1
|
Klebanoff CA, Chandran SS, Baker BM, Quezada SA, Ribas A. T cell receptor therapeutics: immunological targeting of the intracellular cancer proteome. Nat Rev Drug Discov 2023; 22:996-1017. [PMID: 37891435 PMCID: PMC10947610 DOI: 10.1038/s41573-023-00809-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2023] [Indexed: 10/29/2023]
Abstract
The T cell receptor (TCR) complex is a naturally occurring antigen sensor that detects, amplifies and coordinates cellular immune responses to epitopes derived from cell surface and intracellular proteins. Thus, TCRs enable the targeting of proteins selectively expressed by cancer cells, including neoantigens, cancer germline antigens and viral oncoproteins. As such, TCRs have provided the basis for an emerging class of oncology therapeutics. Herein, we review the current cancer treatment landscape using TCRs and TCR-like molecules. This includes adoptive cell transfer of T cells expressing endogenous or engineered TCRs, TCR bispecific engagers and antibodies specific for human leukocyte antigen (HLA)-bound peptides (TCR mimics). We discuss the unique complexities associated with the clinical development of these therapeutics, such as HLA restriction, TCR retrieval, potency assessment and the potential for cross-reactivity. In addition, we highlight emerging clinical data that establish the antitumour potential of TCR-based therapies, including tumour-infiltrating lymphocytes, for the treatment of diverse human malignancies. Finally, we explore the future of TCR therapeutics, including emerging genome editing methods to safely enhance potency and strategies to streamline patient identification.
Collapse
Affiliation(s)
- Christopher A Klebanoff
- Memorial Sloan Kettering Cancer Center (MSKCC), Human Oncology and Pathogenesis Program, New York, NY, USA.
| | - Smita S Chandran
- Memorial Sloan Kettering Cancer Center (MSKCC), Human Oncology and Pathogenesis Program, New York, NY, USA
- Parker Institute for Cancer Immunotherapy, New York, NY, USA
- Weill Cornell Medical College, Cornell University, New York, NY, USA
| | - Brian M Baker
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, ID, USA
- The Harper Cancer Research Institute, University of Notre Dame, Notre Dame, ID, USA
| | - Sergio A Quezada
- Cancer Immunology Unit, Research Department of Haematology, University College London Cancer Institute, London, UK
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Achilles Therapeutics, London, UK
| | - Antoni Ribas
- Jonsson Comprehensive Cancer Center at the University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| |
Collapse
|
2
|
Zhang Y, Lyu H, Guo R, Cao X, Feng J, Jin X, Lu W, Zhao M. Epstein‒Barr virus-associated cellular immunotherapy. Cytotherapy 2023:S1465-3249(23)00099-3. [PMID: 37149797 DOI: 10.1016/j.jcyt.2023.04.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 03/24/2023] [Accepted: 04/10/2023] [Indexed: 05/08/2023]
Abstract
Epstein‒Barr virus (EBV) is a human herpes virus that is saliva-transmissible and universally asymptomatic. It has been confirmed that more than 90% of the population is latently infected with EBV for life. EBV can cause a variety of related cancers, such as nasopharyngeal carcinoma, diffuse large B-cell lymphoma, and Burkitt lymphoma. Currently, many clinical studies have demonstrated that EBV-specific cytotoxic T lymphocytes and other cell therapies can be safely and effectively transfused to prevent and treat some diseases caused by EBV. This review will mainly focus on discussing EBV-specific cytotoxic T lymphocytes and will touch on therapeutic EBV vaccines and chimeric antigen receptor T-cell therapy briefly.
Collapse
Affiliation(s)
- Yi Zhang
- First Center Clinic College of Tianjin Medical University, Tianjin, China.
| | - Hairong Lyu
- Department of Hematology, Tianjin First Central Hospital, Tianjin, China
| | - Ruiting Guo
- First Center Clinic College of Tianjin Medical University, Tianjin, China
| | - Xinping Cao
- First Center Clinic College of Tianjin Medical University, Tianjin, China
| | - Juan Feng
- Tianjin Jizhou District People's Hospital, Tianjin, China
| | - Xin Jin
- Department of Hematology, Tianjin First Central Hospital, Tianjin, China
| | - Wenyi Lu
- Department of Hematology, Tianjin First Central Hospital, Tianjin, China.
| | - Mingfeng Zhao
- Department of Hematology, Tianjin First Central Hospital, Tianjin, China.
| |
Collapse
|
3
|
Cheng EL, Kacherovsky N, Pun SH. Aptamer-Based Traceless Multiplexed Cell Isolation Systems. ACS APPLIED MATERIALS & INTERFACES 2022; 14:44136-44146. [PMID: 36149728 DOI: 10.1021/acsami.2c11783] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In both biomedical research and clinical cell therapy manufacturing, there is a need for cell isolation systems that recover purified cells in the absence of any selection agent. Reported traceless cell isolation methods using engineered antigen-binding fragments or aptamers have been limited to processing a single cell type at a time. There remains an unmet need for cell isolation processes that rapidly sort multiple target cell types. Here, we utilized two aptamers along with their designated complementary strands (reversal agents) to tracelessly isolate two cell types from a mixed cell population with one aptamer-labeling step and two sequential cell elution steps with reversal agents. We engineered a CD71-binding aptamer (rvCD71apt) and a reversal agent pair to be used simultaneously with our previously reported traceless purification approach using the CD8 aptamer (rvCD8apt) and its reversal agent. We verified the compatibility of the two aptamer displacement mechanisms by flow cytometry and the feasibility of incorporating rvCD71apt with a magnetic solid state. We then combined rvCD71apt with rvCD8apt to isolate activated CD4+ T cells and resting CD8+ cells by eluting these target cells into separate fractions with orthogonal strand displacements. This is the first demonstration of isolating different cell types using two aptamers and reversal agents at the same time. Potentially, different or more aptamers can be included in this traceless multiplexed isolation system for diverse applications with a shortened operation time and a lower production cost.
Collapse
Affiliation(s)
- Emmeline L Cheng
- Department of Bioengineering, University of Washington, Seattle, Washington 98195-5061, United States
| | - Nataly Kacherovsky
- Department of Bioengineering, University of Washington, Seattle, Washington 98195-5061, United States
| | - Suzie H Pun
- Department of Bioengineering, University of Washington, Seattle, Washington 98195-5061, United States
| |
Collapse
|
4
|
The generation and application of antigen-specific T cell therapies for cancer and viral-associated disease. Mol Ther 2022; 30:2130-2152. [PMID: 35149193 PMCID: PMC9171249 DOI: 10.1016/j.ymthe.2022.02.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/27/2021] [Accepted: 02/03/2022] [Indexed: 11/23/2022] Open
Abstract
Immunotherapy with antigen-specific T cells is a promising, targeted therapeutic option for patients with cancer as well as for immunocompromised patients with virus infections. In this review, we characterize and compare current manufacturing protocols for the generation of T cells specific to viral and non-viral tumor-associated antigens. Specifically, we discuss: (1) the different methodologies to expand virus-specific T cell and non-viral tumor-associated antigen-specific T cell products, (2) an overview of the immunological principles involved when developing such manufacturing protocols, and (3) proposed standardized methodologies for the generation of polyclonal, polyfunctional antigen-specific T cells irrespective of donor source. Ex vivo expanded cells have been safely administered to treat numerous patients with virus-associated malignancies, hematologic malignancies, and solid tumors. Hence, we have performed a comprehensive review of the clinical trial results evaluating the safety, feasibility, and efficacy of these products in the clinic. In summary, this review seeks to provide new insights regarding antigen-specific T cell technology to benefit a rapidly expanding T cell therapy field.
Collapse
|
5
|
Sahoo A, Mukherjee D, Mahata D, Mukherjee G. Peptide–MHC complexes: dressing up to manipulate T cells against autoimmunity and cancer. Immunotherapy 2022; 14:337-350. [PMID: 35152723 DOI: 10.2217/imt-2021-0230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Antigen-specificity of T cells provides important clues to the pathogenesis of T cell-mediated autoimmune diseases and immune-evasion strategies of tumors. Identification of T cell clones involved in autoimmunity or cancer is achieved with soluble peptide–MHC (pMHC) complex multimers. Importantly, these complexes can also be used to manipulate disease-relevant T cells to restore homeostasis of T cell-mediated immune response. While auto-antigen-specific T cells can be deleted or anergized by T cell receptor engagement with cognate pMHC complexes in the absence of costimulation, integration of these complexes in artificial antigen-presenting systems can activate tumor antigen-specific T cells. Here the authors discuss the advancements in pMHC-complex-mediated immunotherapeutic strategies in autoimmunity and cancer and identify the lacunae in these strategies that need to be addressed to facilitate clinical implementation.
Collapse
Affiliation(s)
- Arpita Sahoo
- School of Medical Science & Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| | - Debangshu Mukherjee
- School of Medical Science & Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| | - Dhrubajyoti Mahata
- School of Medical Science & Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| | - Gayatri Mukherjee
- School of Medical Science & Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| |
Collapse
|
6
|
Stamova S, Ott-Rötzer B, Smetak H, Schäffler K, Eder R, Fink I, Hoffmann P, Reichert TE, Beckhove P, Spanier G. Characterization and ex vivo expansion of rare in situ cytokine secreting T cell populations from tumor tissue and blood of oral squamous cell carcinoma patients. J Immunol Methods 2021; 496:113086. [PMID: 34146580 DOI: 10.1016/j.jim.2021.113086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 06/14/2021] [Accepted: 06/14/2021] [Indexed: 12/18/2022]
Abstract
Rare subpopulations of tumor antigen-reactive memory T cells, which actively secrete type-1 effector cytokines, particularly TNF-α in situ, possess anti-tumor activity and prognostic relevance. These cells are relevant for cancer immunotherapy; however, their low frequencies make them difficult to study and novel protocols for their culture and expansion ex vivo are needed. Here, we studied the presence of T cells secreting type-1 cytokines (Cy+T cells) in the blood and tumors of 24 patients with oral squamous cell carcinomas (OSCC) and explored possibilities for their isolation and expansion. More than 90% of OSCC patients contained enriched numbers Cy+T cells in the blood and tumors compared to healthy donors in which these were hardly detectable. The majority of TNF-α+T cells were CD4+ T helper cells while IFN-γ+TIL were predominantly CD8+. Cy+T helper cells in the blood were early-differentiated memory T cells while Cy+TIL and Cy+CD8+T cells showed advanced-differentiated memory T cell phenotypes. We explored different conditions for their in vitro culture and found that Cy+T cells can be efficiently expanded in vitro to similar levels as Cy-T cells and after expansion maintained their TNF-α secreting capacity. However, for optimal expansion they required specific culture conditions to support the maintenance of stem-like and central memory T cell phenotype. In conclusion, we show that Cy+T cells are enriched in OSCC patients and report a novel cell culture protocol optimized to specifically expand and functionally maintain these cells for further functional characterization or for their exploitation in immunotherapy of OSCC.
Collapse
Affiliation(s)
- Slava Stamova
- Regensburg Center for Interventional Immunology (RCI), University Hospital Regensburg, Regensburg, Germany
| | - Birgitta Ott-Rötzer
- Regensburg Center for Interventional Immunology (RCI), University Hospital Regensburg, Regensburg, Germany
| | - Heiko Smetak
- Regensburg Center for Interventional Immunology (RCI), University Hospital Regensburg, Regensburg, Germany
| | - Katharina Schäffler
- Regensburg Center for Interventional Immunology (RCI), University Hospital Regensburg, Regensburg, Germany
| | - Rüdiger Eder
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Irina Fink
- Regensburg Center for Interventional Immunology (RCI), University Hospital Regensburg, Regensburg, Germany
| | - Petra Hoffmann
- Regensburg Center for Interventional Immunology (RCI), University Hospital Regensburg, Regensburg, Germany; Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Torsten E Reichert
- Department of Cranio-Maxillofacial Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Philipp Beckhove
- Regensburg Center for Interventional Immunology (RCI), University Hospital Regensburg, Regensburg, Germany; Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany.
| | - Gerrit Spanier
- Department of Cranio-Maxillofacial Surgery, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
7
|
Chang J. MHC multimer: A Molecular Toolbox for Immunologists. Mol Cells 2021; 44:328-334. [PMID: 33972472 PMCID: PMC8175149 DOI: 10.14348/molcells.2021.0052] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/25/2021] [Accepted: 03/25/2021] [Indexed: 12/12/2022] Open
Abstract
The advent of the major histocompatibility complex (MHC) multimer technology has led to a breakthrough in the quantification and analysis of antigen-specific T cells. In particular, this technology has dramatically advanced the measurement and analysis of CD8 T cells and is being applied more widely. In addition, the scope of application of MHC multimer technology is gradually expanding to other T cells such as CD4 T cells, natural killer T cells, and mucosal-associated invariant T cells. MHC multimer technology acts by complementing the T-cell receptor-MHC/peptide complex affinity, which is relatively low compared to antigen-antibody affinity, through a multivalent interaction. The application of MHC multimer technology has expanded to include various functions such as quantification and analysis of antigen-specific T cells, cell sorting, depletion, stimulation to replace antigen-presenting cells, and single-cell classification through DNA barcodes. This review aims to provide the latest knowledge of MHC multimer technology, which is constantly evolving, broaden understanding of this technology, and promote its widespread use.
Collapse
Affiliation(s)
- Jun Chang
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
8
|
García-Ríos E, Nuévalos M, Mancebo FJ, Pérez-Romero P. Is It Feasible to Use CMV-Specific T-Cell Adoptive Transfer as Treatment Against Infection in SOT Recipients? Front Immunol 2021; 12:657144. [PMID: 33968058 PMCID: PMC8104120 DOI: 10.3389/fimmu.2021.657144] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 04/06/2021] [Indexed: 12/19/2022] Open
Abstract
During the last decade, many studies have demonstrated the role of CMV specific T-cell immune response on controlling CMV replication and dissemination. In fact, it is well established that transplanted patients lacking CMV-specific T-cell immunity have an increased occurrence of CMV replication episodes and CMV-related complications. In this context, the use of adoptive transfer of CMV-specific T-cells has been widely investigated and applied to Hematopoietic Stem Cell Transplant patients and may be useful as a therapeutic alternative, to reconstitute the CMV specific T-cell response and to control CMV viremia in patients receiving a transplantation. However, only few authors have explored the use of T-cell adoptive transfer in SOT recipients. We propose a novel review in which we provide an overview of the impact of using CMV-specific T-cell adoptive transfer on the control of CMV infection in SOT recipients, the different approaches to stimulate, isolate and expand CMV-specific T-cells developed over the years and a discussion of the possible use of CMV adoptive cellular therapy in this SOT population. Given the timeliness and importance of this topic, we believe that such an analysis will provide important insights into CMV infection and its treatment/prevention.
Collapse
Affiliation(s)
- Estéfani García-Ríos
- National Center for Microbiology, Instituto de Salud Carlos III, Majadahonda, Spain
| | - Marcos Nuévalos
- National Center for Microbiology, Instituto de Salud Carlos III, Majadahonda, Spain
| | - Francisco J Mancebo
- National Center for Microbiology, Instituto de Salud Carlos III, Majadahonda, Spain
| | - Pilar Pérez-Romero
- National Center for Microbiology, Instituto de Salud Carlos III, Majadahonda, Spain
| |
Collapse
|
9
|
Abstract
Large numbers of tumor associated antigens has been characterized, but only a minor fraction of these are recognized by tumor infiltrating lymphocytes of melanoma, although these have shown the ability to recognize tumor and provide tumor regression upon adoptive transfer. Thus the peptide recognition of the majority of the CD8 tumor infiltrating lymphocytes remains to be identified.
Collapse
Affiliation(s)
- Sine Reker Hadrup
- Department of Hematology; Center for Cancer Immune Therapy (CCIT); University Hospital Herlev; Herlev, Denmark ; Immunology and Microbiology; Institute for International Health; University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
10
|
Annaloro C, Serpenti F, Saporiti G, Galassi G, Cavallaro F, Grifoni F, Goldaniga M, Baldini L, Onida F. Viral Infections in HSCT: Detection, Monitoring, Clinical Management, and Immunologic Implications. Front Immunol 2021; 11:569381. [PMID: 33552044 PMCID: PMC7854690 DOI: 10.3389/fimmu.2020.569381] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 11/30/2020] [Indexed: 12/12/2022] Open
Abstract
In spite of an increasing array of investigations, the relationships between viral infections and allogeneic hematopoietic stem cell transplantation (HSCT) are still controversial, and almost exclusively regard DNA viruses. Viral infections per se account for a considerable risk of morbidity and mortality among HSCT recipients, and available antiviral agents have proven to be of limited effectiveness. Therefore, an optimal management of viral infection represents a key point in HSCT strategies. On the other hand, viruses bear the potential of shaping immunologic recovery after HSCT, possibly interfering with control of the underlying disease and graft-versus-host disease (GvHD), and eventually with HSCT outcome. Moreover, preliminary data are available about the possible role of some virome components as markers of immunologic recovery after HSCT. Lastly, HSCT may exert an immunotherapeutic effect against some viral infections, notably HIV and HTLV-1, and has been considered as an eradicating approach in these indications.
Collapse
Affiliation(s)
- Claudio Annaloro
- Hematology-BMT Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milano, Italy
| | - Fabio Serpenti
- Hematology-BMT Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milano, Italy
| | - Giorgia Saporiti
- Hematology-BMT Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milano, Italy
| | - Giulia Galassi
- Hematology-BMT Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milano, Italy
| | - Francesca Cavallaro
- Hematology-BMT Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milano, Italy
| | - Federica Grifoni
- Hematology-BMT Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milano, Italy
| | - Maria Goldaniga
- Hematology-BMT Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milano, Italy
| | - Luca Baldini
- Hematology-BMT Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milano, Italy
| | - Francesco Onida
- Hematology-BMT Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milano, Italy
| |
Collapse
|
11
|
Laghmouchi A, Hoogstraten C, Falkenburg JHF, Jedema I. Long-term in vitro persistence of magnetic properties after magnetic bead-based cell separation of T cells. Scand J Immunol 2020; 92:e12924. [PMID: 32602962 PMCID: PMC7507180 DOI: 10.1111/sji.12924] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 06/04/2020] [Accepted: 06/23/2020] [Indexed: 12/11/2022]
Abstract
Magnetic‐activated cell sorting (MACS) using magnetic nanoparticles coated with specific antibodies is commonly used in immunology research. For in vitro isolation purposes, it is important to know to what extent the magnetic properties remain present in the isolated cell populations and whether it has consequences for sequential isolations. We hypothesized that only upon cell division, cells will lose their magnetic properties via dilution of the particles in/on their daughter cells. We analysed residual magnetic properties of cells that divided vs cells that did not divide after magnetic bead‐based cell separation. As a model, we isolated T cells using beads targeting the non‐modulating surface molecule CD45RO. Cells were labelled with the cell division tracking dye PKH and cultured under different conditions to induce variable degrees of cell division. We demonstrate that T cells that underwent no, or only minimal, cell divisions after MACS retained magnetic properties for up to at least 2 weeks of in vitro culture. The presence of nanoparticles was detected on their cell surface and intracellularly using Labeling Check reagent. These results have important consequences for procedures requiring repetitive isolation rounds after in vitro culture.
Collapse
Affiliation(s)
- Aicha Laghmouchi
- Department of Hematology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Conny Hoogstraten
- Department of Hematology, Leiden University Medical Centre, Leiden, The Netherlands
| | | | - Inge Jedema
- Department of Hematology, Leiden University Medical Centre, Leiden, The Netherlands
| |
Collapse
|
12
|
Bianchi V, Harari A, Coukos G. Neoantigen-Specific Adoptive Cell Therapies for Cancer: Making T-Cell Products More Personal. Front Immunol 2020; 11:1215. [PMID: 32695101 PMCID: PMC7333784 DOI: 10.3389/fimmu.2020.01215] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 05/15/2020] [Indexed: 12/13/2022] Open
Abstract
Mutation-derived neoantigens are taking central stage as a determinant in eliciting effective antitumor immune responses following adoptive T-cell therapies. These mutations are patient-specific, and their targeting calls for highly personalized pipelines. The promising clinical outcomes of tumor-infiltrating lymphocyte (TIL) therapy have spurred interest in generating T-cell infusion products that have been selectively enriched in neoantigen (or autologous tumor) reactivity. The implementation of an isolation step, prior to T-cell in vitro expansion and reinfusion, may provide a way to improve the overall response rates achieved to date by adoptive T-cell therapies in metastatic cancer patients. Here we provide an overview of the main technologies [i.e., peptide major histocompatibility complex (pMHC) multimers, cytokine capture, and activation markers] to enrich infiltrating or circulating T-cells in predefined neoantigen specificities (or tumor reactivity). The unique technical and regulatory challenges faced by such highly specialized and patient-specific manufacturing T-cell platforms are also discussed.
Collapse
Affiliation(s)
- Valentina Bianchi
- Department of Oncology, Lausanne University Hospital, Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland.,Center of Experimental Therapeutics, Department of Oncology, University Hospital of Lausanne (CHUV), Lausanne, Switzerland
| | - Alexandre Harari
- Department of Oncology, Lausanne University Hospital, Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland.,Center of Experimental Therapeutics, Department of Oncology, University Hospital of Lausanne (CHUV), Lausanne, Switzerland
| | - George Coukos
- Department of Oncology, Lausanne University Hospital, Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
13
|
Magnin M, Guillaume P, Coukos G, Harari A, Schmidt J. High-throughput identification of human antigen-specific CD8 + and CD4 + T cells using soluble pMHC multimers. Methods Enzymol 2019; 631:21-42. [PMID: 31948548 DOI: 10.1016/bs.mie.2019.05.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Peptide major histocompatibility complex (pMHC) multimers have been used since decades to identify, isolate and analyze antigen-specific T cells by flow (and more recently mass) cytometry. Yet well established as a standard technology, improvements are still required to face the growing needs of personalized immune monitoring. Here we review the latest developments about (i) the quality of pMHC class I and II monomers, (ii) the importance of the multimeric scaffold, (iii) the staining conditions and (iv) the high-throughput synthesis of pMHC monomers. Finally, innovative multiplexed, combinatorial strategies for parallel detection of antigen-specific T cells in a single sample are discussed.
Collapse
Affiliation(s)
- Morgane Magnin
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland; Department of Oncology, University Hospital of Lausanne, Lausanne, Switzerland
| | - Philippe Guillaume
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland; Department of Oncology, University Hospital of Lausanne, Lausanne, Switzerland
| | - George Coukos
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland; Department of Oncology, University Hospital of Lausanne, Lausanne, Switzerland.
| | - Alexandre Harari
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland; Department of Oncology, University Hospital of Lausanne, Lausanne, Switzerland
| | - Julien Schmidt
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland; Department of Oncology, University Hospital of Lausanne, Lausanne, Switzerland
| |
Collapse
|
14
|
Dasari V, Sinha D, Neller MA, Smith C, Khanna R. Prophylactic and therapeutic strategies for Epstein-Barr virus-associated diseases: emerging strategies for clinical development. Expert Rev Vaccines 2019; 18:457-474. [PMID: 30987475 DOI: 10.1080/14760584.2019.1605906] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
INTRODUCTION Epstein-Barr virus (EBV) infects more than 95% of the world's population and is associated with infectious mononucleosis as well as a number of cancers in various geographical locations. Despite its significant health burden, no licenced prophylactic or therapeutic vaccines are available. Areas covered: Over the last two decades, our understanding of the role of EBV infection in the pathogenesis and immune regulation of EBV-associated diseases has provided new lines of research to conceptualize various novel prophylactic and therapeutic approaches to control EBV-associated disease. In this review, we evaluate the prophylactic and therapeutic vaccine approaches against EBV and various immunotherapeutic strategies against a number of EBV-associated malignancies. This review also describes the existing and future prospects of improved EBV-targeted therapeutic strategies. Expert opinion: It is anticipated that these emerging strategies will provide answers for the major challenges in EBV vaccine development and help improve the efficacy of novel therapeutic strategies.
Collapse
Affiliation(s)
- Vijayendra Dasari
- a QIMR Berghofer Centre for Immunotherapy and Vaccine Development and Tumour Immunology Laboratory, Department of Immunology , QIMR Berghofer Medical Research Institute , Brisbane , Australia
| | - Debottam Sinha
- a QIMR Berghofer Centre for Immunotherapy and Vaccine Development and Tumour Immunology Laboratory, Department of Immunology , QIMR Berghofer Medical Research Institute , Brisbane , Australia
| | - Michelle A Neller
- a QIMR Berghofer Centre for Immunotherapy and Vaccine Development and Tumour Immunology Laboratory, Department of Immunology , QIMR Berghofer Medical Research Institute , Brisbane , Australia
| | - Corey Smith
- a QIMR Berghofer Centre for Immunotherapy and Vaccine Development and Tumour Immunology Laboratory, Department of Immunology , QIMR Berghofer Medical Research Institute , Brisbane , Australia
| | - Rajiv Khanna
- a QIMR Berghofer Centre for Immunotherapy and Vaccine Development and Tumour Immunology Laboratory, Department of Immunology , QIMR Berghofer Medical Research Institute , Brisbane , Australia
| |
Collapse
|
15
|
Migliori E, Chang M, Muranski P. Restoring antiviral immunity with adoptive transfer of ex-vivo generated T cells. Curr Opin Hematol 2018; 25:486-493. [PMID: 30281036 DOI: 10.1097/moh.0000000000000461] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE OF REVIEW Latent viruses such as cytomegalovirus (CMV), Epstein-Barr virus (EBV) and adenovirus (ADV) often reactivate in immunocompromised patients, contributing to poor clinical outcomes. A rapid reconstitution of antiviral responses via adoptive transfer of virus-specific T cells (VSTs) can prevent or eradicate even refractory infections. Here, we evaluate this strategy and the associated methodological, manufacturing and clinical advances. RECENT FINDINGS From the early pioneering but cumbersome efforts to isolate CMV-specific T cell clones, new approaches and techniques have been developed to provide quicker, safer and broader-aimed ex-vivo antigen-specific cells. New manufacturing strategies, such as the use of G-Rex flasks or 'priming' with a library of overlapping viral peptides, allow for culturing greater numbers of cells that could be patient-specific or stored in cell banks for off-the-shelf applications. Rapid isolation of T cells using major histocompatibility complex tetramer or cytokine capture approaches, or genetic reprogramming of cells to target viral antigens can accelerate the generation of potent cellular products. SUMMARY Advances in the ex-vivo generation of VSTs in academic medical centres and as off-the-shelf blood bank-based or commercially produced reagents are likely to result in broader accessibility and possible manufacturing cost reduction of these cell products, and will open new therapeutic prospects for vulnerable and critically ill immunocompromised patients.
Collapse
Affiliation(s)
- Edoardo Migliori
- Columbia Center for Translational Immunology (CCTI), Division of Hematology/Oncology, Columbia University Medical Center, New York, New York, USA
| | | | | |
Collapse
|
16
|
Fernandes Q, Merhi M, Raza A, Inchakalody VP, Abdelouahab N, Zar Gul AR, Uddin S, Dermime S. Role of Epstein-Barr Virus in the Pathogenesis of Head and Neck Cancers and Its Potential as an Immunotherapeutic Target. Front Oncol 2018; 8:257. [PMID: 30035101 PMCID: PMC6043647 DOI: 10.3389/fonc.2018.00257] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 06/22/2018] [Indexed: 12/18/2022] Open
Abstract
The role of Epstein-Barr virus (EBV) infection in the development and progression of tumor cells has been described in various cancers. Etiologically, EBV is a causative agent in certain variants of head and neck cancers such as nasopharyngeal cancer. Proteins expressed by the EVB genome are involved in invoking and perpetuating the oncogenic properties of the virus. However, these protein products were also identified as important targets for therapeutic research in the past decades, particularly within the context of immunotherapy. The adoptive transfer of EBV-targeted T-cells as well as the development of EBV vaccines has opened newer lines of research to conceptualize novel therapeutic approaches toward the disease. This review addresses the most important aspects of the association of EBV with head and neck cancers from an immunological perspective. It also aims to highlight the current and future prospects of enhanced EBV-targeted immunotherapies.
Collapse
Affiliation(s)
- Queenie Fernandes
- Translational Cancer Research Facility, Hamad Medical Corporation, Doha, Qatar
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Maysaloun Merhi
- Translational Cancer Research Facility, Hamad Medical Corporation, Doha, Qatar
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Afsheen Raza
- Translational Cancer Research Facility, Hamad Medical Corporation, Doha, Qatar
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Varghese Philipose Inchakalody
- Translational Cancer Research Facility, Hamad Medical Corporation, Doha, Qatar
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Nassima Abdelouahab
- Translational Cancer Research Facility, Hamad Medical Corporation, Doha, Qatar
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Abdul Rehman Zar Gul
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Shahab Uddin
- Interim Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Said Dermime
- Translational Cancer Research Facility, Hamad Medical Corporation, Doha, Qatar
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| |
Collapse
|
17
|
The simultaneous isolation of multiple high and low frequent T-cell populations from donor peripheral blood mononuclear cells using the major histocompatibility complex I-Streptamer isolation technology. Cytotherapy 2018; 20:543-555. [DOI: 10.1016/j.jcyt.2018.01.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 01/11/2018] [Accepted: 01/16/2018] [Indexed: 12/18/2022]
|
18
|
McLaughlin LP, Bollard CM, Keller MD. Adoptive T Cell Therapy for Epstein-Barr Virus Complications in Patients With Primary Immunodeficiency Disorders. Front Immunol 2018; 9:556. [PMID: 29616044 PMCID: PMC5867312 DOI: 10.3389/fimmu.2018.00556] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 03/05/2018] [Indexed: 12/28/2022] Open
Abstract
Patients with primary immunodeficiency disorders (PID) have an increased risk from acute and chronic Epstein–Barr Virus (EBV) viral infections and EBV-associated malignancies. Hematopoietic stem cell transplantation (HSCT) is a curative strategy for many patients with PID, but EBV-related complications are common in the immediate post-transplant period due to delayed reconstitution of T cell immunity. Adoptive T cell therapy with EBV-specific T cells is a promising therapeutic strategy for patients with PID both before and after HSCT. Here we review the methods used to manufacture EBV-specific T cells, the clinical outcomes, and the ongoing challenges for future development of the strategy.
Collapse
Affiliation(s)
- Lauren P McLaughlin
- Center for Cancer and Immunology Research, Children's National Health System, The George Washington University, Washington, DC, United States.,Division of Oncology, Children's National Health System, Washington, DC, United States
| | - Catherine M Bollard
- Center for Cancer and Immunology Research, Children's National Health System, The George Washington University, Washington, DC, United States.,Division of Allergy and Immunology, Children's National Health System, Washington, DC, United States.,Division of Blood and Marrow Transplantation, Children's National Health System, Washington, DC, United States
| | - Michael D Keller
- Center for Cancer and Immunology Research, Children's National Health System, The George Washington University, Washington, DC, United States.,Division of Allergy and Immunology, Children's National Health System, Washington, DC, United States
| |
Collapse
|
19
|
Schlott F, Steubl D, Ameres S, Moosmann A, Dreher S, Heemann U, Hösel V, Busch DH, Neuenhahn M. Characterization and clinical enrichment of HLA-C*07:02-restricted Cytomegalovirus-specific CD8+ T cells. PLoS One 2018; 13:e0193554. [PMID: 29489900 PMCID: PMC5831000 DOI: 10.1371/journal.pone.0193554] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 02/13/2018] [Indexed: 12/31/2022] Open
Abstract
Human Cytomegalovirus (CMV) reactivation remains a major source of morbidity in patients after solid organ and hematopoietic stem cell transplantation (HSCT). Adoptive T cell therapy (ACT) with CMV-specific T cells is a promising therapeutic approach for HSCT recipients, but might be counteracted by CMV’s immune evasion strategies. HLA-C*07:02 is less susceptible to viral immune evasion suggesting HLA-C*07:02-restricted viral epitopes as promising targets for ACT. For a better understanding of HLA-C*07:02-restricted CMV-specific T cells we used recently generated reversible HLA-C*07:02/IE-1 multimers (Streptamers) recognizing a CMV-derived Immediate-Early-1 (IE-1) epitope and analyzed phenotypic and functional T cell characteristics. Initially, we detected very high frequencies of HLA-C*07:02/IE-1 multimer+ T cells (median = 11.35%), as well as robust functional responses after stimulation with IE-1 peptide (IFNγ+; median = 5.02%) in healthy individuals. However, MHC-multimer+ and IFNγ-secreting T cell frequencies showed a relatively weak correlation (r2 = 0.77), which could be attributed to an unexpected contribution of CMV-epitope-independent KIR2DL2/3-binding of HLA-C*07:02/IE-1 multimers. Therefore, we developed a MHC-multimer double-staining approach against a cancer epitope-specific HLA-C*07:02 multimer to identify truly HLA-C*07:02/IE-1 epitope-specific T cells. The frequencies of these truly HLA-C*07:02/IE-1 multimer+ T cells were still high (median = 6.86%) and correlated now strongly (r2 = 0.96) with IFNγ-secretion. Interestingly, HLA-C*07:02/IE-1-restricted T cells contain substantial numbers with a central memory T cell phenotype, indicating high expansion potential e.g. for ACT. In line with that, we developed a clinical enrichment protocol avoiding epitope-independent KIR-binding to make HLA-C*07:02/IE-1-restricted T cells available for ACT. Initial depletion of KIR-expressing CD8+ T cells followed by HLA-C*07:02/IE-1 Streptamer positive selection using paramagnetic labeling techniques allowed to enrich successfully HLA-C*07:02/IE-1-restricted T cells. Such specifically enriched populations of functional HLA-C*07:02/IE-1-restricted T cells with significant central memory T cell content could become a potent source for ACT.
Collapse
Affiliation(s)
- Fabian Schlott
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München, Munich, Germany
- DZIF—National Centre for Infection Research, Munich, Germany
| | - Dominik Steubl
- Department of Nephrology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Stefanie Ameres
- DZIF Research Group "Host Control of Viral Latency and Reactivation" (HOCOVLAR), Research Unit Gene Vectors, Helmholtz Zentrum München, Munich, Germany
| | - Andreas Moosmann
- DZIF—National Centre for Infection Research, Munich, Germany
- DZIF Research Group "Host Control of Viral Latency and Reactivation" (HOCOVLAR), Research Unit Gene Vectors, Helmholtz Zentrum München, Munich, Germany
| | - Stefan Dreher
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München, Munich, Germany
| | - Uwe Heemann
- DZIF—National Centre for Infection Research, Munich, Germany
- Department of Nephrology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Volker Hösel
- Technical University Munich, Chair of Biomathematics, Garching, Germany
| | - Dirk H. Busch
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München, Munich, Germany
- DZIF—National Centre for Infection Research, Munich, Germany
| | - Michael Neuenhahn
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München, Munich, Germany
- DZIF—National Centre for Infection Research, Munich, Germany
- * E-mail:
| |
Collapse
|
20
|
Cytomegalovirus disease in hematopoietic stem cell transplant patients: current and future therapeutic options. Curr Opin Infect Dis 2018; 30:372-376. [PMID: 28505028 DOI: 10.1097/qco.0000000000000375] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE OF REVIEW Allogeneic hematopoietic stem cell transplantation (allo-HSCT) has become one of the standard treatment for hematological diseases. Although the clinical outcome has improved significantly during the last decades, the morbidity and mortality after allo-HSCT are still obstacles to cure. Out of major morbidities, opportunistic virus infections such as cytomegalovirus (CMV) infection are important complications, in particular in patients who received human leukocyte antigen-mismatched HSCT. Here, we aim to summarize information about current and future therapeutic options in CMV disease after allo-HSCT. RECENT FINDINGS Recently, not only new drugs but also adoptive T-cell therapy are tested in the setting of clinical trials. CMV prophylaxis using letermovir significantly reduced the incidence of CMV disease in comparison to placebo in a phase III clinical trial. Meanwhile, adoptive T-cell therapies which are fully adapted to good manufacturing practice (GMP) conditions are now available. A recent multicenter study in Germany showed a promising result using Streptamer-isolated T-cell therapy. SUMMARY With the recent development of CMV-targeted therapy, treatment strategies of CMV infection would be further sophisticated in the near future. VIDEO ABSTRACT: http://links.lww.com/COID/A19.
Collapse
|
21
|
Segal BH. Specific Adoptive T-Cell Therapy for Viral and Fungal Infections. MANAGEMENT OF INFECTIONS IN THE IMMUNOCOMPROMISED HOST 2018. [PMCID: PMC7121368 DOI: 10.1007/978-3-319-77674-3_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Despite advances in anti-infective agents, viral and fungal infections after hematopoietic stem cell transplantation (HSCT) continue to cause life-threatening complications that limit the success of HSCT. Early adoptive T-cell immunotherapy studies showed that administration of allogeneic virus-specific cytotoxic T lymphocytes (vCTL) can prevent and control viral infections and reconstitute antiviral immunity to cytomegalovirus (CMV) and Epstein-Barr virus (EBV). Advances in immunobiology, in vitro culture technology, and current good manufacturing practice (cGMP) have provided opportunities for advancing adoptive cell therapy for viral infections: (1) T cells have been expanded targeting multiple pathogens; (2) vCTL production no longer requires viral infection or viral vector transduction of antigen-presenting cells (APCs); (3) the source of lymphocytes is no longer restricted to donors who are immune to the pathogens; (4) naive T cells have been redirected with chimeric antigen receptor T cells (CARTs) or armed with bispecific antibody-armed T cells (BATs) to mediate vCTL activity; (5) these technologies could be combined to targeted multiple viral or fungal pathogens; and (6) pathogen-specific T-cell products manufactured from third parties and banked for “off-the-shelf” use post-HSCT may soon become a reality.
Collapse
Affiliation(s)
- Brahm H. Segal
- Departments of Medicine and Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, New York USA
| |
Collapse
|
22
|
Allard M, Hebeisen M, Rufer N. Assessing T Cell Receptor Affinity and Avidity Against Tumor Antigens. Oncoimmunology 2018. [DOI: 10.1007/978-3-319-62431-0_40] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
23
|
Virus-Specific T Cells for Hematopoietic Stem Cell Transplantation. CURRENT STEM CELL REPORTS 2017. [DOI: 10.1007/s40778-017-0107-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
24
|
Shen C, Xu T, Wu Y, Li X, Xia L, Wang W, Shahzad KA, Zhang L, Wan X, Qiu J. Frequency and reactivity of antigen-specific T cells were concurrently measured through the combination of artificial antigen-presenting cell, MACS and ELISPOT. Sci Rep 2017; 7:16400. [PMID: 29180767 PMCID: PMC5703716 DOI: 10.1038/s41598-017-16549-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 11/14/2017] [Indexed: 01/24/2023] Open
Abstract
Conventional peptide-major histocompatibility complex (pMHC) multimer staining, intracellular cytokine staining, and enzyme-linked immunospot (ELISPOT) assay cannot concurrently determine the frequency and reactivity of antigen-specific T cells (AST) in a single assay. In this report, pMHC multimer, magnetic-activated cell sorting (MACS), and ELISPOT techniques have been integrated into a micro well by coupling pMHC multimers onto cell-sized magnetic beads to characterize AST cell populations in a 96-well microplate which pre-coated with cytokine-capture antibodies. This method, termed AAPC-microplate, allows the enumeration and local cytokine production of AST cells in a single assay without using flow cytometry or fluorescence intensity scanning, thus will be widely applicable. Here, ovalbumin257-264-specific CD8+ T cells from OT-1 T cell receptor (TCR) transgenic mice were measured. The methodological accuracy, specificity, reproducibility, and sensitivity in enumerating AST cells compared well with conventional pMHC multimer staining. Furthermore, the AAPC-microplate was applied to detect the frequency and reactivity of Hepatitis B virus (HBV) core antigen18-27- and surface antigen183-191-specific CD8+ T cells for the patients, and was compared with conventional method. This method without the need of high-end instruments may facilitate the routine analysis of patient-specific cellular immune response pattern to a given antigen in translational studies.
Collapse
Affiliation(s)
- Chuanlai Shen
- Department of Microbiology and Immunology, Southeast University Medical School, Nanjing, Jiangsu, China.
| | - Tao Xu
- Department of Microbiology and Immunology, Southeast University Medical School, Nanjing, Jiangsu, China
| | - You Wu
- Department of Microbiology and Immunology, Southeast University Medical School, Nanjing, Jiangsu, China
| | - Xiaoe Li
- Department of Microbiology and Immunology, Southeast University Medical School, Nanjing, Jiangsu, China
| | - Lingzhi Xia
- Department of Laboratory Medicine, Nanjing KingMed Diagnostics Company Limited, Nanjing, Jiangsu, China
| | - Wei Wang
- Department of Microbiology and Immunology, Southeast University Medical School, Nanjing, Jiangsu, China
| | - Khawar Ali Shahzad
- Department of Microbiology and Immunology, Southeast University Medical School, Nanjing, Jiangsu, China
| | - Lei Zhang
- Department of Microbiology and Immunology, Southeast University Medical School, Nanjing, Jiangsu, China
| | - Xin Wan
- Department of Microbiology and Immunology, Southeast University Medical School, Nanjing, Jiangsu, China
| | - Jie Qiu
- Division of Infectious Diseases, Second Hospital of Nanjing, Affiliated Second Hospital of Southeast University, Nanjing, Jiangsu, China.
| |
Collapse
|
25
|
Houghtelin A, Bollard CM. Virus-Specific T Cells for the Immunocompromised Patient. Front Immunol 2017; 8:1272. [PMID: 29075259 PMCID: PMC5641550 DOI: 10.3389/fimmu.2017.01272] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 09/25/2017] [Indexed: 01/07/2023] Open
Abstract
While progress has been made in the treatment of both hematologic cancers and solid tumors, chemorefractory or relapsed disease often portends a dismal prognosis, and salvage chemotherapy or radiation expose patients to intolerable toxicities and may not be effective. Hematopoietic stem cell transplant offers the promise of cure for many patients, and while mismatched, unrelated or haploidentical donors are increasingly available, the recipients are at higher risk of severe immunosuppression and immune dysregulation due to graft versus host disease. Viral infections remain a primary cause of severe morbidity and mortality in this patient population. Again, many therapeutic options for viral disease are toxic, may be ineffective or generate resistance, or fail to convey long-term protection. Adoptive cell therapy with virus-specific T cells (VSTs) is a targeted therapy that is efficacious and has minimal toxicity in immunocompromised patients with CMV and EBV infections in particular. Products have since been generated specific for multiple viral antigens (multi-VST), which are not only effective but also confer protection in 70–90% of recipients when used as prophylaxis. Notably, these products can be generated from either virus-naive or virus-experienced autologous or allogeneic sources, including partially matched HLA-matched third-party donors. Obstacles to effective VST treatment are donor availability and product generation time. Banking of third-party VST is an attractive way to overcome these constraints and provide products on an as-needed basis. Other developments include epitope discovery to broaden the number of viral antigens targets in a single product, the optimization of VST generation from naive donor sources, and the modification of VSTs to enhance persistence and efficacy in vivo.
Collapse
Affiliation(s)
- Amy Houghtelin
- Program for Cell Enhancement and Technologies for Immunotherapy, Children's National Health System, The George Washington University, Washington, DC, United States
| | - Catherine M Bollard
- Program for Cell Enhancement and Technologies for Immunotherapy, Children's National Health System, The George Washington University, Washington, DC, United States
| |
Collapse
|
26
|
Sack U. Further improvement of antigen specific T cell detection. Cytometry A 2017; 91:995-996. [PMID: 28727262 DOI: 10.1002/cyto.a.23174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 07/04/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Ulrich Sack
- Institute of Clinical Immunology, Medical Faculty, University of Leipzig, Johannisallee 30, 04103 Leipzig, Germany
| |
Collapse
|
27
|
Adoptive T Cell Immunotherapy for Patients with Primary Immunodeficiency Disorders. Curr Allergy Asthma Rep 2017; 17:3. [PMID: 28116637 DOI: 10.1007/s11882-017-0669-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Primary immunodeficiency disorders (PID) are a group of inborn errors of immunity with a broad range of clinical severity but often associated with recurrent and serious infections. While hematopoietic stem cell transplantation (HSCT) can be curative for some forms of PID, chronic and/or refractory viral infections remain a cause of morbidity and mortality both before and after HSCT. Although antiviral pharmacologic agents exist for many viral pathogens, these are associated with significant costs and toxicities and may not be effective for increasingly drug-resistant pathogens. Thus, the emergence of adoptive immunotherapy with virus-specific T lymphocytes (VSTs) is an attractive option for addressing the underlying impaired T cell immunity in many PID patients. VSTs have been utilized for PID patients following HSCT in many prior phase I trials, and may potentially be beneficial before HSCT in patients with chronic viral infections. We review the various methods of generating VSTs, clinical experience using VSTs for PID patients, and current limitations as well as potential ways to broaden the clinical applicability of adoptive immunotherapy for PID patients.
Collapse
|
28
|
Kuznetsova M, Lopatnikova J, Khantakova J, Maksyutov R, Maksyutov A, Sennikov S. Generation of populations of antigen-specific cytotoxic T cells using DCs transfected with DNA construct encoding HER2/neu tumor antigen epitopes. BMC Immunol 2017. [PMID: 28633645 PMCID: PMC5479015 DOI: 10.1186/s12865-017-0219-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Recent fundamental and clinical studies have confirmed the effectiveness of utilizing the potential of the immune system to remove tumor cells disseminated in a patient's body. Cytotoxic T lymphocytes (CTLs) are considered the main effectors in cell-mediated antitumor immunity. Approaches based on antigen presentation to CTLs by dendritic cells (DCs) are currently being intensively studied, because DCs are more efficient in tumor antigen presentation to T cells through their initiation of strong specific antitumor immune responses than other types of antigen-presenting cells. Today, it has become possible to isolate CTLs specific for certain antigenic determinants from heterogeneous populations of mononuclear cells. This enables direct and specific cell-mediated immune responses against cells carrying certain antigens. The aim of the present study was to develop an optimized protocol for generating CTL populations specific for epitopes of tumor-associated antigen HER2/neu, and to assess their cytotoxic effects against the HER2/neu-expressing MCF-7 tumor cell line. METHODS The developed protocol included sequential stages of obtaining mature DCs from PBMCs from HLA A*02-positive healthy donors, magnet-assisted transfection of mature DCs with the pMax plasmid encoding immunogenic peptides HER2 p369-377 (E75 peptide) and HER2 p689-697 (E88 peptide), coculture of antigen-activated DCs with autologous lymphocytes, magnetic-activated sorting of CTLs specific to HER2 epitopes, and stimulation of isolated CTLs with cytokines (IL-2, IL-7, and IL-15). RESULTS The resulting CTL populations were characterized by high contents of CD8+ cells (71.5% in cultures of E88-specific T cells and 90.2% in cultures of E75-specific T cells) and displayed strong cytotoxic effects against the MCF-7 cell line (percentages of damaged tumor cells in samples under investigation were 60.2 and 65.7% for E88- and E75-specific T cells, respectively; level of spontaneous death of target cells was 17.9%). CONCLUSIONS The developed protocol improves the efficiency of obtaining HER2/neu-specific CTLs and can be further used to obtain cell-based vaccines for eradicating targeted tumor cells to prevent tumor recurrence after the major tumor burden has been eliminated and preventing metastasis in patients with HER2-overexpressing tumors.
Collapse
Affiliation(s)
- Maria Kuznetsova
- Federal State Budgetary Scientific Institution "Research Institute of Fundamental and Clinical Immunology", Yadrintsevskaya str., 14, Novosibirsk, 630099, Russia
| | - Julia Lopatnikova
- Federal State Budgetary Scientific Institution "Research Institute of Fundamental and Clinical Immunology", Yadrintsevskaya str., 14, Novosibirsk, 630099, Russia
| | - Julia Khantakova
- Federal State Budgetary Scientific Institution "Research Institute of Fundamental and Clinical Immunology", Yadrintsevskaya str., 14, Novosibirsk, 630099, Russia
| | - Rinat Maksyutov
- State Research Center of Virology and Biotechnology "VECTOR", Koltsovo, Novosibirsk Region, 630559, Russia
| | - Amir Maksyutov
- Federal State Budgetary Scientific Institution "Research Institute of Fundamental and Clinical Immunology", Yadrintsevskaya str., 14, Novosibirsk, 630099, Russia.,State Research Center of Virology and Biotechnology "VECTOR", Koltsovo, Novosibirsk Region, 630559, Russia
| | - Sergey Sennikov
- Federal State Budgetary Scientific Institution "Research Institute of Fundamental and Clinical Immunology", Yadrintsevskaya str., 14, Novosibirsk, 630099, Russia.
| |
Collapse
|
29
|
Abstract
Cytomegalovirus (CMV) and Epstein-Barr virus (EBV) infections following allogeneic hematopoietic stem cell transplantation (HSCT) are a major cause of morbidity and mortality. Early clinical trials demonstrate that adoptive transfer of donor-derived virus-specific T cells to restore virus-specific immunity is an effective strategy to control CMV and EBV infection after HSCT, conferring protection in 70%-90% of patients. The field has evolved rapidly to develop solutions to some of the manufacturing challenges identified in early clinical studies, such as prolonged in vitro culture, optimization of the purity of the virus-specific T cell product, the potential limitations of targeting a single viral antigen, and how to manage the patient with a virus-naive donor. This Review both discusses the seminal early studies and explores cutting-edge novel technologies that broaden the feasibility of and the scope for delivering virus-specific T cells to patients after HSCT.
Collapse
Affiliation(s)
- Claire Roddie
- Department of Haematology, University College London Cancer Institute, London, United Kingdom.,Department of Haematology, University College London Hospitals NHS Foundation Trust, London, United Kingdom
| | - Karl S Peggs
- Department of Haematology, University College London Cancer Institute, London, United Kingdom.,Department of Haematology, University College London Hospitals NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
30
|
Reis M, Ogonek J, Qesari M, Borges NM, Nicholson L, Preußner L, Dickinson AM, Wang XN, Weissinger EM, Richter A. Recent Developments in Cellular Immunotherapy for HSCT-Associated Complications. Front Immunol 2016; 7:500. [PMID: 27895644 PMCID: PMC5107577 DOI: 10.3389/fimmu.2016.00500] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 10/26/2016] [Indexed: 12/13/2022] Open
Abstract
Allogeneic hematopoietic stem cell transplantation is associated with serious complications, and improvement of the overall clinical outcome of patients with hematological malignancies is necessary. During the last decades, posttransplant donor-derived adoptive cellular immunotherapeutic strategies have been progressively developed for the treatment of graft-versus-host disease (GvHD), infectious complications, and tumor relapses. To date, the common challenge of all these cell-based approaches is their implementation for clinical application. Establishing an appropriate manufacturing process, to guarantee safe and effective therapeutics with simultaneous consideration of economic requirements is one of the most critical hurdles. In this review, we will discuss the recent scientific findings, clinical experiences, and technological advances for cell processing toward the application of mesenchymal stromal cells as a therapy for treatment of severe GvHD, virus-specific T cells for targeting life-threating infections, and of chimeric antigen receptors-engineered T cells to treat relapsed leukemia.
Collapse
Affiliation(s)
- Monica Reis
- Haematological Sciences, Institute of Cellular Medicine, Newcastle University , Newcastle upon Tyne , UK
| | - Justyna Ogonek
- Transplantation Biology, Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School , Hannover , Germany
| | | | - Nuno M Borges
- Haematological Sciences, Institute of Cellular Medicine, Newcastle University , Newcastle upon Tyne , UK
| | - Lindsay Nicholson
- Haematological Sciences, Institute of Cellular Medicine, Newcastle University , Newcastle upon Tyne , UK
| | | | - Anne Mary Dickinson
- Haematological Sciences, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK; Alcyomics Ltd., Newcastle upon Tyne, UK
| | - Xiao-Nong Wang
- Haematological Sciences, Institute of Cellular Medicine, Newcastle University , Newcastle upon Tyne , UK
| | - Eva M Weissinger
- Transplantation Biology, Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School , Hannover , Germany
| | - Anne Richter
- Miltenyi Biotec GmbH , Bergisch Gladbach , Germany
| |
Collapse
|
31
|
Tárnok A. OMIPs start school. Cytometry A 2016; 89:795-6. [PMID: 27657547 DOI: 10.1002/cyto.a.22976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 08/25/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Attila Tárnok
- Saxonian Incubator for Clinical Translation (SIKT), University Leipzig, Leipzig, Germany. .,Institute of Clinical Immunology, Medical Faculty, University of Leipzig, Leipzig, Germany. .,Fraunhofer Institute for Cell Therapy and Immunology IZI, Leipzig, Germany.
| |
Collapse
|
32
|
Khor B. Regulatory T Cells: Central Concepts from Ontogeny to Therapy. Transfus Med Rev 2016; 31:36-44. [PMID: 27523957 DOI: 10.1016/j.tmrv.2016.07.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 07/06/2016] [Accepted: 07/18/2016] [Indexed: 02/07/2023]
Abstract
The balanced differentiation of naive CD4+ T cells into either pro- or anti-inflammatory fates is a central regulator of immune homeostasis, dysregulation of which can lead to inflammatory disease or cancer. Accordingly, the development of diagnostics and therapeutics to measure and modulate this balance is of great interest. In this review, we focus on the predominant anti-inflammatory subset, regulatory T cells, discussing key concepts including development, function, antigen specificity, and lineage stability. In particular, we highlight how these notions are shaping the evolution of therapeutics, especially in the context of the transfusion medicine specialist, and identify several key areas that urgently need to be addressed.
Collapse
Affiliation(s)
- Bernard Khor
- Department of Pathology, Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA.
| |
Collapse
|
33
|
Fuji S, Löffler J, Einsele H, Kapp M. Immunotherapy for opportunistic infections: Current status and future perspectives. Virulence 2016; 7:939-949. [PMID: 27385102 DOI: 10.1080/21505594.2016.1207038] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The outcome after allogeneic haematopoietic stem cell transplantation (allo-HSCT) has significantly improved during the last decades. However, opportunistic infections such as viral and mold infections are still a major obstacle for cure. Within this field, adoptive T cell therapy against pathogens is a promising treatment approach. Recently, the techniques to develop T cell products including pathogen-specific T cells have been sophisticated and are now available in accordance to good manufacturing practice (GMP). Here, we aim to summarize current knowledge about adoptive T cell therapy against viral and mold infections.
Collapse
Affiliation(s)
- Shigeo Fuji
- a Department of Haematopoietic Stem Cell Transplantation , National Cancer Center Hospital , Tokyo , Japan.,b Department of Internal Medicine II , Division of Hematology/Oncology, University Hospital of Würzburg , Würzburg , Germany
| | - Jürgen Löffler
- b Department of Internal Medicine II , Division of Hematology/Oncology, University Hospital of Würzburg , Würzburg , Germany
| | - Hermann Einsele
- b Department of Internal Medicine II , Division of Hematology/Oncology, University Hospital of Würzburg , Würzburg , Germany
| | - Markus Kapp
- b Department of Internal Medicine II , Division of Hematology/Oncology, University Hospital of Würzburg , Würzburg , Germany
| |
Collapse
|
34
|
Torre-Cisneros J, Aguado J, Caston J, Almenar L, Alonso A, Cantisán S, Carratalá J, Cervera C, Cordero E, Fariñas M, Fernández-Ruiz M, Fortún J, Frauca E, Gavaldá J, Hernández D, Herrero I, Len O, Lopez-Medrano F, Manito N, Marcos M, Martín-Dávila P, Monforte V, Montejo M, Moreno A, Muñoz P, Navarro D, Pérez-Romero P, Rodriguez-Bernot A, Rumbao J, San Juan R, Vaquero J, Vidal E. Management of cytomegalovirus infection in solid organ transplant recipients: SET/GESITRA-SEIMC/REIPI recommendations. Transplant Rev (Orlando) 2016; 30:119-43. [DOI: 10.1016/j.trre.2016.04.001] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Revised: 04/02/2016] [Accepted: 04/04/2016] [Indexed: 02/06/2023]
|
35
|
T cells for viral infections after allogeneic hematopoietic stem cell transplant. Blood 2016; 127:3331-40. [PMID: 27207801 DOI: 10.1182/blood-2016-01-628982] [Citation(s) in RCA: 149] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 02/11/2016] [Indexed: 12/21/2022] Open
Abstract
Despite recent advances in the field of allogeneic hematopoietic stem cell transplantation (HSCT), viral infections are still a major complication during the period of immune suppression that follows the procedure. Adoptive transfer of donor-derived virus-specific cytotoxic T cells (VSTs) is a strategy to rapidly restore virus-specific immunity to prevent or treat viral diseases after HSCT. Early proof of principle studies demonstrated that the administration of donor-derived T cells specific for cytomegalovirus or Epstein-Barr virus (EBV) could effectively restore virus-specific immunity and control viral infections. Subsequent studies using different expansion or direct selection techniques have shown that donor-derived VSTs confer protection in vivo after adoptive transfer in 70% to 90% of recipients. Because a major cause of failure is lack of immunity to the infecting virus in a naïve donor, more recent studies have infused closely matched third-party VSTs and reported response rates of 60% to 70%. Current efforts have focused on broadening the applicability of this approach by: (1) extending the number of viral antigens being targeted, (2) simplifying manufacture, (3) exploring strategies for recipients of virus-naïve donor grafts, and (4) developing and optimizing "off the shelf" approaches.
Collapse
|
36
|
Kelderman S, Heemskerk B, Fanchi L, Philips D, Toebes M, Kvistborg P, van Buuren MM, van Rooij N, Michels S, Germeroth L, Haanen JBAG, Schumacher NM. Antigen-specific TIL therapy for melanoma: A flexible platform for personalized cancer immunotherapy. Eur J Immunol 2016; 46:1351-60. [DOI: 10.1002/eji.201545849] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 02/01/2016] [Accepted: 03/14/2016] [Indexed: 12/31/2022]
Affiliation(s)
- Sander Kelderman
- Division of Immunology; The Netherlands Cancer Institute; Amsterdam The Netherlands
| | - Bianca Heemskerk
- Division of Immunology; The Netherlands Cancer Institute; Amsterdam The Netherlands
| | - Lorenzo Fanchi
- Division of Immunology; The Netherlands Cancer Institute; Amsterdam The Netherlands
| | - Daisy Philips
- Division of Immunology; The Netherlands Cancer Institute; Amsterdam The Netherlands
| | - Mireille Toebes
- Division of Immunology; The Netherlands Cancer Institute; Amsterdam The Netherlands
| | - Pia Kvistborg
- Division of Immunology; The Netherlands Cancer Institute; Amsterdam The Netherlands
| | - Marit M. van Buuren
- Division of Immunology; The Netherlands Cancer Institute; Amsterdam The Netherlands
| | - Nienke van Rooij
- Division of Immunology; The Netherlands Cancer Institute; Amsterdam The Netherlands
| | - Samira Michels
- Division of Immunology; The Netherlands Cancer Institute; Amsterdam The Netherlands
| | | | - John B. A. G. Haanen
- Division of Immunology; The Netherlands Cancer Institute; Amsterdam The Netherlands
| | - N. M. Schumacher
- Division of Immunology; The Netherlands Cancer Institute; Amsterdam The Netherlands
| |
Collapse
|
37
|
Naik S, Nicholas SK, Martinez CA, Leen AM, Hanley PJ, Gottschalk SM, Rooney CM, Hanson IC, Krance RA, Shpall EJ, Cruz CR, Amrolia P, Lucchini G, Bunin N, Heimall J, Klein OR, Gennery AR, Slatter MA, Vickers MA, Orange JS, Heslop HE, Bollard CM, Keller MD. Adoptive immunotherapy for primary immunodeficiency disorders with virus-specific T lymphocytes. J Allergy Clin Immunol 2016; 137:1498-1505.e1. [PMID: 26920464 PMCID: PMC4860050 DOI: 10.1016/j.jaci.2015.12.1311] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Revised: 11/27/2015] [Accepted: 12/14/2015] [Indexed: 01/18/2023]
Abstract
BACKGROUND Viral infections are a leading fatal complication for patients with primary immunodeficiencies (PIDs) who require hematopoietic stem cell transplantation (HSCT). Use of virus-specific T lymphocytes (VSTs) has been successful for the treatment and prevention of viral infections after HSCT for malignant and nonmalignant conditions. Here we describe the clinical use of VSTs in patients with PIDs at 4 centers. OBJECTIVE We sought to evaluate the safety and efficacy of VSTs for treatment of viral infections in patients with PIDs. METHODS Patients with PIDs who have received VST therapy on previous or current protocols were reviewed in aggregate. Clinical information, including transplantation details, viral infections, and use of antiviral and immunosuppressive pharmacotherapy, were evaluated. Data regarding VST production, infusions, and adverse reactions were compared. RESULTS Thirty-six patients with 12 classes of PID diagnoses received 37 VST products before or after HSCT. Twenty-six (72%) patients had received a diagnosis of infection with cytomegalovirus, EBV, adenovirus, BK virus, and/or human herpesvirus 6. Two patients were treated before HSCT because of EBV-associated lymphoproliferative disease. Partial or complete responses against targeted viruses occurred in 81% of patients overall. Time to response varied from 2 weeks to 3 months (median, 28 days). Overall survival at 6 months after therapy was 80%. Four patients had graft-versus-host disease in the 45 days after VST infusion, which in most cases was therapy responsive. CONCLUSION VSTs derived from either stem cell donors or third-party donors are likely safe and effective for the treatment of viral infections in patients with PIDs.
Collapse
Affiliation(s)
- Swati Naik
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, Houston Methodist Hospital, Houston, Tex; Texas Children's Cancer Center, Texas Children's Hospital, Baylor College of Medicine, Houston, Tex
| | - Sarah K Nicholas
- Department of Pediatrics, Section of Immunology, Allergy, and Rheumatology, Baylor College of Medicine, Houston, Tex; Center for Human Immunobiology, Baylor College of Medicine and Texas Children's Hospital, Houston, Tex
| | - Caridad A Martinez
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, Houston Methodist Hospital, Houston, Tex; Texas Children's Cancer Center, Texas Children's Hospital, Baylor College of Medicine, Houston, Tex
| | - Ann M Leen
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, Houston Methodist Hospital, Houston, Tex
| | - Patrick J Hanley
- Center for Cancer and Immunology Research, Children's National Medical Center, Washington, DC; Division of Blood and Marrow Transplantation, Children's National Medical Center, Washington, DC
| | - Steven M Gottschalk
- Texas Children's Cancer Center, Texas Children's Hospital, Baylor College of Medicine, Houston, Tex
| | - Cliona M Rooney
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, Houston Methodist Hospital, Houston, Tex
| | - I Celine Hanson
- Department of Pediatrics, Section of Immunology, Allergy, and Rheumatology, Baylor College of Medicine, Houston, Tex
| | - Robert A Krance
- Texas Children's Cancer Center, Texas Children's Hospital, Baylor College of Medicine, Houston, Tex
| | - Elizabeth J Shpall
- Department of Stem Cell Transplantation, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Tex
| | - Conrad R Cruz
- Sheikh Zayed Institute, Children's National Medical Center, Washington, DC
| | - Persis Amrolia
- Bone Marrow Transplantation Department, Great Ormond Street Hospital, London, United Kingdom
| | - Giovanna Lucchini
- Bone Marrow Transplantation Department, Great Ormond Street Hospital, London, United Kingdom
| | - Nancy Bunin
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, Pa
| | - Jennifer Heimall
- Division of Allergy & Immunology, Children's Hospital of Philadelphia, Philadelphia, Pa
| | - Orly R Klein
- Department of Oncology, Division of Pediatric Hematology/Oncology, Johns Hopkins University School of Medicine, Baltimore, Md
| | - Andrew R Gennery
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Mary A Slatter
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Mark A Vickers
- Scottish National Blood Transfusion Service, Aberdeen, United Kingdom; University of Aberdeen, Aberdeen, United Kingdom
| | - Jordan S Orange
- Department of Pediatrics, Section of Immunology, Allergy, and Rheumatology, Baylor College of Medicine, Houston, Tex; Center for Human Immunobiology, Baylor College of Medicine and Texas Children's Hospital, Houston, Tex
| | - Helen E Heslop
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, Houston Methodist Hospital, Houston, Tex; Texas Children's Cancer Center, Texas Children's Hospital, Baylor College of Medicine, Houston, Tex
| | - Catherine M Bollard
- Center for Cancer and Immunology Research, Children's National Medical Center, Washington, DC; Division of Blood and Marrow Transplantation, Children's National Medical Center, Washington, DC
| | - Michael D Keller
- Center for Cancer and Immunology Research, Children's National Medical Center, Washington, DC; Division of Allergy and Immunology, Children's National Medical Center, Washington, DC.
| |
Collapse
|
38
|
Ciáurriz M, Beloki L, Bandrés E, Mansilla C, Zabalza A, Pérez-Valderrama E, Lachén M, Ibáñez B, Olavarría E, Ramírez N. Streptamer technology allows accurate and specific detection of CMV-specific HLA-A*02 CD8 + T cells by flow cytometry. CYTOMETRY PART B-CLINICAL CYTOMETRY 2016; 92:153-160. [PMID: 26918565 DOI: 10.1002/cyto.b.21367] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 01/15/2016] [Accepted: 02/23/2016] [Indexed: 12/25/2022]
Abstract
BACKGROUND Multimer technology is widely used to screen antigen-specific immune recovery after allogeneic hematopoietic stem cell transplantation (allo-HSCT) as it enables identification, enumeration, phenotypic characterization and isolation of virus-specific T-cells. Novel approaches of multimerization might improve on classical tetramer staining; however, their use as standard monitoring technique to quantify antigen-specific cells has not been validated yet. We have compared two of these available multimeric complexes: pentamer and streptamer to select the best strategy for the incorporation into clinical monitoring practice. METHODS CMVpp65495-503 -specific HLA-A*02:01 CD8+ T lymphocytes (CTLA *02:01 -CMVpp65495-503 ) were examined with pentamer and streptamer in peripheral blood cells of 77 healthy volunteers. Quantitative and qualitative analyses were performed to compare the precision and repeatability, sensitivity and accuracy and specificity of both technologies by flow cytometry. RESULTS Standard deviation for both techniques was less than 0.05 showing that they are repetitive and precise. Both techniques significantly correlated at high frequencies (rSpearman = 0.9422; P < 0.0001) but it was lost at lower levels (<1%) of CTLA *02:01 -CMVpp65495-503 (rSpearman = 0.3351; P = 0.1376). Streptamer is more accurate for the detection of CTLA *02:01 -CMVpp65495-503 providing significantly closer values to the theoretical ones (P < 0.0001) as pentamer binds unspecifically to a notable proportion of non-CMV-specific CD8+ T-cells. CONCLUSION Our results suggest that streptamer multimer provides precise, accurate and specific results to detect CTLA *02:01 -CMVpp65495-503 by flow cytometry. Streptamer multimer can be used not only for the monitoring of early CTLA *02:01 -CMVpp65495-503 reconstitution in immunosuppressed patients following allo-HSCT but also, in conjunction with its reversibility role, for the isolation of CTLA *02:01 -CMVpp65495-503 for its future use in adoptive immunotherapy. © 2016 International Clinical Cytometry Society.
Collapse
Affiliation(s)
- Miriam Ciáurriz
- Oncohematology Research Group, Navarrabiomed-Miguel Servet Foundation, IDISNA (Navarra's Health Research Institute), Pamplona, Spain
| | - Lorea Beloki
- Oncohematology Research Group, Navarrabiomed-Miguel Servet Foundation, IDISNA (Navarra's Health Research Institute), Pamplona, Spain
| | - Eva Bandrés
- Oncohematology Research Group, Navarrabiomed-Miguel Servet Foundation, IDISNA (Navarra's Health Research Institute), Pamplona, Spain.,Immunology Unit, Complejo Hospitalario de Navarra, Navarra Health Service, IDISNA, Pamplona, Spain.,Department of Haematology, Complejo Hospitalario de Navarra, Navarra Health Service, IDISNA, Pamplona, Spain
| | - Cristina Mansilla
- Oncohematology Research Group, Navarrabiomed-Miguel Servet Foundation, IDISNA (Navarra's Health Research Institute), Pamplona, Spain
| | - Amaya Zabalza
- Oncohematology Research Group, Navarrabiomed-Miguel Servet Foundation, IDISNA (Navarra's Health Research Institute), Pamplona, Spain
| | - Estela Pérez-Valderrama
- Oncohematology Research Group, Navarrabiomed-Miguel Servet Foundation, IDISNA (Navarra's Health Research Institute), Pamplona, Spain
| | - Mercedes Lachén
- Oncohematology Research Group, Navarrabiomed-Miguel Servet Foundation, IDISNA (Navarra's Health Research Institute), Pamplona, Spain
| | - Berta Ibáñez
- IDISNA, Red de Evaluación en Servicios Sanitarios y Enfermedades Cronicas (REDISSEC), Navarrabiomed-Fundación Miguel Servet, Navarra, Spain
| | - Eduardo Olavarría
- Oncohematology Research Group, Navarrabiomed-Miguel Servet Foundation, IDISNA (Navarra's Health Research Institute), Pamplona, Spain.,Department of Haematology, Complejo Hospitalario de Navarra, Navarra Health Service, IDISNA, Pamplona, Spain.,Hammersmith Hospital-Imperial College Healthcare NHS, London, United Kingdom
| | - Natalia Ramírez
- Oncohematology Research Group, Navarrabiomed-Miguel Servet Foundation, IDISNA (Navarra's Health Research Institute), Pamplona, Spain
| |
Collapse
|
39
|
Hebeisen M, Allard M, Gannon PO, Schmidt J, Speiser DE, Rufer N. Identifying Individual T Cell Receptors of Optimal Avidity for Tumor Antigens. Front Immunol 2015; 6:582. [PMID: 26635796 PMCID: PMC4649060 DOI: 10.3389/fimmu.2015.00582] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 10/30/2015] [Indexed: 02/02/2023] Open
Abstract
Cytotoxic T cells recognize, via their T cell receptors (TCRs), small antigenic peptides presented by the major histocompatibility complex (pMHC) on the surface of professional antigen-presenting cells and infected or malignant cells. The efficiency of T cell triggering critically depends on TCR binding to cognate pMHC, i.e., the TCR–pMHC structural avidity. The binding and kinetic attributes of this interaction are key parameters for protective T cell-mediated immunity, with stronger TCR–pMHC interactions conferring superior T cell activation and responsiveness than weaker ones. However, high-avidity TCRs are not always available, particularly among self/tumor antigen-specific T cells, most of which are eliminated by central and peripheral deletion mechanisms. Consequently, systematic assessment of T cell avidity can greatly help distinguishing protective from non-protective T cells. Here, we review novel strategies to assess TCR–pMHC interaction kinetics, enabling the identification of the functionally most-relevant T cells. We also discuss the significance of these technologies in determining which cells within a naturally occurring polyclonal tumor-specific T cell response would offer the best clinical benefit for use in adoptive therapies, with or without T cell engineering.
Collapse
Affiliation(s)
- Michael Hebeisen
- Department of Oncology, Lausanne University Hospital Center (CHUV), University of Lausanne , Epalinges , Switzerland
| | - Mathilde Allard
- Department of Oncology, Lausanne University Hospital Center (CHUV), University of Lausanne , Epalinges , Switzerland
| | - Philippe O Gannon
- Department of Oncology, Lausanne University Hospital Center (CHUV), University of Lausanne , Epalinges , Switzerland
| | - Julien Schmidt
- Ludwig Center for Cancer Research, University of Lausanne , Epalinges , Switzerland ; TCMetrix Sàrl , Epalinges , Switzerland
| | - Daniel E Speiser
- Department of Oncology, Lausanne University Hospital Center (CHUV), University of Lausanne , Epalinges , Switzerland ; Ludwig Center for Cancer Research, University of Lausanne , Epalinges , Switzerland
| | - Nathalie Rufer
- Department of Oncology, Lausanne University Hospital Center (CHUV), University of Lausanne , Epalinges , Switzerland ; Ludwig Center for Cancer Research, University of Lausanne , Epalinges , Switzerland
| |
Collapse
|
40
|
Dargel C, Bassani-Sternberg M, Hasreiter J, Zani F, Bockmann JH, Thiele F, Bohne F, Wisskirchen K, Wilde S, Sprinzl MF, Schendel DJ, Krackhardt AM, Uckert W, Wohlleber D, Schiemann M, Stemmer K, Heikenwälder M, Busch DH, Richter G, Mann M, Protzer U. T Cells Engineered to Express a T-Cell Receptor Specific for Glypican-3 to Recognize and Kill Hepatoma Cells In Vitro and in Mice. Gastroenterology 2015; 149:1042-52. [PMID: 26052074 DOI: 10.1053/j.gastro.2015.05.055] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 05/16/2015] [Accepted: 05/30/2015] [Indexed: 12/21/2022]
Abstract
BACKGROUND & AIMS Cancer therapies are being developed based on our ability to direct T cells against tumor antigens. Glypican-3 (GPC3) is expressed by 75% of all hepatocellular carcinomas (HCC), but not in healthy liver tissue or other organs. We aimed to generate T cells with GPC3-specific receptors that recognize HCC and used them to eliminate GPC3-expressing xenograft tumors grown from human HCC cells in mice. METHODS We used mass spectrometry to obtain a comprehensive peptidome from GPC3-expressing hepatoma cells after immune-affinity purification of human leukocyte antigen (HLA)-A2 and bioinformatics to identify immunodominant peptides. To circumvent GPC3 tolerance resulting from fetal expression, dendritic cells from HLA-A2-negative donors were cotransfected with GPC3 and HLA-A2 RNA to stimulate and expand antigen-specific T cells. RESULTS Peptide GPC3367 was identified as a predominant peptide on HLA-A2. We used A2-GPC3367 multimers to detect, select for, and clone GPC3-specific T cells. These clones bound the A2-GPC3367 multimer and secreted interferon-γ when cultured with GPC3367, but not with control peptide-loaded cells. By genomic sequencing of these T-cell clones, we identified a gene encoding a dominant T-cell receptor. The gene was cloned and the sequence was codon optimized and expressed from a retroviral vector. Primary CD8(+) T cells that expressed the transgenic T-cell receptor specifically bound GPC3367 on HLA-A2. These T cells killed GPC3-expressing hepatoma cells in culture and slowed growth of HCC xenograft tumors in mice. CONCLUSIONS We identified a GPC3367-specific T-cell receptor. Expression of this receptor by T cells allows them to recognize and kill GPC3-positive hepatoma cells. This finding could be used to advance development of adoptive T-cell therapy for HCC.
Collapse
Affiliation(s)
- Christina Dargel
- Institute of Virology, Technische Universität München, Helmholtz Zentrum München, München, Germany
| | | | - Julia Hasreiter
- Institute of Virology, Technische Universität München, Helmholtz Zentrum München, München, Germany
| | - Fabio Zani
- Institute for Diabetes and Obesity, Helmholtz Zentrum München, Garching, Germany
| | - Jan-Hendrik Bockmann
- Institute of Virology, Technische Universität München, Helmholtz Zentrum München, München, Germany; German Center for Infection Research (DZIF), Munich Site, Germany
| | - Frank Thiele
- Institute of Virology, Technische Universität München, Helmholtz Zentrum München, München, Germany; German Center for Infection Research (DZIF), Munich Site, Germany
| | - Felix Bohne
- Institute of Virology, Technische Universität München, Helmholtz Zentrum München, München, Germany
| | - Karin Wisskirchen
- Institute of Virology, Technische Universität München, Helmholtz Zentrum München, München, Germany
| | - Susanne Wilde
- Institute of Molecular Immunology, Helmholtz Zentrum München, München, Germany
| | - Martin F Sprinzl
- I. Medizinische Klinik und Poliklinik, Universitätsmedizin der Johannes Gutenberg-Universität, Mainz, Germany
| | - Dolores J Schendel
- Institute of Molecular Immunology, Helmholtz Zentrum München, München, Germany; Clinical Cooperation Groups Antigen Specific Immunotherapy and Immune Monitoring, Technische Universität München, Helmholtz Zentrum München, München, Germany
| | - Angela M Krackhardt
- Clinical Cooperation Groups Antigen Specific Immunotherapy and Immune Monitoring, Technische Universität München, Helmholtz Zentrum München, München, Germany; 3rd Medical Department, University Hospital Rechts der Isar, Technische Universität München, München, Germany
| | - Wolfgang Uckert
- Max-Delbrück-Centrum for Molecular Medicine (MDC) and Institute of Biology, Humboldt University Berlin, Berlin-Buch, Germany
| | - Dirk Wohlleber
- Institute of Molecular Immunology, University Hospital Rechts der Isar, Technische Universität München, München, Germany
| | - Matthias Schiemann
- Clinical Cooperation Groups Antigen Specific Immunotherapy and Immune Monitoring, Technische Universität München, Helmholtz Zentrum München, München, Germany; Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München, München, Germany
| | - Kerstin Stemmer
- Institute for Diabetes and Obesity, Helmholtz Zentrum München, Garching, Germany
| | - Mathias Heikenwälder
- Institute of Virology, Technische Universität München, Helmholtz Zentrum München, München, Germany
| | - Dirk H Busch
- German Center for Infection Research (DZIF), Munich Site, Germany; Clinical Cooperation Groups Antigen Specific Immunotherapy and Immune Monitoring, Technische Universität München, Helmholtz Zentrum München, München, Germany; Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München, München, Germany
| | - Günther Richter
- Department of Pediatrics, University Hospital Rechts der Isar, Technische Universität München, München, Germany
| | - Matthias Mann
- Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Ulrike Protzer
- Institute of Virology, Technische Universität München, Helmholtz Zentrum München, München, Germany; German Center for Infection Research (DZIF), Munich Site, Germany; Clinical Cooperation Groups Antigen Specific Immunotherapy and Immune Monitoring, Technische Universität München, Helmholtz Zentrum München, München, Germany.
| |
Collapse
|
41
|
Trzonkowski P, Bacchetta R, Battaglia M, Berglund D, Bohnenkamp HR, ten Brinke A, Bushell A, Cools N, Geissler EK, Gregori S, Marieke van Ham S, Hilkens C, Hutchinson JA, Lombardi G, Madrigal JA, Marek-Trzonkowska N, Martinez-Caceres EM, Roncarolo MG, Sanchez-Ramon S, Saudemont A, Sawitzki B. Hurdles in therapy with regulatory T cells. Sci Transl Med 2015; 7:304ps18. [PMID: 26355029 DOI: 10.1126/scitranslmed.aaa7721] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Improper activation of the immune system contributes to a variety of clinical conditions, including autoimmune and allergic diseases as well as solid organ and bone marrow transplantation. One approach to counteract this activation is through adoptive therapy with regulatory T cells (Tregs). Efforts to manufacture these cells have led to good maunfacturing practice-compliant protocols, and Treg products are entering early clinical trials. Here, we report the stance of the European Union Cooperation in Science and Technology Action BM1305, "Action to Focus and Accelerate Cell-based Tolerance-inducing Therapies-A FACTT," which identifies hurdles hindering Treg clinical applications in Europe and provides possible solutions.
Collapse
Affiliation(s)
- Piotr Trzonkowski
- Medical University of Gdansk, Department of Clinical Immunology and Transplantology, Debinki 7, 80-952 Gdansk, Poland. All authors equally contributed to this work.
| | - Rosa Bacchetta
- Department of Pediatric Stem Cell Transplantation and Regenerative Medicine, Stanford School of Medicine, Standford, California, USA
| | - Manuela Battaglia
- Diabetes Research Institute (DRI), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - David Berglund
- Uppsala University, Department of Immunology, Genetics and Pathology; Section of Clinical Immunology, Rudbeck Laboratory, 751 85 Uppsala, Sweden
| | | | - Anja ten Brinke
- Department of Immunopathology, Sanquin Blood Supply, Division Research, Plesmanlaan 125, 1066 CX Amsterdam, Netherland and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Andrew Bushell
- Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Headington, Oxford OX3 9DU, UK
| | - Nathalie Cools
- Laboratory of Experimental Hematology, Vaccine & Infectious Disease Institute, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp University Hospital (UZA), Wilrijkstraat 10, B-2650 Edegem, Belgium
| | - Edward K Geissler
- Division of Experimental Surgery, Department of Surgery, University Hospital Regensburg, Regensburg, Bavaria, 93053, Germany
| | - Silvia Gregori
- San Raffaele Telethon Institute for Gene Therapy (HSR-TIGET), Division of Regenerative Medicine, Stem Cells and Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - S Marieke van Ham
- Department of Immunopathology, Sanquin Blood Supply, Division Research, Plesmanlaan 125, 1066 CX Amsterdam, Netherland and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | | | - James A Hutchinson
- Division of Experimental Surgery, Department of Surgery, University Hospital Regensburg, Regensburg, 93053, Bavaria, Germany
| | - Giovanna Lombardi
- Medical Research Council (MRC) Centre in Transplantation, Kings College London, Guy's Hospital, Great Maze Pond, London SE1 9RT, UK
| | - J Alejandro Madrigal
- Anthony Nolan Research Institute, University College London (UCL) Royal Free Hospital Campus, 77c Fleet Road, London NW3 2QG, UK
| | | | - Eva M Martinez-Caceres
- Immunology Division, Germans Trias i Pujol University Hospital. Campus Can Ruti. Department of Cellular Biology, Physiology, and Immunology, Universitat Autònoma Barcelona 08916, Badalona, Barcelona, Spain
| | - Maria Grazia Roncarolo
- San Raffaele Telethon Institute for Gene Therapy (HSR-TIGET), Division of Regenerative Medicine, Stem Cells and Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy. Department of Pediatric Stem Cell Transplantation and Regenerative Medicine, Stanford School of Medicine, Stanford, California, USA
| | - Silvia Sanchez-Ramon
- Departamento de Inmunología Clínica, Hospital Clínico San Carlos, Calle Profesor Martín Lagos S/N, E- 28040 Madrid, Spain
| | - Aurore Saudemont
- Anthony Nolan Research Institute, University College London (UCL) Royal Free Hospital Campus, 77c Fleet Road, London NW3 2QG, UK
| | - Birgit Sawitzki
- AG Transplantationstoleranz, Charite Universitätsmedizin, Institut für Med. Imunologie, Augustenburgerplatz 1, 13353 Berlin, Germany
| |
Collapse
|
42
|
Phetsouphanh C, Zaunders JJ, Kelleher AD. Detecting Antigen-Specific T Cell Responses: From Bulk Populations to Single Cells. Int J Mol Sci 2015; 16:18878-93. [PMID: 26274954 PMCID: PMC4581277 DOI: 10.3390/ijms160818878] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 07/29/2015] [Accepted: 08/03/2015] [Indexed: 12/18/2022] Open
Abstract
A new generation of sensitive T cell-based assays facilitates the direct quantitation and characterization of antigen-specific T cell responses. Single-cell analyses have focused on measuring the quality and breadth of a response. Accumulating data from these studies demonstrate that there is considerable, previously-unrecognized, heterogeneity. Standard assays, such as the ICS, are often insufficient for characterization of rare subsets of cells. Enhanced flow cytometry with imaging capabilities enables the determination of cell morphology, as well as the spatial localization of the protein molecules within a single cell. Advances in both microfluidics and digital PCR have improved the efficiency of single-cell sorting and allowed multiplexed gene detection at the single-cell level. Delving further into the transcriptome of single-cells using RNA-seq is likely to reveal the fine-specificity of cellular events such as alternative splicing (i.e., splice variants) and allele-specific expression, and will also define the roles of new genes. Finally, detailed analysis of clonally related antigen-specific T cells using single-cell TCR RNA-seq will provide information on pathways of differentiation of memory T cells. With these state of the art technologies the transcriptomics and genomics of Ag-specific T cells can be more definitively elucidated.
Collapse
Affiliation(s)
| | - John James Zaunders
- Kirby Institute, University of New South Wales, 2031 Sydney, Australia.
- Centre for Applied Medical Research, St. Vincent's Hospital, 2010 Sydney, Australia.
| | - Anthony Dominic Kelleher
- Kirby Institute, University of New South Wales, 2031 Sydney, Australia.
- Centre for Applied Medical Research, St. Vincent's Hospital, 2010 Sydney, Australia.
| |
Collapse
|
43
|
Tzannou I, Leen AM. Preventing stem cell transplantation-associated viral infections using T-cell therapy. Immunotherapy 2015; 7:793-810. [PMID: 26250410 DOI: 10.2217/imt.15.43] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Hematopoietic stem cell transplantation is the treatment of choice for many hematologic malignancies and genetic diseases. However, viral infections continue to account for substantial post-transplant morbidity and mortality. While antiviral drugs are available against some viruses, they are associated with significant side effects and are frequently ineffective. This review focuses on the immunotherapeutic strategies that have been used to prevent and treat infections over the past 20 years and outlines different refinements that have been introduced with the goal of moving this therapy beyond specialized academic centers.
Collapse
Affiliation(s)
- Ifigeneia Tzannou
- Center for Cell & Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital & Texas Children's Hospital, 1102 Bates Street, Suite 1770, Houston, TX 77030, USA
| | - Ann M Leen
- Center for Cell & Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital & Texas Children's Hospital, 1102 Bates Street, Suite 1770, Houston, TX 77030, USA
| |
Collapse
|
44
|
Beloki L, Ciaurriz M, Mansilla C, Zabalza A, Perez-Valderrama E, Samuel ER, Lowdell MW, Ramirez N, Olavarria E. Assessment of the effector function of CMV-specific CTLs isolated using MHC-multimers from granulocyte-colony stimulating factor mobilized peripheral blood. J Transl Med 2015; 13:165. [PMID: 25990023 PMCID: PMC4458005 DOI: 10.1186/s12967-015-0515-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Accepted: 05/04/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Adoptive transfer of CMV-specific T cells has shown promising results in preventing pathological effects caused by opportunistic CMV infection in immunocompromised patients following allogeneic hematopoietic stem cell transplantation. The majority of studies have used steady-state leukapheresis for CMV-reactive product manufacture, a collection obtained prior to or months after G-CSF mobilization, but the procurement of this additional sample is often not available in the unrelated donor setting. If the cellular product for adoptive immunotherapy could be generated from the same G-CSF mobilized collection, the problems associated with the additional harvest could be overcome. Despite the tolerogenic effects associated with G-CSF mobilization, recent studies described that CMV-primed T cells generated from mobilized donors remain functional. METHODS MHC-multimers are potent tools that allow the rapid production of antigen-specific CTLs. Therefore, in the present study we have assessed the feasibility and efficacy of CMV-specific CTL manufacture from G-CSF mobilized apheresis using MHC-multimers. RESULTS CMV-specific CTLs can be efficiently isolated from G-CSF mobilized samples with Streptamers and are able to express activation markers and produce cytokines in response to antigenic stimulation. However, this anti-viral functionality is moderately reduced when compared to non-mobilized products. CONCLUSIONS The translation of Streptamer technology for the isolation of anti-viral CTLs from G-CSF mobilized PBMCs into clinical practice would widen the number of patients that could benefit from this therapeutic strategy, although our results need to be taken into consideration before the infusion of antigen-specific T cells obtained from G-CSF mobilized samples.
Collapse
Affiliation(s)
- Lorea Beloki
- Oncohematology Research Group, Navarrabiomed - Miguel Servet Foundation, IDISNA (Navarra's Health Research Institute), Irunlarrea 3, 31008, Pamplona, Spain.
| | - Miriam Ciaurriz
- Oncohematology Research Group, Navarrabiomed - Miguel Servet Foundation, IDISNA (Navarra's Health Research Institute), Irunlarrea 3, 31008, Pamplona, Spain.
| | - Cristina Mansilla
- Oncohematology Research Group, Navarrabiomed - Miguel Servet Foundation, IDISNA (Navarra's Health Research Institute), Irunlarrea 3, 31008, Pamplona, Spain.
| | - Amaya Zabalza
- Oncohematology Research Group, Navarrabiomed - Miguel Servet Foundation, IDISNA (Navarra's Health Research Institute), Irunlarrea 3, 31008, Pamplona, Spain.
| | - Estela Perez-Valderrama
- Oncohematology Research Group, Navarrabiomed - Miguel Servet Foundation, IDISNA (Navarra's Health Research Institute), Irunlarrea 3, 31008, Pamplona, Spain.
| | - Edward R Samuel
- Department of Haematology, University College London Medical School, University College London, London, UK.
| | - Mark W Lowdell
- Department of Haematology, University College London Medical School, University College London, London, UK.
| | - Natalia Ramirez
- Oncohematology Research Group, Navarrabiomed - Miguel Servet Foundation, IDISNA (Navarra's Health Research Institute), Irunlarrea 3, 31008, Pamplona, Spain.
| | - Eduardo Olavarria
- Oncohematology Research Group, Navarrabiomed - Miguel Servet Foundation, IDISNA (Navarra's Health Research Institute), Irunlarrea 3, 31008, Pamplona, Spain. .,Department of Haematology, Complejo Hospitalario de Navarra, Navarra Health Service, IDISNA (Navarra's Health Research Institute), Pamplona, Spain.
| |
Collapse
|
45
|
Straetemans T, Gründer C, Heijhuurs S, Hol S, Slaper-Cortenbach I, Bönig H, Sebestyen Z, Kuball J. Untouched GMP-Ready Purified Engineered Immune Cells to Treat Cancer. Clin Cancer Res 2015; 21:3957-68. [PMID: 25991821 DOI: 10.1158/1078-0432.ccr-14-2860] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 05/04/2015] [Indexed: 11/16/2022]
Abstract
PURPOSE Engineering T cells with receptors to redirect the immune system against cancer has most recently been described as a scientific breakthrough. However, a main challenge remains the GMP-grade purification of immune cells selectively expressing the introduced receptor in order to reduce potential side effects due to poorly or nonengineered cells. EXPERIMENTAL DESIGN In order to test a novel purification strategy, we took advantage of a model γδT cell receptor (TCR), naturally interfering with endogenous TCR expression and designed the optimal retroviral expression cassette to achieve maximal interference with endogenous TCR chains. Following retroviral transduction, nonengineered and poorly engineered immune cells characterized by a high endogenous αβTCR expression were efficiently depleted with GMP-grade anti-αβTCR beads. Next, the engineered immune cells were validated for TCR expression, function against a panel of tumor cell lines and primary tumors and potential allo-reactivity. Engineered immune cells were further validated in two humanized mouse tumor models. RESULTS The untouched enrichment of engineered immune cells translated into highly purified receptor-engineered cells with strong antitumor reactivity both in vitro and in vivo. Importantly, this approach eliminated residual allo-reactivity of engineered immune cells. Our data demonstrate that even with long-term suboptimal interference with endogenous TCR chains such as in resting cells, allo-reactivity remained absent and tumor control preserved. CONCLUSIONS We present a novel enrichment method for the production of untouched engineered immune cells, ready to be translated into a GMP-grade method and potentially applicable to all receptor-modified cells even if interference with endogenous TCR chains is far from complete.
Collapse
Affiliation(s)
- Trudy Straetemans
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Cordula Gründer
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Sabine Heijhuurs
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Samantha Hol
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| | | | - Halvard Bönig
- Institute for Transfusion Medicine and Immunohematology, Johann-Wolfgang-Goethe University, Frankfurt, Germany
| | - Zsolt Sebestyen
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Jürgen Kuball
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands.
| |
Collapse
|
46
|
Wang X, Rivière I. Manufacture of tumor- and virus-specific T lymphocytes for adoptive cell therapies. Cancer Gene Ther 2015; 22:85-94. [PMID: 25721207 DOI: 10.1038/cgt.2014.81] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 12/10/2014] [Indexed: 12/19/2022]
Abstract
Adoptive transfer of tumor-infiltrating lymphocytes (TILs) and genetically engineered T lymphocytes expressing chimeric antigen receptors (CARs) or conventional alpha/beta T-cell receptors (TCRs), collectively termed adoptive cell therapy (ACT), is an emerging novel strategy to treat cancer patients. Application of ACT has been constrained by the ability to isolate and expand functional tumor-reactive T cells. The transition of ACT from a promising experimental regimen to an established standard of care treatment relies largely on the establishment of safe, efficient, robust and cost-effective cell manufacturing protocols. The manufacture of cellular products under current good manufacturing practices (cGMPs) has a critical role in the process. Herein, we review current manufacturing methods for the large-scale production of clinical-grade TILs, virus-specific and genetically modified CAR or TCR transduced T cells in the context of phase I/II clinical trials as well as the regulatory pathway to get these complex personalized cellular products to the clinic.
Collapse
Affiliation(s)
- X Wang
- 1] Cell Therapy and Cell Engineering Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA [2] Molecular Pharmacology and Chemistry Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - I Rivière
- 1] Cell Therapy and Cell Engineering Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA [2] Molecular Pharmacology and Chemistry Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA [3] Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
47
|
Abstract
Serious viral infections are a common cause of morbidity and mortality after allogeneic stem cell transplantation. They occur in the majority of allograft recipients and are fatal in 17–20%. These severe infections may be prolonged or recurrent and add substantially to the cost, both human and financial, of the procedure. Many features of allogeneic stem cell transplantation contribute to this high rate of viral disease. The cytotoxic and immunosuppressive drugs administered pretransplant to eliminate the host hematopoietic/immune system and any associated malignancy, the delay in recapitulating immune ontogeny post‐transplant, the immunosuppressive drugs given to prevent graft versus host disease (GvHD), and the effects of GvHD itself, all serve to make stem cell transplant recipients vulnerable to disease from endogenous (latent) and exogenous (community) viruses, and to be incapable of controlling them as quickly and effectively as most normal individuals.
Collapse
Affiliation(s)
- Ann M Leen
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital and Texas Children's Hospital, Houston, TX, USA
| | | | | |
Collapse
|
48
|
Beloki L, Ciaurriz M, Mansilla C, Zabalza A, Perez-Valderrama E, Samuel ER, Lowdell MW, Ramirez N, Olavarria E. CMV-specific T cell isolation from G-CSF mobilized peripheral blood: depletion of myeloid progenitors eliminates non-specific binding of MHC-multimers. J Transl Med 2014; 12:317. [PMID: 25406933 PMCID: PMC4243324 DOI: 10.1186/s12967-014-0317-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 11/04/2014] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Cytomegalovirus (CMV)-specific T cell infusion to immunocompromised patients following allogeneic Hematopoietic Stem Cell Transplantation (allo-HSCT) is able to induce a successful anti-viral response. These cells have classically been manufactured from steady-state apheresis samples collected from the donor in an additional harvest prior to G-CSF mobilization, treatment that induces hematopoietic stem cell (HSC) mobilization to the periphery. However, two closely-timed cellular collections are not usually available in the unrelated donor setting, which limits the accessibility of anti-viral cells for adoptive immunotherapy. CMV-specific cytotoxic T cell (CTL) manufacture from the same G-CSF mobilized donor stem cell harvest offers great regulatory advantages, but the isolation using MHC-multimers is hampered by the high non-specific binding to myeloid progenitors, which reduces the purity of the cellular product. METHODS In the present study we describe an easy and fast method based on plastic adherence to remove myeloid cell subsets from 11 G-CSF mobilized donor samples. CMV-specific CTLs were isolated from the non-adherent fraction using pentamers and purity and yield of the process were compared to products obtained from unmanipulated samples. RESULTS After the elimination of unwanted cell subtypes, non-specific binding of pentamers was notably reduced. Accordingly, following the isolation process the purity of the obtained cellular product was significantly improved. CONCLUSIONS G-CSF mobilized leukapheresis samples can successfully be used to isolate antigen-specific T cells with MHC-multimers to be adoptively transferred following allo-HSCT, widening the accessibility of this therapy in the unrelated donor setting. The combination of the clinically translatable plastic adherence process to the antigen-specific cell isolation using MHC-multimers improves the quality of the therapeutic cellular product, thereby reducing the clinical negative effects associated with undesired alloreactive cell infusion.
Collapse
Affiliation(s)
- Lorea Beloki
- Oncohematology Research Group, Navarrabiomed - Miguel Servet Foundation, Irunlarrea 3, 31008, Pamplona, Spain.
| | - Miriam Ciaurriz
- Oncohematology Research Group, Navarrabiomed - Miguel Servet Foundation, Irunlarrea 3, 31008, Pamplona, Spain.
| | - Cristina Mansilla
- Oncohematology Research Group, Navarrabiomed - Miguel Servet Foundation, Irunlarrea 3, 31008, Pamplona, Spain.
| | - Amaya Zabalza
- Oncohematology Research Group, Navarrabiomed - Miguel Servet Foundation, Irunlarrea 3, 31008, Pamplona, Spain.
| | - Estela Perez-Valderrama
- Oncohematology Research Group, Navarrabiomed - Miguel Servet Foundation, Irunlarrea 3, 31008, Pamplona, Spain.
| | - Edward R Samuel
- Department of Haematology, University College London Medical School, University College London, London, UK.
| | - Mark W Lowdell
- Department of Haematology, University College London Medical School, University College London, London, UK.
| | - Natalia Ramirez
- Oncohematology Research Group, Navarrabiomed - Miguel Servet Foundation, Irunlarrea 3, 31008, Pamplona, Spain.
| | - Eduardo Olavarria
- Oncohematology Research Group, Navarrabiomed - Miguel Servet Foundation, Irunlarrea 3, 31008, Pamplona, Spain. .,Department of Haematology, Complejo Hospitalario de Navarra, Navarra Health Service, Pamplona, Spain.
| |
Collapse
|
49
|
Pollack SM, Jones RL, Farrar EA, Lai IP, Lee SM, Cao J, Pillarisetty VG, Hoch BL, Gullett A, Bleakley M, Conrad EU, Eary JF, Shibuya KC, Warren EH, Carstens JN, Heimfeld S, Riddell SR, Yee C. Tetramer guided, cell sorter assisted production of clinical grade autologous NY-ESO-1 specific CD8(+) T cells. J Immunother Cancer 2014; 2:36. [PMID: 25317334 PMCID: PMC4196009 DOI: 10.1186/s40425-014-0036-y] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 09/09/2014] [Indexed: 12/31/2022] Open
Abstract
Background Adoptive T cell therapy represents an attractive modality for the treatment of patients with cancer. Peripheral blood mononuclear cells have been used as a source of antigen specific T cells but the very low frequency of T cells recognizing commonly expressed antigens such as NY-ESO-1 limit the applicability of this approach to other solid tumors. To overcome this, we tested a strategy combining IL-21 modulation during in vitro stimulation with first-in-class use of tetramer-guided cell sorting to generate NY-ESO-1 specific cytotoxic T lymphocytes (CTL). Methods CTL generation was evaluated in 6 patients with NY-ESO-1 positive sarcomas, under clinical manufacturing conditions and characterized for phenotypic and functional properties. Results Following in vitro stimulation, T cells stained with NY-ESO-1 tetramer were enriched from frequencies as low as 0.4% to >90% after single pass through a clinical grade sorter. NY-ESO-1 specific T cells were generated from all 6 patients. The final products expanded on average 1200-fold to a total of 36 billion cells, were oligoclonal and contained 67-97% CD8+, tetramer+ T cells with a memory phenotype that recognized endogenous NY-ESO-1. Conclusion This study represents the first series using tetramer-guided cell sorting to generate T cells for adoptive therapy. This approach, when used to target more broadly expressed tumor antigens such as WT-1 and additional Cancer-Testis antigens will enhance the scope and feasibility of adoptive T cell therapy. Electronic supplementary material The online version of this article (doi:10.1186/s40425-014-0036-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Seth M Pollack
- Clinical Research Division, D3-100 Fred Hutchinson Cancer Research Center, 1100 Fairview Ave, Seattle, WA 98109 USA ; Department of Medicine, University of Washington, Seattle, WA USA
| | - Robin L Jones
- Clinical Research Division, D3-100 Fred Hutchinson Cancer Research Center, 1100 Fairview Ave, Seattle, WA 98109 USA ; Department of Medicine, University of Washington, Seattle, WA USA
| | - Erik A Farrar
- Clinical Research Division, D3-100 Fred Hutchinson Cancer Research Center, 1100 Fairview Ave, Seattle, WA 98109 USA
| | - Ivy P Lai
- Clinical Research Division, D3-100 Fred Hutchinson Cancer Research Center, 1100 Fairview Ave, Seattle, WA 98109 USA ; Institute for Advanced Study, Technical University of Munich, Munich, Germany
| | - Sylvia M Lee
- Clinical Research Division, D3-100 Fred Hutchinson Cancer Research Center, 1100 Fairview Ave, Seattle, WA 98109 USA ; Department of Medicine, University of Washington, Seattle, WA USA
| | - Jianhong Cao
- Clinical Research Division, D3-100 Fred Hutchinson Cancer Research Center, 1100 Fairview Ave, Seattle, WA 98109 USA
| | - Venu G Pillarisetty
- Clinical Research Division, D3-100 Fred Hutchinson Cancer Research Center, 1100 Fairview Ave, Seattle, WA 98109 USA ; Department of Surgery, University of Washington, Seattle, WA USA
| | - Benjamin L Hoch
- Department of Pathology, University of Washington, Seattle, WA USA
| | - Ashley Gullett
- Department of Pathology, University of Washington, Seattle, WA USA
| | - Marie Bleakley
- Clinical Research Division, D3-100 Fred Hutchinson Cancer Research Center, 1100 Fairview Ave, Seattle, WA 98109 USA ; Department of Pediatrics, University of Washington, Seattle, WA USA
| | - Ernest U Conrad
- Department of Orthopedics, University of Washington, Seattle, WA USA
| | - Janet F Eary
- Department of Radiology, University of Alabama, Birmingham, AL USA
| | - Kendall C Shibuya
- Clinical Research Division, D3-100 Fred Hutchinson Cancer Research Center, 1100 Fairview Ave, Seattle, WA 98109 USA
| | - Edus H Warren
- Clinical Research Division, D3-100 Fred Hutchinson Cancer Research Center, 1100 Fairview Ave, Seattle, WA 98109 USA ; Department of Medicine, University of Washington, Seattle, WA USA
| | - Jason N Carstens
- Clinical Research Division, D3-100 Fred Hutchinson Cancer Research Center, 1100 Fairview Ave, Seattle, WA 98109 USA
| | - Shelly Heimfeld
- Clinical Research Division, D3-100 Fred Hutchinson Cancer Research Center, 1100 Fairview Ave, Seattle, WA 98109 USA
| | - Stanley R Riddell
- Clinical Research Division, D3-100 Fred Hutchinson Cancer Research Center, 1100 Fairview Ave, Seattle, WA 98109 USA ; Department of Medicine, University of Washington, Seattle, WA USA ; Institute for Advanced Study, Technical University of Munich, Munich, Germany
| | - Cassian Yee
- Clinical Research Division, D3-100 Fred Hutchinson Cancer Research Center, 1100 Fairview Ave, Seattle, WA 98109 USA ; Department of Medicine, University of Washington, Seattle, WA USA ; Department of Melanoma Medical Oncology, UT MD Anderson Cancer Center, 7455 Fannin St, Unit 904, Houston, TX 77054 USA
| |
Collapse
|
50
|
Papadopoulou A, Gerdemann U, Katari UL, Tzannou I, Liu H, Martinez C, Leung K, Carrum G, Gee AP, Vera JF, Krance RA, Brenner MK, Rooney CM, Heslop HE, Leen AM. Activity of broad-spectrum T cells as treatment for AdV, EBV, CMV, BKV, and HHV6 infections after HSCT. Sci Transl Med 2014; 6:242ra83. [PMID: 24964991 PMCID: PMC4181611 DOI: 10.1126/scitranslmed.3008825] [Citation(s) in RCA: 307] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
It remains difficult to treat the multiplicity of distinct viral infections that afflict immunocompromised patients. Adoptive transfer of virus-specific T cells (VSTs) can be safe and effective, but such cells have been complex to prepare and limited in antiviral range. We now demonstrate the feasibility and clinical utility of rapidly generated single-culture VSTs that recognize 12 immunogenic antigens from five viruses (Epstein-Barr virus, adenovirus, cytomegalovirus, BK virus, and human herpesvirus 6) that frequently cause disease in immunocompromised patients. When administered to 11 recipients of allogeneic transplants, 8 of whom had up to four active infections with the targeted viruses, these VSTs proved safe in all subjects and produced an overall 94% virological and clinical response rate that was sustained long-term.
Collapse
Affiliation(s)
- Anastasia Papadopoulou
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, Houston Methodist Hospital, Houston, TX 77030, USA
| | - Ulrike Gerdemann
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, Houston Methodist Hospital, Houston, TX 77030, USA
| | - Usha L Katari
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, Houston Methodist Hospital, Houston, TX 77030, USA
| | - Ifigenia Tzannou
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, Houston Methodist Hospital, Houston, TX 77030, USA
| | - Hao Liu
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, Houston Methodist Hospital, Houston, TX 77030, USA
| | - Caridad Martinez
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, Houston Methodist Hospital, Houston, TX 77030, USA
| | - Kathryn Leung
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, Houston Methodist Hospital, Houston, TX 77030, USA
| | - George Carrum
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, Houston Methodist Hospital, Houston, TX 77030, USA
| | - Adrian P Gee
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, Houston Methodist Hospital, Houston, TX 77030, USA
| | - Juan F Vera
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, Houston Methodist Hospital, Houston, TX 77030, USA
| | - Robert A Krance
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, Houston Methodist Hospital, Houston, TX 77030, USA
| | - Malcolm K Brenner
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, Houston Methodist Hospital, Houston, TX 77030, USA
| | - Cliona M Rooney
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, Houston Methodist Hospital, Houston, TX 77030, USA
| | - Helen E Heslop
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, Houston Methodist Hospital, Houston, TX 77030, USA
| | - Ann M Leen
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, Houston Methodist Hospital, Houston, TX 77030, USA.
| |
Collapse
|