1
|
Gon Y, Maruoka S, Mizumura K. Omalizumab and IgE in the Control of Severe Allergic Asthma. Front Pharmacol 2022; 13:839011. [PMID: 35359867 PMCID: PMC8960644 DOI: 10.3389/fphar.2022.839011] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 02/15/2022] [Indexed: 11/19/2022] Open
Abstract
Omalizumab, a human immunoglobulin (Ig)G1 antibody against IgE, is a therapeutic agent for bronchial asthma. The Global Initiative for Asthma guidelines indicate that the use of omalizumab should be considered as an option in step 5 of treatment for patients with the most severe type of bronchial asthma. In patients with atopic asthma who are at a high risk of exacerbation, and in whom symptoms are poorly controlled despite treatment with inhaled corticosteroids, omalizumab is one of the few drugs that improves symptoms, reduces the risk of exacerbation, and improves the quality of life while offering a high level of safety. On the other hand, the associated treatment costs are high, and there are no clear methods to identify responders. A recent study suggested that evaluating the therapeutic effects and monitoring the pharmacokinetics of omalizumab could improve the success of omalizumab therapy. This review outlines the relationship between IgE-targeted therapy and the serum level of IgE to enhance the current understanding of the mechanism of omalizumab therapy. It also describes the clinical significance of measuring serum free IgE levels and monitoring omalizumab therapy.
Collapse
|
2
|
Wei SC, Hsu WT, Chiu CH, Chang FY, Lo HR, Liao CY, Yang HI, Chou YC, Tsai CH, Chao YC. An Integrated Platform for Serological Detection and Vaccination of COVID-19. Front Immunol 2022; 12:771011. [PMID: 35003088 PMCID: PMC8734241 DOI: 10.3389/fimmu.2021.771011] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/25/2021] [Indexed: 12/13/2022] Open
Abstract
Coronavirus Disease 2019 (COVID-19), caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), is an ongoing pandemic. Detection and vaccination are essential for disease control, but they are distinct and complex operations that require significant improvements. Here, we developed an integrated detection and vaccination system to greatly simplify these efforts. We constructed recombinant baculoviruses to separately display the nucleocapsid (N) and spike (S) proteins of SARS-CoV-2. Insect cells infected by the recombinant baculoviruses were used to generate a cell-based system to accurately detect patient serum. Notably, although well-recognized by our newly developed detection system in which S-displaying insect cells acted as antigen, anti-S antibodies from many patients were barely detectable by Western blot, evidencing that COVID-19 patients primarily produce conformation-dependent anti-S antibodies. Furthermore, the same baculovirus constructs can display N (N-Bac) or S (S-Bac) on the baculovirus envelope and serve as vector vaccines. Animal experiments show that S-Bac or N-Bac immunization in mice elicited a strong and specific antibody response, and S-Bac in particular stimulated effective neutralizing antibodies without the need for adjuvant. Our integrated system maintains antigen conformation and membrane structure to facilitate serum detection and antibody stimulation. Thus, compared with currently available technologies, our system represents a simplified and efficient platform for better SARS-CoV-2 detection and vaccination.
Collapse
Affiliation(s)
- Sung-Chan Wei
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Wei-Ting Hsu
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Chun-Hsiang Chiu
- Division of Infectious Disease and Tropical Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Feng-Yee Chang
- Division of Infectious Disease and Tropical Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Huei-Ru Lo
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Chuan-Yu Liao
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Hwai-I Yang
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Yu-Chi Chou
- Biomedical Translation Research Center, Academia Sinica, Taipei, Taiwan
| | - Chih-Hsuan Tsai
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Yu-Chan Chao
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan.,Department of Entomology, College of Agriculture and Nature Resources, National Chung Hsing University, Taichung, Taiwan.,Department of Entomology, College of Bioresources and Agriculture, National Taiwan University, Taipei, Taiwan.,Department of Plant Pathology and Microbiology, College of Bioresources and Agriculture, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
3
|
Establishment of HLA class I and MICA/B null HEK-293T panel expressing single MICA alleles to detect anti-MICA antibodies. Sci Rep 2021; 11:15716. [PMID: 34344955 PMCID: PMC8333366 DOI: 10.1038/s41598-021-95058-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 07/16/2021] [Indexed: 12/05/2022] Open
Abstract
Pre- and post-transplantation anti-MICA antibody detection development are associated with an increased rejection risk and low graft survival. We previously generated HLA class I null HEK-293T using CRISPR/Cas9, while MICA and MICB genes were removed in this study. A panel of 11 cell lines expressing single MICA alleles was established. Anti-MICA antibody in the sera of kidney transplant patients was determined using flow cytometric method (FCM) and the Luminex method. In the 44 positive sera, the maximum FCM value was 2879 MFI compared to 28,135 MFI of Luminex method. Eleven sera (25%) were determined as positive by FCM and 32 sera (72%) were positive by the Luminex method. The sum of total MICA antigens, MICA*002, *004, *009, *019, and *027 correlation showed a statistically significant between the two methods (P = 0.0412, P = 0.0476, P = 0.0019, P = 0.0098, P = 0.0467, and P = 0.0049). These results demonstrated that HEK-293T-based engineered cell lines expressing single MICA alleles were suitable for measuring specific antibodies against MICA antigens in the sera of transplant patients. Studies of antibodies to MICA antigens may help to understand responses in vivo and increase clinical relevance at the cellular level such as complement-dependent cytotoxicity.
Collapse
|
4
|
Maghodia AB, Geisler C, Jarvis DL. A new nodavirus-negative Trichoplusia ni cell line for baculovirus-mediated protein production. Biotechnol Bioeng 2020; 117:3248-3264. [PMID: 32662870 DOI: 10.1002/bit.27494] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/21/2020] [Accepted: 07/12/2020] [Indexed: 12/22/2022]
Abstract
Cell lines derived from Trichoplusia ni (Tn) are widely used as hosts in the baculovirus-insect cell system (BICS). One advantage of Tn cell lines is they can produce recombinant proteins at higher levels than cell lines derived from other insects. However, Tn cell lines are persistently infected with an alphanodavirus, Tn5 cell-line virus (TnCLV), which reduces their utility as a host for the BICS. Several groups have isolated TnCLV-negative Tn cell lines, but none were thoroughly characterized and shown to be free of other adventitious viruses. Thus, we isolated and extensively characterized a new TnCLV-negative line, Tn-nodavirus-negative (Tn-NVN). Tn-NVN cells have no detectable TnCLV, no other previously identified viral contaminants of lepidopteran insect cell lines, and no sequences associated with any replicating virus or other viral adventitious agents. Tn-NVN cells tested negative for >60 species of Mycoplasma, Acholeplasma, Spiroplasma, and Ureaplasma. Finally, Tn-NVN cells grow well as a single-cell suspension culture in serum-free medium, produce recombinant proteins at levels similar to High Five™ cells, and do not produce recombinant glycoproteins with immunogenic core α1,3-fucosylation. Thus, Tn-NVN is a new, well-characterized TnCLV-negative cell line with several other features enhancing its utility as a host for the BICS.
Collapse
Affiliation(s)
| | | | - Donald L Jarvis
- GlycoBac, LLC, Laramie, Wyoming.,Department of Molecular Biology, University of Wyoming, Laramie, Wyoming
| |
Collapse
|
5
|
Rowland RJ, Wu L, Liu F, Davies GJ. A baculoviral system for the production of human β-glucocerebrosidase enables atomic resolution analysis. Acta Crystallogr D Struct Biol 2020; 76:565-580. [PMID: 32496218 PMCID: PMC7271948 DOI: 10.1107/s205979832000501x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 04/09/2020] [Indexed: 11/18/2022] Open
Abstract
The lysosomal glycoside hydrolase β-glucocerebrosidase (GBA; sometimes called GBA1 or GCase) catalyses the hydrolysis of glycosphingolipids. Inherited deficiencies in GBA cause the lysosomal storage disorder Gaucher disease (GD). Consequently, GBA is of considerable medical interest, with continuous advances in the development of inhibitors, chaperones and activity-based probes. The development of new GBA inhibitors requires a source of active protein; however, the majority of structural and mechanistic studies of GBA today rely on clinical enzyme-replacement therapy (ERT) formulations, which are incredibly costly and are often difficult to obtain in adequate supply. Here, the production of active crystallizable GBA in insect cells using a baculovirus expression system is reported, providing a nonclinical source of recombinant GBA with comparable activity and biophysical properties to ERT preparations. Furthermore, a novel crystal form of GBA is described which diffracts to give a 0.98 Å resolution unliganded structure. A structure in complex with the inactivator 2,4-dinitrophenyl-2-deoxy-2-fluoro-β-D-glucopyranoside was also obtained, demonstrating the ability of this GBA formulation to be used in ligand-binding studies. In light of its purity, stability and activity, the GBA production protocol described here should circumvent the need for ERT formulations for structural and biochemical studies and serve to support GD research.
Collapse
Affiliation(s)
- Rhianna J. Rowland
- Department of Chemistry, York Structural Biology Laboratory, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Liang Wu
- Department of Chemistry, York Structural Biology Laboratory, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Feng Liu
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Gideon J. Davies
- Department of Chemistry, York Structural Biology Laboratory, University of York, Heslington, York YO10 5DD, United Kingdom
| |
Collapse
|
6
|
Palomares LA, Srivastava IK, Ramírez OT, Cox MMJ. Glycobiotechnology of the Insect Cell-Baculovirus Expression System Technology. ADVANCES IN GLYCOBIOTECHNOLOGY 2018; 175:71-92. [DOI: 10.1007/10_2018_61] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
7
|
Deshpande CN, Xin V, Lu Y, Savage T, Anderson GJ, Jormakka M. Large scale expression and purification of secreted mouse hephaestin. PLoS One 2017; 12:e0184366. [PMID: 28880952 PMCID: PMC5589216 DOI: 10.1371/journal.pone.0184366] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 08/22/2017] [Indexed: 01/04/2023] Open
Abstract
Hephaestin is a large membrane-anchored multicopper ferroxidase involved in mammalian iron metabolism. Newly absorbed dietary iron is exported across the enterocyte basolateral membrane by the ferrous iron transporter ferroportin, but hephaestin increases the efficiency of this process by oxidizing the transported iron to its ferric form and promoting its release from ferroportin. Deletion or mutation of the hephaestin gene leads to systemic anemia with iron accumulation in the intestinal epithelium. The crystal structure of human ceruloplasmin, another multicopper ferroxidase with 50% sequence identity to hephaestin, has provided a framework for comparative analysis and modelling. However, detailed structural information for hephaestin is still absent, leaving questions relating to metal coordination and binding sites unanswered. To obtain structural information for hephaestin, a reliable protocol for large-scale purification is required. Here, we present an expression and purification protocol of soluble mouse hephaestin, yielding milligram amounts of enzymatically active, purified protein using the baculovirus/insect cell system.
Collapse
Affiliation(s)
- Chandrika N. Deshpande
- Structural Biology Program, Centenary Institute, Sydney, New South Wales, Australia
- Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Vicky Xin
- Structural Biology Program, Centenary Institute, Sydney, New South Wales, Australia
- Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Yan Lu
- Iron Metabolism Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Tom Savage
- School of Geosciences, University of Sydney, Sydney, New South Wales, Australia
| | - Gregory J. Anderson
- Iron Metabolism Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- School of Chemistry and Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - Mika Jormakka
- Structural Biology Program, Centenary Institute, Sydney, New South Wales, Australia
- Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
- * E-mail:
| |
Collapse
|
8
|
The underestimated N-glycomes of lepidopteran species. Biochim Biophys Acta Gen Subj 2017; 1861:699-714. [PMID: 28077298 DOI: 10.1016/j.bbagen.2017.01.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 12/23/2016] [Accepted: 01/06/2017] [Indexed: 11/20/2022]
Abstract
BACKGROUND Insects are significant to the environment, agriculture, health and biotechnology. Many of these aspects display some relationship to glycosylation, e.g., in case of pathogen binding or production of humanised antibodies; for a long time, it has been considered that insect N-glycosylation potentials are rather similar and simple, but as more species are glycomically analysed in depth, it is becoming obvious that there is indeed a large structural diversity and interspecies variability. METHODS Using an off-line LC-MALDI-TOF MS approach, we have analysed the N-glycomes of two lepidopteran species (the cabbage looper Trichoplusia ni and the gypsy moth Lymantria dispar) as well as of the commonly-used T. ni High Five cell line. RESULTS We detected not only sulphated, glucuronylated, core difucosylated and Lewis-like antennal fucosylated structures, but also the zwitterion phosphorylcholine on antennal GlcNAc residues, a modification otherwise familiar from nematodes; in L. dispar, N-glycans with glycolipid-like antennae containing α-linked N-acetylgalactosamine were also revealed. CONCLUSION The lepidopteran glycomes analysed not only display core α1,3-fucosylation, which is foreign to mammals, but also up to 5% anionic and/or zwitterionic glycans previously not found in these species. SIGNIFICANCE The occurrence of anionic and zwitterionic glycans in the Lepidoptera data is not only of glycoanalytical and evolutionary interest, but is of biotechnological relevance as lepidopteran cell lines are potential factories for recombinant glycoprotein production.
Collapse
|
9
|
Bantleon F, Wolf S, Seismann H, Dam S, Lorentzen A, Miehe M, Jabs F, Jakob T, Plum M, Spillner E. Human IgE is efficiently produced in glycosylated and biologically active form in lepidopteran cells. Mol Immunol 2016; 72:49-56. [DOI: 10.1016/j.molimm.2016.02.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 02/13/2016] [Accepted: 02/22/2016] [Indexed: 02/02/2023]
|
10
|
Juliant S, Harduin-Lepers A, Monjaret F, Catieau B, Violet ML, Cérutti P, Ozil A, Duonor-Cérutti M. The α1,6-fucosyltransferase gene (fut8) from the Sf9 lepidopteran insect cell line: insights into fut8 evolution. PLoS One 2014; 9:e110422. [PMID: 25333276 PMCID: PMC4204859 DOI: 10.1371/journal.pone.0110422] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 08/25/2014] [Indexed: 01/09/2023] Open
Abstract
The core alpha1,6-fucosyltransferase (FUT8) catalyzes the transfer of a fucosyl moiety from GDP-fucose to the innermost asparagine-linked N-acetylglucosamine residue of glycoproteins. In mammals, this glycosylation has an important function in many fundamental biological processes and although no essential role has been demonstrated yet in all animals, FUT8 amino acid (aa) sequence and FUT8 activity are very well conserved throughout the animal kingdom. We have cloned the cDNA and the complete gene encoding the FUT8 in the Sf9 (Spodoptera frugiperda) lepidopteran cell line. As in most animal genomes, fut8 is a single-copy gene organized in different exons. The open reading frame contains 12 exons, a characteristic that seems to be shared by all lepidopteran fut8 genes. We chose to study the gene structure as a way to characterize the evolutionary relationships of the fut8 genes in metazoans. Analysis of the intron-exon organization in 56 fut8 orthologs allowed us to propose a model for fut8 evolution in metazoans. The presence of a highly variable number of exons in metazoan fut8 genes suggests a complex evolutionary history with many intron gain and loss events, particularly in arthropods, but not in chordata. Moreover, despite the high conservation of lepidoptera FUT8 sequences also in vertebrates and hymenoptera, the exon-intron organization of hymenoptera fut8 genes is order-specific with no shared exons. This feature suggests that the observed intron losses and gains may be linked to evolutionary innovations, such as the appearance of new orders.
Collapse
Affiliation(s)
- Sylvie Juliant
- CNRS UPS3044 Baculovirus et Thérapie, Saint Christol Lèz Alès, France
| | - Anne Harduin-Lepers
- CNRS UMR8576, Unité de Glycobiologie Structurale et Fonctionnelle, Université Lille Nord de France, Lille1, Villeneuve d'Ascq, France
| | - François Monjaret
- CNRS UPS3044 Baculovirus et Thérapie, Saint Christol Lèz Alès, France
| | - Béatrice Catieau
- CNRS UMR8576, Unité de Glycobiologie Structurale et Fonctionnelle, Université Lille Nord de France, Lille1, Villeneuve d'Ascq, France
- Laboratoire Français du Fractionnement et des Biotechnologies de Lille, Lille, France
| | - Marie-Luce Violet
- CNRS UPS3044 Baculovirus et Thérapie, Saint Christol Lèz Alès, France
| | - Pierre Cérutti
- CNRS UPS3044 Baculovirus et Thérapie, Saint Christol Lèz Alès, France
| | - Annick Ozil
- CNRS UPS3044 Baculovirus et Thérapie, Saint Christol Lèz Alès, France
| | | |
Collapse
|
11
|
Therapy of chronic urticaria: a simple, modern approach. Ann Allergy Asthma Immunol 2014; 112:419-25. [PMID: 24656924 DOI: 10.1016/j.anai.2014.02.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 02/19/2014] [Accepted: 02/20/2014] [Indexed: 11/23/2022]
Abstract
OBJECTIVE To examine the available treatment choices for chronic spontaneous urticaria (CSU) and discuss a new paradigm for treating such patients. DATA SOURCES The literature regarding treatment is reviewed, including considerations of published guidelines. Attention is focused on the most recent evidence indicating particular efficacy of omalizumab. RESULTS Omalizumab has been found to have considerable efficacy in phase 2 and phase 3 trials in which more than 900 patients have been studied. A response rate of 65% is seen in patients resistant to antihistamines as well as to histamine2 blockers and leukotriene antagonists, and 40% of patients are completely free of hives as long as therapy is continued. In addition, serious adverse events have not been seen. Only cyclosporine can match this response rate (excluding steroids), but the adverse effect profile (blood pressure and renal function) is substantial by comparison. Double-blind, placebo-controlled studies of other agents often listed as alternatives are lacking (ie, whether their success rate exceeds the 25%-30% placebo response is uncertain). The mechanism by which omalizumab works in CSU is not clear because the response rate is unrelated to the autoimmune profile and can occur rapidly (ie, within a few days). CONCLUSION Omalizumab has exceptional efficacy for antihistamine-resistant CSU with an excellent adverse effect profile.
Collapse
|
12
|
Mabashi-Asazuma H, Kuo CW, Khoo KH, Jarvis DL. A novel baculovirus vector for the production of nonfucosylated recombinant glycoproteins in insect cells. Glycobiology 2013; 24:325-40. [PMID: 24362443 DOI: 10.1093/glycob/cwt161] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Glycosylation is an important attribute of baculovirus-insect cell expression systems, but some insect cell lines produce core α1,3-fucosylated N-glycans, which are highly immunogenic and render recombinant glycoproteins unsuitable for human use. To address this problem, we exploited a bacterial enzyme, guanosine-5'-diphospho (GDP)-4-dehydro-6-deoxy-d-mannose reductase (Rmd), which consumes the GDP-l-fucose precursor. We expected this enzyme to block glycoprotein fucosylation by blocking the production of GDP-l-fucose, the donor substrate required for this process. Initially, we engineered two different insect cell lines to constitutively express Rmd and isolated subclones with fucosylation-negative phenotypes. However, we found the fucosylation-negative phenotypes induced by Rmd expression were unstable, indicating that this host cell engineering approach is ineffective in insect systems. Thus, we constructed a baculovirus vector designed to express Rmd immediately after infection and facilitate the insertion of genes encoding any glycoprotein of interest for expression later after infection. We used this vector to produce a daughter encoding rituximab and found, in contrast to an Rmd-negative control, that insect cells infected with this virus produced a nonfucosylated form of this therapeutic antibody. These results indicate that our Rmd(+) baculoviral vector can be used to solve the immunogenic core α1,3-fucosylation problem associated with the baculovirus-insect cell system. In conjunction with existing glycoengineered insect cell lines, this vector extends the utility of the baculovirus-insect cell system to include therapeutic glycoprotein production. This new vector also extends the utility of the baculovirus-insect cell system to include the production of recombinant antibodies with enhanced effector functions, due to its ability to block core α1,6-fucosylation.
Collapse
|
13
|
Wang J, Zhu K, Zhao G, Ren J, Yue C, Gao D. Dual dependence of cryobiogical properties of Sf21 cell membrane on the temperature and the concentration of the cryoprotectant. PLoS One 2013; 8:e72836. [PMID: 24023781 PMCID: PMC3762842 DOI: 10.1371/journal.pone.0072836] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 07/14/2013] [Indexed: 11/25/2022] Open
Abstract
The Sf21 cell line is extensively used for virus research and producing heterologous recombinant proteins. To develop optimal strategies for minimizing cell injury due to intracellular ice formation and excessive volume shrinkage during cryopreservation, the fundamental transport properties including the osmotic inactive volume (Vb), the hydraulic conductivity (Lp), and the glycerol permeability (Ps) of Sf21 cell membrane at 25, 15, 5 and −2°C were characterized using a micro-perfusion chamber. The effects of temperature on the hydraulic conductivity and the glycerol permeability of Sf21 cell membrane, reflected by the activation energies, were quantitatively investigated. It was found that the hydraulic conductivity decreases along with the increase of the final CPA concentration at a given temperature, and quantitative analysis indicates that the hydraulic conductivity has a significant linear attenuation along with the increase of the concentration of glycerol. Therefore, we incorporate the concentration dependence of the hydraulic conductivity into the classic Arrhenius relationship by replacing the constant reference value of the hydraulic conductivity at the reference temperature with a function that is linearly dependent on the CPA concentration. Consequently, the prediction of the Arrhenius relationship is improved, and the novel Arrhenius relationship could be very important to the development of optimal strategies for cell cryopreservation.
Collapse
Affiliation(s)
- Jianye Wang
- Institute of Biomedical Engineering, Department of Electronic Science and Technology, University of Science and Technology of China, Hefei, Anhui, People’s Republic China
| | - Kaixuan Zhu
- Institute of Biomedical Engineering, Department of Electronic Science and Technology, University of Science and Technology of China, Hefei, Anhui, People’s Republic China
| | - Gang Zhao
- Institute of Biomedical Engineering, Department of Electronic Science and Technology, University of Science and Technology of China, Hefei, Anhui, People’s Republic China
- * E-mail:
| | - Jian Ren
- Institute of Biomedical Engineering, Department of Electronic Science and Technology, University of Science and Technology of China, Hefei, Anhui, People’s Republic China
| | - Cui Yue
- Institute of Biomedical Engineering, Department of Electronic Science and Technology, University of Science and Technology of China, Hefei, Anhui, People’s Republic China
| | - Dayong Gao
- Institute of Biomedical Engineering, Department of Electronic Science and Technology, University of Science and Technology of China, Hefei, Anhui, People’s Republic China
| |
Collapse
|
14
|
Juliant S, Lévêque M, Cérutti P, Ozil A, Choblet S, Violet ML, Slomianny MC, Harduin-Lepers A, Cérutti M. Engineering the baculovirus genome to produce galactosylated antibodies in lepidopteran cells. Methods Mol Biol 2013; 988:59-77. [PMID: 23475714 DOI: 10.1007/978-1-62703-327-5_5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Nowadays, recombinant proteins are used with great success for the treatment of a variety of medical conditions, such as cancer, autoimmune, and infectious diseases. Several expression systems have been developed to produce human proteins, but one of their most critical limitations is the addition of truncated or nonhuman glycans to the recombinant molecules. The presence of such glycans can be deleterious as they may alter the protein physicochemical properties (e.g., solubility, aggregation), its half-life, and its immunogenicity due to the unmasking of epitopes.The baculovirus expression system has long been used to produce recombinant proteins for research. Thanks to recent methodological advances, this cost-effective technology is now considered a very promising alternative for the production of recombinant therapeutics, especially vaccines. Studies on the lepidopteran cell metabolism have shown that these cells can perform most of the posttranslational modifications, including N- and O-glycosylation. However, these glycan structures are shorter compared to those present in mammalian proteins. Lepidopteran N-glycans are essentially of the oligomannose and paucimannose type with no complex glycan identified in both infected and uninfected cells. The presence of short N-glycan structures is explained by the low level of N-acetylglucosaminyltransferase I (GNT-I) activity and the absence of several other glycosyltransferases, such as GNT-II and β1,4-galactosyltransferase I (β1,4GalTI), and of sialyltransferases.In this chapter, we show that the glycosylation pathway of a lepidopteran cell line can be modified via infection with an engineered baculovirus to "humanize" the glycosylation pattern of a recombinant protein. This engineering has been performed by introducing in the baculovirus genome the cDNAs that encode three mammalian glycosyltransferases (GNT-I, GNT-II, and β1,4GalTI). The efficiency of this approach is illustrated with the construction of a recombinant virus that can produce a galactosylated antibody.
Collapse
|
15
|
Kaplan AP. Treatment of chronic spontaneous urticaria. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2012; 4:326-31. [PMID: 23115728 PMCID: PMC3479225 DOI: 10.4168/aair.2012.4.6.326] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Accepted: 03/20/2012] [Indexed: 11/21/2022]
Abstract
Chronic spontaneous urticaria is defined as persistent symptoms of urticaria for 6 weeks or more. It is associated with autoimmunity in approximately 45 percent of patients. Therapy is often difficult however the initial approach should employ high-dose non-sedating antihistamines; 4-6 tablets/day may be necessary. It has been shown that the response to 4 tablets/day exceeds 3, and exceeds 2, which exceeds 1. However the dose that corresponds to the maximal dose of first generation antihistamines (hydroxyzine, diphenhydramine) used previously, is 6/day. Yet over half the patients are refractory to antihistamines and other agents should be tried next. Whereas current guidelines (published) often add leukotriene antagonists and/or H2 receptor antogonists next, these are of little utility. Likewise drugs effective for urticarial vasculitis (colchicine, dapsone, sulfasalazine, hydroxychloroquine) are effective in a small percentage of patients and no study suggests that the response rate of any of them exceeds the 30% placebo responses seen in most double-blind, placebo controlled studies. The drugs that are effective for antihistamine-resistant chronic spontaneous urticaria are corticosteroids, cyclosporine, and Omalizumab. Use of steroids is limited by toxicity. If used at all, a dose of no more than 10 mg/day should be employed with a weekly reduction of 1 mg. The response rates to cyclosporine and Omalizumab are each close to 75%. Cyclosporine can be used effectively if care is taken to monitor blood pressure, urine protein, blood urea nitrogen, and creatinine, every 6 weeks. Omalizumab has the best profile in terms of efficacy/toxicity and, once approved by federal agencies for use in chronic spontaneous urticaria, a dramatic change in the treatment paradigm, whether associated with autoimmunity or not, is predicted. A phase 3 trial is currently in place. Refractoriness to both Omalizumab and cyclosporine is expected to be less than 5 percent of patients. Other agents, can then be tried.
Collapse
Affiliation(s)
- Allen P Kaplan
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Allergy and Clinical Immunology, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
16
|
Cérutti M, Golay J. Lepidopteran cells, an alternative for the production of recombinant antibodies? MAbs 2012; 4:294-309. [PMID: 22531440 DOI: 10.4161/mabs.19942] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Monoclonal antibodies are used with great success in many different therapeutic domains. In order to satisfy the growing demand and to lower the production cost of these molecules, many alternative systems have been explored. Among them, the baculovirus/insect cells system is a good candidate. This system is very safe, given that the baculoviruses have a highly restricted host range and they are not pathogenic to vertebrates or plants. But the major asset is the speed with which it is possible to obtain very stable recombinant viruses capable of producing fully active proteins whose glycosylation pattern can be modulated to make it similar to the human one. These features could ultimately make the difference by enabling the production of antibodies with very low costs. However, efforts are still needed, in particular to increase production rates and thus make this system commercially viable for the production of these therapeutic agents.
Collapse
Affiliation(s)
- Martine Cérutti
- CNRS UPS3044 Baculovirus et Thérapie, CNRS GDR3260, ACCITH Anticorps et Ciblage Thérapeutique and LabEx MabImprove, Saint Christol Lèz Alès, France.
| | | |
Collapse
|
17
|
Differences in the fractional abundances of carbohydrates of natural and recombinant human tissue factor. Biochim Biophys Acta Gen Subj 2010; 1810:398-405. [PMID: 21172408 DOI: 10.1016/j.bbagen.2010.12.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Revised: 12/09/2010] [Accepted: 12/10/2010] [Indexed: 11/23/2022]
Abstract
BACKGROUND Tissue factor (TF) is a single polypeptide integral membrane glycoprotein composed of 263 residues and is essential to life in its role as the initiator of blood coagulation. Previously we have shown that the activity of the natural placental TF (pTF) and the recombinant TF (rTF) from Sf9 insect cells is different (Krudysz-Amblo, J. et al (2010) J. Biol. Chem. 285, 3371-3382). METHODS In this study, using mass spectrometry, we show by quantitative analysis that the extent of glycosylation varies on each protein. RESULTS AND CONCLUSIONS Fractional abundance of each glycan composition at each of the three glycosylation sites reveals the most pronounced difference to be at asparagine (Asn) 11. This residue is located in the region of extensive TF-factor VIIa (FVIIa) interaction. Carbohydrate fractional abundance at Asn11 revealed that glycosylation in the natural placental TF is much more prevalent (~76%) than in the recombinant protein (~20%). The extent of glycosylation on Asn124 and Asn137 is similar in the two proteins, despite the pronounced differences in the carbohydrate composition. Additionally, 77% of rTF exists as TF des-1, 2 (missing the first two amino acids from the N-terminus). In contrast, only 31% of pTF is found in the des-1, 2 form. CONCLUSION These observations may attribute to the difference in the ability of TF-FVIIa complex to activate factor X (FX). GENERAL SIGNIFICANCE Structural and functional comparison of the recombinant and natural protein advances our understanding and knowledge on the biological activity of TF.
Collapse
|
18
|
Braren I, Greunke K, Pilette C, Mempel M, Grunwald T, Bredehorst R, Ring J, Spillner E, Ollert M. Quantitation of serum IgE by using chimeras of human IgE receptor and avian immunoglobulin domains. Anal Biochem 2010; 412:134-40. [PMID: 21146489 DOI: 10.1016/j.ab.2010.12.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Revised: 11/05/2010] [Accepted: 12/05/2010] [Indexed: 11/26/2022]
Abstract
Anti-IgE therapeutics represent an efficient approach in the management of IgE-mediated allergic asthma. However, monitoring the reduction of IgE levels into a therapeutically efficient range requires the determination of residual serum IgE. We established an analytical approach to distinguish free and anti-IgE complexed serum IgE based on soluble derivatives of the human high-affinity IgE receptor. Soluble receptor derivatives represent an ideal means to analyze receptor antagonism by any ligand or blocking antibody. Therefore, the FcεRI ectodomain was fused with avian IgY constant domains that circumvent susceptibility to interference phenomena and improve assay performance. After production in HEK293 cells, subsequent characterization by enzyme-linked immunosorbent assay and immunoblotting confirmed the suitability of avian IgY constant domains for immobilization and detection purposes. To provide further insights into the different IgE reactivities, free allergen-specific IgE was also determined. Monitoring of sera from omalizumab-treated patients during the course of therapy revealed the applicability for assessment of omalizumab-complexed versus noncomplexed serum IgE. These parameters may allow correlation to clinical responses during anti-IgE therapy with the perspective of biomonitoring.
Collapse
|
19
|
Enterovirus 71 virus-like particle vaccine: Improved production conditions for enhanced yield. Vaccine 2010; 28:6951-7. [DOI: 10.1016/j.vaccine.2010.08.052] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Revised: 08/09/2010] [Accepted: 08/09/2010] [Indexed: 01/15/2023]
|
20
|
Hashimoto Y, Zhang S, Blissard GW. Ao38, a new cell line from eggs of the black witch moth, Ascalapha odorata (Lepidoptera: Noctuidae), is permissive for AcMNPV infection and produces high levels of recombinant proteins. BMC Biotechnol 2010; 10:50. [PMID: 20602790 PMCID: PMC2906426 DOI: 10.1186/1472-6750-10-50] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Accepted: 07/05/2010] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND The insect cell line is a critical component in the production of recombinant proteins in the baculovirus expression system and new cell lines hold the promise of increasing both quantity and quality of protein production. RESULTS Seventy cell lines were established by single-cell cloning from a primary culture of cells derived from eggs of the black witch moth (Ascalapha odorata; Lepidoptera, Noctuidae). Among 8 rapidly growing lines, cell line 38 (Ao38) was selected for further analysis, based on susceptibility to AcMNPV infection and production of secreted alkaline phosphatase (SEAP) from a baculovirus expression vector. In comparisons with low-passage High Five (BTI-Tn-5B1-4) cells, infected Ao38 cells produced beta-galactosidase and SEAP at levels higher (153% and 150%, respectively) than those measured from High Five cells. Analysis of N-glycans of SEAP produced in Ao38 cells revealed two N-glycosylation sites and glycosylation patterns similar to those reported for High Five and Sf9 cells. Glycopeptide isoforms consisted of pauci- or oligomannose, with and without fucose on N-acetylglucosamine(s) linked to asparagine residues. Estimates of Ao38 cell volume suggest that Ao38 cells are approximately 2.5x larger than Sf9 cells but only approximately 74% of the size of High Five cells. Ao38 cells were highly susceptible to AcMNPV infection, similar to infectivity of Sf9 cells. Production of infectious AcMNPV budded virions from Ao38 cells peaked at approximately 4.5 x 10(7) IU/ml, exceeding that from High Five cells while lower than that from Sf9 cells. Ao38 cells grew rapidly in stationary culture with a population doubling time of 20.2 hr, and Ao38 cells were readily adapted to serum-free medium (Sf-900III) and to a suspension culture system. Analysis of Ao38 and a parental Ascalapha odorata cell line indicated that these lines were free of the alphanodavirus that was recently identified as an adventitious agent in High Five cell lines. CONCLUSIONS Ao38 cells represent a highly productive new insect cell line that will be useful for heterologous protein expression and other applications in biotechnology.
Collapse
Affiliation(s)
- Yoshifumi Hashimoto
- Boyce Thompson Institute at Cornell University, Tower Road, Ithaca NY 14853 USA
| | - Sheng Zhang
- Proteomics and Mass Spectrometry Facility, Cornell University, Tower Road, Ithaca NY 14853 USA
| | - Gary W Blissard
- Boyce Thompson Institute at Cornell University, Tower Road, Ithaca NY 14853 USA
| |
Collapse
|
21
|
Alternative influenza vaccines made by insect cells. Trends Mol Med 2010; 16:313-20. [DOI: 10.1016/j.molmed.2010.05.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Revised: 05/04/2010] [Accepted: 05/04/2010] [Indexed: 02/07/2023]
|
22
|
Blank S, Seismann H, Bockisch B, Braren I, Cifuentes L, McIntyre M, Rühl D, Ring J, Bredehorst R, Ollert MW, Grunwald T, Spillner E. Identification, Recombinant Expression, and Characterization of the 100 kDa High Molecular Weight Hymenoptera Venom Allergens Api m 5 and Ves v 3. THE JOURNAL OF IMMUNOLOGY 2010; 184:5403-13. [DOI: 10.4049/jimmunol.0803709] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
23
|
Mozena JD, Tiñana A, Negri J, Steinke JW, Borish L. Lack of a role for cross-reacting anti-thyroid antibodies in chronic idiopathic urticaria. J Invest Dermatol 2010; 130:1860-5. [PMID: 20182447 DOI: 10.1038/jid.2010.35] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The etiology of chronic idiopathic urticaria (CIU) is attributed to autoantibodies directed against the alpha-chain of the high-affinity IgE receptor (FcepsilonRIalpha) or IgE on mast cells in 30-60% of patients. Approximately 30% of CIU patients have Hashimoto's thyroiditis (HT). We investigated the pathophysiologic relationship of anti-thyroid and anti-FcepsilonRIalpha antibodies. Nine individuals with both CIU and HT underwent autologous serum skin testing (ASST) and sera were assayed for thyroid autoantibodies, thyroid-stimulating hormone, and anti-FcepsilonRIalpha antibodies. Serum samples were studied for their ability to activate a human mast cell line (LUVA) as determined by cysteinyl leukotriene (CysLT) production. Experiments were performed to determine whether epitope cross-reactivity could explain the high incidence of HT found in CIU patients. A significant proportion of CIU patients had a positive ASST (nine of six) and anti-FcepsilonRIalpha antibodies (six of nine). Incubation of patient sera with FcepsilonRIalpha, but not thyroglobulin or thyroid peroxidase, resulted in the decreased ability to detect anti-FcepsilonRIalpha antibodies. Incubation with thyroid antigens did not inhibit CysLT production by mast cells. Epitopic cross-reactivity does not explain the increased prevalence of HT found in CIU patients. The frequent concurrence of HT and CIU likely reflects a genetic tendency toward autoimmune diseases.
Collapse
Affiliation(s)
- Jonathan D Mozena
- Asthma and Allergic Disease Center, Carter Center for Immunology Research, University of Virginia, Charlottesville, Virginia, USA
| | | | | | | | | |
Collapse
|
24
|
Gouveia R, Kandzia S, Conradt HS, Costa J. Production and N-glycosylation of recombinant human cell adhesion molecule L1 from insect cells using the stable expression system. Effect of dimethyl sulfoxide. J Biotechnol 2010; 145:130-8. [DOI: 10.1016/j.jbiotec.2009.10.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Revised: 10/23/2009] [Accepted: 10/28/2009] [Indexed: 11/17/2022]
|
25
|
Seismann H, Blank S, Braren I, Greunke K, Cifuentes L, Grunwald T, Bredehorst R, Ollert M, Spillner E. Dissecting cross-reactivity in hymenoptera venom allergy by circumvention of alpha-1,3-core fucosylation. Mol Immunol 2009; 47:799-808. [PMID: 19896717 DOI: 10.1016/j.molimm.2009.10.005] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Accepted: 10/06/2009] [Indexed: 11/16/2022]
Abstract
Hymenoptera venom allergy is known to cause life-threatening and sometimes fatal IgE-mediated anaphylactic reactions in allergic individuals. About 30-50% of patients with insect venom allergy have IgE antibodies that react with both honeybee and yellow jacket venom. Apart from true double sensitisation, IgE against cross-reactive carbohydrate determinants (CCD) are the most frequent cause of multiple reactivities severely hampering the diagnosis and design of therapeutic strategies by clinically irrelevant test results. In this study we addressed allergenic cross-reactivity using a recombinant approach by employing cell lines with variant capacities of alpha-1,3-core fucosylation. The venom hyaluronidases, supposed major allergens implicated in cross-reactivity phenomena, from honeybee (Api m 2) and yellow jacket (Ves v 2a and its putative isoform Ves v 2b) as well as the human alpha-2HS-glycoprotein as control, were produced in different insect cell lines. In stark contrast to production in Trichoplusia ni (HighFive) cells, alpha-1,3-core fucosylation was absent or immunologically negligible after production in Spodoptera frugiperda (Sf9) cells. Consistently, co-expression of honeybee alpha-1,3-fucosyltransferase in Sf9 cells resulted in the reconstitution of CCD reactivity. Re-evaluation of differentially fucosylated hyaluronidases by screening of individual venom-sensitised sera emphasised the allergenic relevance of Api m 2 beyond its carbohydrate epitopes. In contrast, the vespid hyaluronidases, for which a predominance of Ves v 2b could be shown, exhibited pronounced and primary carbohydrate reactivity rendering their relevance in the context of allergy questionable. These findings show that the use of recombinant molecules devoid of CCDs represents a novel strategy with major implications for diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Henning Seismann
- Institute of Biochemistry and Molecular Biology, University of Hamburg, Hamburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Soluble CD36 ectodomain binds negatively charged diacylglycerol ligands and acts as a co-receptor for TLR2. PLoS One 2009; 4:e7411. [PMID: 19847289 PMCID: PMC2760212 DOI: 10.1371/journal.pone.0007411] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2009] [Accepted: 09/18/2009] [Indexed: 11/19/2022] Open
Abstract
Background Cluster of differentiation 36 (CD36) is a transmembrane glycoprotein involved in many biological processes, such as platelet biology, angiogenesis and in the aetiopathology of atherosclerosis and cardiovascular diseases. Toll-like receptors (TLRs) are one of the most important receptors of the innate immune system. Their main function is the recognition of conserved structure of microorganisms. This recognition triggers signaling pathways that activate transcription of cytokines and co-stimulatory molecules which participate in the generation of an immune response against microbes. In particular, TLR2 has been shown to recognize a broad range of ligands. Recently, we showed that CD36 serves as a co-receptor for TLR2 and enhances recognition of specific diacylglycerides derived from bacteria. Methodology/ Principal Findings Here, we investigate the mechanism by which CD36 contributes to ligand recognition and activation of TLR2 signaling pathway. We show that the ectodomain of murine CD36 (mCD36ED) directly interacts with negatively charged diacylglycerol ligands, which explains the specificity and selectivity of CD36 as a TLR2 co-receptor. We also show that mCD36ED amplifies the pro-inflammatory response to lipoteichoic acid in macrophages of wild-type mice and restores the pro-inflammatory response of macrophages from mice deficient in CD36 (oblivious), but not from mice deficient in cluster of differentiation 14 (CD14) (heedless). Conclusion/ Significance These data indicate that the CD36 ectodomain is the only relevant domain for activation of TLR2 signaling pathway and that CD36 and CD14 have a non-redundant role for loading ligands onto TLR2 in the plasma-membrane. The pro-inflammatory role of soluble CD36 can be relevant in the activation of the immune response against pathogens, as well as in the progression of chronic diseases. Therefore, an increased level of soluble forms of CD36, which has been reported to be increased in type II diabetic patients, could accelerate atherosclerosis by increasing the pro-inflammatory response to diacylglycerol ligands.
Collapse
|
27
|
The role of major histocompatibility complex class I chain-related gene A antibodies in organ transplantation. Curr Opin Organ Transplant 2009; 14:414-8. [PMID: 19610173 DOI: 10.1097/mot.0b013e32832d835e] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
PURPOSE OF REVIEW Major histocompatibility complex class I chain-related gene A (MICA) antigens are expressed on the endothelium, they are polymorphic and have been shown to be recognized by antibodies produced by transplant recipients. Methods for detection of these antibodies have become available. In the 15th International Histocompatibility Workshop, a study for MICA antibody testing and of MICA genotyping was organized. RECENT FINDINGS Antibodies against MICA antigens have been determined either using cells transfected with MICA alleles or recombinant MICA antigens. MICA epitopes were characterized by empirical study of human sera and by correlation with MICA polymorphic amino acids. Sera were absorbed with cells transfected with MICA alleles and site-directed mutagenesis was employed to analyze complex sera. A number of clinical studies have shown associations of antibodies against MICA with decreased survival of kidney transplants and in one investigation with acute rejection in recipients of heart allografts. SUMMARY In addition to the HLA antigens, which elicit a strong immune response against allografted organs, the MICA antigens may be recognized as foreign and induce the production of MICA-specific antibodies. Antibodies against MICA have been associated with a decrease in the survival of organ allografts. The results suggest the MICA antigens are transplantation antigens that can induce an immune response associated with graft failure.
Collapse
|
28
|
Ferrer E, Martínez-Escribano JA, Barderas MEG, González LM, Cortéz MM, Dávila I, Harrison LJS, Parkhouse RME, Gárate T. Peptide epitopes of the Taenia solium antigen Ts8B2 are immunodominant in human and porcine cysticercosis. Mol Biochem Parasitol 2009; 168:168-71. [PMID: 19712705 DOI: 10.1016/j.molbiopara.2009.08.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2009] [Revised: 08/06/2009] [Accepted: 08/17/2009] [Indexed: 10/20/2022]
Abstract
Ts8B2 is a gene which encodes for a member of the Taenia solium metacestode 8kDa antigen family. Since the Ts8B2-GST recombinant protein compares very favourably with other diagnostic antigens, and in order to study the antigenic nature and structure of this molecule, the Ts8B2 was expressed in prokaryotic and eukaryotic systems. The diagnostic potential of the recombinant Ts8B2 proteins was evaluated by enzyme-linked immunosorbent assays (ELISA) using a collection of serum and cerebrospinal fluid (CSF) samples from patients with clinically defined neurocysticercosis (NCC), and also sera from T. solium infected pigs. Despite the predicted glycosylation of the Ts8B2-Bac recombinant protein, there was very little difference in assay sensitivity/specificity when the Ts8B2 reagent was expressed in either prokaryotic or eukaryotic systems, suggesting that peptidic Ts8B2 epitopes are immunodominant in porcine cysticercosis and human neurocysticercosis. Conveniently, production of recombinant Ts8B2 in Escherichia coli is economical and facile, making it a feasible and practical choice as a diagnostic reagent for use in endemic areas. The Ts8B2 ELISA is particularly useful for the diagnosis of active as opposed to inactive cases of NCC and conduct of the assay is also facilitated by the fact that assay sensitivity is significantly greater when serum as opposed to CSF samples are employed.
Collapse
Affiliation(s)
- Elizabeth Ferrer
- Instituto de Salud Carlos III, Centro Nacional de Microbiología, 28220 Majadahonda, Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Tomiya N. Humanization of recombinant glycoproteins expressed in insect cells. TRENDS GLYCOSCI GLYC 2009. [DOI: 10.4052/tigg.21.71] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
30
|
Zou Y, Qin Z, Silveus A, Fan Y, Stastny P. Polymorphisms of MICA recognized by human alloantibodies. Immunogenetics 2008; 61:91-100. [PMID: 19066881 DOI: 10.1007/s00251-008-0344-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2008] [Accepted: 11/12/2008] [Indexed: 11/24/2022]
Abstract
MICA antigens are polymorphic glycoproteins expressed on the surface of human endothelial cells and other cells. Antibodies against MICA have been found in transplant recipients and were found to be associated with decreased survival of kidney allografts. In the present work, we investigated the polymorphisms that are recognized by antibodies against MICA. Soluble MICA recombinant proteins representing 11 common alleles, two hybrid alleles, and two single amino acid mutated alleles were produced. Patterns of reactivity were determined with MICA bound to Luminex beads. In some studies, sera containing antibodies against MICA were absorbed by cell lines transfected with MICA*001, MICA*002, MICA*008, and MICA*009 or with untransfected cells, followed by testing of antibody reactivity against MICA proteins bound to beads. The monoclonal antibodies and sera used in this study were found to recognize up to 14 distinct MICA epitopes as demonstrated by their differential absorption/reactivity patterns. Among these, nine epitopes correlated with a single unique amino acid: one shared two signature amino acids, one shared three signature amino acids in close proximity, and three epitopes involved multiple amino acids in a nonlinear sequence. Two groups of public epitopes (MICA-G1 and MICA-G2) were characterized. MICA shared epitopes were determined by reactivity loss in single MICA antigen bead assays by absorption with MICA transfectants. Since these epitopes may be targets for antibody binding and possibly antibody-mediated allograft rejection, epitope identification may help understand the development of MICA antibodies and to identify suitable donors for sensitized transplant recipients.
Collapse
Affiliation(s)
- Yizhou Zou
- Department of Internal Medicine, Division of Transplant Immunology, The University of Texas Southwestern Medical Center, Dallas, TX 75390-8886, USA
| | | | | | | | | |
Collapse
|
31
|
Revealing the anti-HRP epitope in Drosophila and Caenorhabditis. Glycoconj J 2008; 26:385-95. [PMID: 18726691 DOI: 10.1007/s10719-008-9155-3] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2008] [Revised: 05/19/2008] [Accepted: 05/27/2008] [Indexed: 10/21/2022]
|