1
|
Wang Z, Li Z, Su T, Han X, Hou Z, Zheng Y, Liu J, Xu J, Yang J, Liu H. BirA*-protein A fusion protein based BioEnhancer amplifies western blot immunosignal. Electrophoresis 2021; 42:793-799. [PMID: 33354816 DOI: 10.1002/elps.202000167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 12/13/2020] [Accepted: 12/15/2020] [Indexed: 11/08/2022]
Abstract
Western blot (protein immunoblot) is a widely used analytical technique in molecular biology. Utilizing the specific recognizing primary antibody, proteins immobilized on various matrix are investigated by subsequent visualization steps, for example, by the horse radish peroxidase conjugated secondary antibody incubation. Methods to improve the sensitivity in protein identification or quantification are appreciated by biochemists. Herein, we report a new strategy to amplify Western blot signals by constructing a probe with proximal labeling and IgG targeting abilities. The R118G mutation attenuated the biotin-AMP binding affinity of the bacterial biotin ligase BirA*, offering a proximity-dependent labeling ability, which could be used as a signal amplifier. We built a BirA*-protein A fusion protein (BioEnhancer) that specifically binds to IgG and adds biotin tags to its proximal amine groups, enhancing the immunosignal of target proteins. In our experiments, the BioEnhancer system amplified the immunosignal by tenfold compared to the standard western blot. Additionally, our strategy could couple with other signal enhancement methods to further increase the western blot sensitivity.
Collapse
Affiliation(s)
- Zhen Wang
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science, Xi'an Jiaotong University, Xi'an, P. R. China
| | - Ziyang Li
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science, Xi'an Jiaotong University, Xi'an, P. R. China
| | - Tian Su
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science, Xi'an Jiaotong University, Xi'an, P. R. China
| | - Xiao Han
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science, Xi'an Jiaotong University, Xi'an, P. R. China
| | - Zhanwu Hou
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science, Xi'an Jiaotong University, Xi'an, P. R. China
| | - Yupeng Zheng
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science, Xi'an Jiaotong University, Xi'an, P. R. China
| | - Jiachen Liu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science, Xi'an Jiaotong University, Xi'an, P. R. China
| | - Jun Xu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science, Xi'an Jiaotong University, Xi'an, P. R. China
| | - Jeffy Yang
- Sulich Medicine and Dentistry, Western University, London, Canada
| | - Huadong Liu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science, Xi'an Jiaotong University, Xi'an, P. R. China
| |
Collapse
|
2
|
Abstract
Immunoblotting allows detection of a protein antigen immobilized on the protein-retaining membrane support such as nitrocellulose or polyvinylidene fluoride (PVDF). The detection of the protein of interest relies on the binding of an antibody that specifically recognizes the protein of interest exposed on the membrane. The protein of interest can be purified or mixed with other proteins as in cell or tissue extracts. Usually immunoblotting combines the resolution of proteins by gel electrophoresis with immunochemical detection and is referred to as "western blotting." Immunoblotting can be used to determine the presence and the steady-state level of the protein of interest in the sample, its relative molecular weight, and the distribution of the protein between cellular fractions. Immunoblotting can be performed using the antibodies raised against synthetic peptide antigens modified to mimic posttranslational modifications of proteins, such as phosphorylation and acetylation, to study these modifications in the protein of interest in vivo. When antibodies against the protein of interest are not available, immunoblotting can be performed using antibodies that specifically recognize the recombinant epitope tags (hemagglutinin [HA]-, Flag-, cMyc-, or glutathione-S-transferase [GST]) fused to the protein of interest using recombinant DNA techniques. Immunoblotting has a variety of research, clinical, and forensic medicine applications. It is also one of the standard techniques for characterization of antibodies from different samples of polyclonal sera or hybridoma supernatants.
Collapse
|
3
|
Demine S, Tejerina S, Bihin B, Thiry M, Reddy N, Renard P, Raes M, Jadot M, Arnould T. Mild mitochondrial uncoupling induces HSL/ATGL-independent lipolysis relying on a form of autophagy in 3T3-L1 adipocytes. J Cell Physiol 2017; 233:1247-1265. [PMID: 28488768 DOI: 10.1002/jcp.25994] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 05/08/2017] [Indexed: 12/15/2022]
Abstract
Obesity is characterized by an excessive triacylglycerol accumulation in white adipocytes. Various mechanisms allowing the tight regulation of triacylglycerol storage and mobilization by lipid droplet-associated proteins as well as lipolytic enzymes have been identified. Increasing energy expenditure by inducing a mild uncoupling of mitochondria in adipocytes might represent a putative interesting anti-obesity strategy as it reduces the adipose tissue triacylglycerol content (limiting alterations caused by cell hypertrophy) by stimulating lipolysis through yet unknown mechanisms, limiting the adverse effects of adipocyte hypertrophy. Herein, the molecular mechanisms involved in lipolysis induced by a mild uncoupling of mitochondria in white 3T3-L1 adipocytes were characterized. Mitochondrial uncoupling-induced lipolysis was found to be independent from canonical pathways that involve lipolytic enzymes such as HSL and ATGL. Finally, enhanced lipolysis in response to mitochondrial uncoupling relies on a form of autophagy as lipid droplets are captured by endolysosomal vesicles. This new mechanism of triacylglycerol breakdown in adipocytes exposed to mild uncoupling provides new insights on the biology of adipocytes dealing with mitochondria forced to dissipate energy.
Collapse
Affiliation(s)
- Stéphane Demine
- Laboratory of Biochemistry and Cell Biology (URBC), NARILIS (Namur Research Institute for Life Sciences), University of Namur (UNamur), Namur, Belgium
| | - Silvia Tejerina
- Laboratory of Biochemistry and Cell Biology (URBC), NARILIS (Namur Research Institute for Life Sciences), University of Namur (UNamur), Namur, Belgium
| | - Benoît Bihin
- Laboratory of Biochemistry and Cell Biology (URBC), NARILIS (Namur Research Institute for Life Sciences), University of Namur (UNamur), Namur, Belgium
| | - Marc Thiry
- Laboratory of Cell Biology, GIGA-R, University of Liège, Liège, Belgium
| | - Nagabushana Reddy
- Laboratory of Biochemistry and Cell Biology (URBC), NARILIS (Namur Research Institute for Life Sciences), University of Namur (UNamur), Namur, Belgium
| | - Patricia Renard
- Laboratory of Biochemistry and Cell Biology (URBC), NARILIS (Namur Research Institute for Life Sciences), University of Namur (UNamur), Namur, Belgium
| | - Martine Raes
- Laboratory of Biochemistry and Cell Biology (URBC), NARILIS (Namur Research Institute for Life Sciences), University of Namur (UNamur), Namur, Belgium
| | - Michel Jadot
- Laboratory of Molecular Physiology (URPhyM), NARILIS (Namur Research Institute for Life Sciences), University of Namur (UNamur), Namur, Belgium
| | - Thierry Arnould
- Laboratory of Biochemistry and Cell Biology (URBC), NARILIS (Namur Research Institute for Life Sciences), University of Namur (UNamur), Namur, Belgium
| |
Collapse
|
4
|
Bass JJ, Wilkinson DJ, Rankin D, Phillips BE, Szewczyk NJ, Smith K, Atherton PJ. An overview of technical considerations for Western blotting applications to physiological research. Scand J Med Sci Sports 2017; 27:4-25. [PMID: 27263489 PMCID: PMC5138151 DOI: 10.1111/sms.12702] [Citation(s) in RCA: 227] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2016] [Indexed: 12/11/2022]
Abstract
The applications of Western/immunoblotting (WB) techniques have reached multiple layers of the scientific community and are now considered routine procedures in the field of physiology. This is none more so than in relation to skeletal muscle physiology (i.e., resolving the mechanisms underpinning adaptations to exercise). Indeed, the inclusion of WB data is now considered an essential aspect of many such physiological publications to provide mechanistic insight into regulatory processes. Despite this popularity, and due to the ubiquitous and relatively inexpensive availability of WB equipment, the quality of WB in publications and subsequent analysis and interpretation of the data can be variable, perhaps resulting in spurious conclusions. This may be due to poor laboratory technique and/or lack of comprehension of the critical steps involved in WB and what quality control procedures should be in place to ensure robust data generation. The present review aims to provide a detailed description and critique of WB procedures and technicalities, from sample collection through preparation, blotting and detection, to analysis of the data collected. We aim to provide the reader with improved expertise to critically conduct, evaluate, and troubleshoot the WB process, to produce reproducible and reliable blots.
Collapse
Affiliation(s)
- J J Bass
- MRC/ARUK Centre of Excellence for Musculoskeletal Ageing Research, School of Medicine, University of Nottingham, Derby, UK
| | - D J Wilkinson
- MRC/ARUK Centre of Excellence for Musculoskeletal Ageing Research, School of Medicine, University of Nottingham, Derby, UK
| | - D Rankin
- MRC/ARUK Centre of Excellence for Musculoskeletal Ageing Research, School of Medicine, University of Nottingham, Derby, UK
| | - B E Phillips
- MRC/ARUK Centre of Excellence for Musculoskeletal Ageing Research, School of Medicine, University of Nottingham, Derby, UK
| | - N J Szewczyk
- MRC/ARUK Centre of Excellence for Musculoskeletal Ageing Research, School of Medicine, University of Nottingham, Derby, UK
| | - K Smith
- MRC/ARUK Centre of Excellence for Musculoskeletal Ageing Research, School of Medicine, University of Nottingham, Derby, UK
| | - P J Atherton
- MRC/ARUK Centre of Excellence for Musculoskeletal Ageing Research, School of Medicine, University of Nottingham, Derby, UK
| |
Collapse
|
5
|
Park J, Mabuchi M, Sharma A. Multiplexed Fluorescent Immunodetection Using Low Autofluorescence Immobilon®-FL Membrane. Methods Mol Biol 2016; 1314:195-205. [PMID: 26139269 DOI: 10.1007/978-1-4939-2718-0_22] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
By enabling greater signal linearity and multiplexed detection, fluorescent western immunodetection overcomes many of the inherent technical limitations associated with the traditional chemiluminescent detection method. However, the sensitivity of fluorescence detection can be severely compromised by high background autofluorescence of various blotting membranes. Here, we describe a low autofluorescence PVDF membrane (Immobilon(®)-FL membrane) optimized for fluorescent immunodetection, and we report its use in the quantitative fluorescent western immunodetection of biomarkers associated with Alzheimer's disease (AD). First, membrane autofluorescence of four different commercially available blotting membranes was compared. Immobilon(®)-FL membrane exhibited the lowest autofluorescence with substantially increased detection sensitivity. We also show that the fluorescent immunodetection exhibited greatly increased linear dynamic range (two orders of magnitude, log scale) compared to the traditional chemiluminescent methods (less than one order of magnitude). Immobilon(®)-FL membrane was then used to quantify the expression levels of previously reported biomarkers associated with AD (synaptophysin, GSK3β, and GAP43). Total protein extracts from age-matched brain samples of three AD patients and three normal controls were used. Biomarker expression levels were normalized to that of a housekeeping protein (GAPDH) using multiplexed detection, conserving difficult-to-obtain biological tissue samples and minimizing experimental variation. We found that the expression of GSK3ß and GAP43 biomarkers were significantly reduced in AD brain samples compared to age-matched normal samples. In summary, combining fluorescent immunodetection with a low autofluorescent blotting membrane yields accurate and reliable multiplexed quantitation of AD biomarkers. While this report focuses on the quantitation of AD biomarkers, the described technique is applicable to comparing protein expression in other biological contexts as well.
Collapse
Affiliation(s)
- Jun Park
- EMD Millipore, 17 Cherry Hill Drive, Danvers, MA, 01923, USA,
| | | | | |
Collapse
|
6
|
MacPhee DJ. Methodological considerations for improving Western blot analysis. J Pharmacol Toxicol Methods 2009; 61:171-7. [PMID: 20006725 DOI: 10.1016/j.vascn.2009.12.001] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Accepted: 12/07/2009] [Indexed: 10/20/2022]
Abstract
The need for a technique that could allow the determination of antigen specificity of antisera led to the development of a method that allowed the production of a replica of proteins, which had been separated electrophoretically on polyacrylamide gels, on to a nitrocellulose membrane. This method was coined Western blotting and is very useful to study the presence, relative abundance, relative molecular mass, post-translational modification, and interaction of specific proteins. As a result it is utilized routinely in many fields of scientific research such as chemistry, biology and biomedical sciences. This review serves to touch on some of the methodological conditions that should be considered to improve Western blot analysis, particularly as a guide for graduate students but also scientists who wish to continue adapting this now fundamental research tool.
Collapse
Affiliation(s)
- Daniel J MacPhee
- Division of BioMedical Sciences, Faculty of Medicine, Health Sciences Centre, Memorial University of Newfoundland, St. John's, NL, Canada A1B 3V6.
| |
Collapse
|
7
|
He M, Herr AE. Microfluidic Polyacrylamide Gel Electrophoresis with in Situ Immunoblotting for Native Protein Analysis. Anal Chem 2009; 81:8177-84. [DOI: 10.1021/ac901392u] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Mei He
- Department of Bioengineering, University of California, Berkeley, California 94720
| | - Amy E. Herr
- Department of Bioengineering, University of California, Berkeley, California 94720
| |
Collapse
|
8
|
Vargas-Chacoff L, Astola A, Arjona FJ, Martín del Río MP, García-Cózar F, Mancera JM, Martínez-Rodríguez G. Pituitary gene and protein expression under experimental variation on salinity and temperature in gilthead sea bream Sparus aurata. Comp Biochem Physiol B Biochem Mol Biol 2009; 154:303-8. [PMID: 19607931 DOI: 10.1016/j.cbpb.2009.07.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Revised: 07/02/2009] [Accepted: 07/06/2009] [Indexed: 10/20/2022]
Abstract
Temperature and salinity are important factors that affect several physiological processes in aquatic organisms, which could be produced by variation of certain hormones. In this study, the expression of pituitary hormones involved in the acclimation to different temperatures and salinities was examined in Sparus aurata, a euryhaline and eurytherm species, by Q-Real Time RT-PCR and Western blot analyses for mRNA and protein expression, respectively. Three different experimental conditions were designed with specimens (10 per treatment) acclimated to: a) low salinity water; b) sea water; and c) high salinity water. Additionally, fish under different salinities were acclimated to three different temperatures: 12, 19 and 26 degrees C. Animals were maintained seven weeks before sampling pituitary glands. Our results provided enough evidence for a differential expression of PRL, GH and SL in the pituitary of gilthead sea bream, under different temperature and salinity regimes.
Collapse
Affiliation(s)
- L Vargas-Chacoff
- Departamento de Biología, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, E-11510 Puerto Real, Cádiz, Spain
| | | | | | | | | | | | | |
Collapse
|
9
|
Citations. Biotechniques 2008. [DOI: 10.2144/000112859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|