this paper we present a pumping and valving system based on the use of three servomotor-controlled valve fingers that actuate microchannels within a poly-dimethylsiloxane (PDMS) fluidic chip. We characterize the valving ability of the system in terms of fluid loss and show the successful fluid retention of the system over 35-cycle PCR runs at temperatures of up to approximately 96 degrees C. In addition, we demonstrate the system's ability to perform PCR by successfully amplifying a sample of beta2 microglobulin transcript obtained from the peripheral blood of a patient with multiple myeloma. This work has proven to be a successful approach to multi-use valving and a viable method of alleviating the fluid control difficulties inherent in performing a PCR reaction in an on-chip environment. In addition, it opens the door for further automation and integration with other chip-based genetic analysis platforms.
Collapse
Affiliation(s)
- Patrick M Pilarski
- Department of Electrical and Computer Engineering, University of Alberta, ECERF, 9107 - 116 Street, Edmonton, Alberta, Canada T6G 2V4
| | | | | |
Collapse
|