1
|
Lopez-Morales J, Vanella R, Appelt EA, Whillock S, Paulk AM, Shusta EV, Hackel BJ, Liu CC, Nash MA. Protein Engineering and High-Throughput Screening by Yeast Surface Display: Survey of Current Methods. SMALL SCIENCE 2023; 3:2300095. [PMID: 39071103 PMCID: PMC11271970 DOI: 10.1002/smsc.202300095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024] Open
Abstract
Yeast surface display (YSD) is a powerful tool in biotechnology that links genotype to phenotype. In this review, the latest advancements in protein engineering and high-throughput screening based on YSD are covered. The focus is on innovative methods for overcoming challenges in YSD in the context of biotherapeutic drug discovery and diagnostics. Topics ranging from titrating avidity in YSD using transcriptional control to the development of serological diagnostic assays relying on serum biopanning and mitigation of unspecific binding are covered. Screening techniques against nontraditional cellular antigens, such as cell lysates, membrane proteins, and extracellular matrices are summarized and techniques are further delved into for expansion of the chemical repertoire, considering protein-small molecule hybrids and noncanonical amino acid incorporation. Additionally, in vivo gene diversification and continuous evolution in yeast is discussed. Collectively, these techniques enhance the diversity and functionality of engineered proteins isolated via YSD, broadening the scope of applications that can be addressed. The review concludes with future perspectives and potential impact of these advancements on protein engineering. The goal is to provide a focused summary of recent progress in the field.
Collapse
Affiliation(s)
- Joanan Lopez-Morales
- Institute for Physical Chemistry, Department of Chemistry, University of Basel, Basel 4058, Switzerland; Swiss Nanoscience Institute, University of Basel, Basel 4056, Switzerland; Department of Biosystems Science and Engineering, ETH Zurich, Basel 4058, Switzerland
| | - Rosario Vanella
- Institute for Physical Chemistry, Department of Chemistry, University of Basel, Basel 4058, Switzerland; Department of Biosystems Science and Engineering, ETH Zurich, Basel 4058, Switzerland
| | - Elizabeth A Appelt
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Sarah Whillock
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Alexandra M Paulk
- Program in Mathematical, Computational, and Systems Biology, University of California, Irvine, CA 92697-2280, USA; Center for Synthetic Biology, University of California, Irvine, CA 92697, USA; Department of Biomedical Engineering, University of California, Irvine, CA 92697, USA
| | - Eric V Shusta
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Neurological Surgery, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Benjamin J Hackel
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA; Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA
| | - Chang C Liu
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, USA; Department of Chemistry, University of California, Irvine, CA 92697, USA; Center for Synthetic Biology, University of California, Irvine, CA 92697, USA; Department of Biomedical Engineering, University of California, Irvine, CA 92697, USA
| | - Michael A Nash
- Institute for Physical Chemistry, Department of Chemistry, University of Basel, Basel 4058, Switzerland; Swiss Nanoscience Institute, University of Basel, Basel 4056, Switzerland; Department of Biosystems Science and Engineering, ETH Zurich, Basel 4058, Switzerland
| |
Collapse
|
2
|
Andreu C, Del Olmo ML. Yeast arming systems: pros and cons of different protein anchors and other elements required for display. Appl Microbiol Biotechnol 2018; 102:2543-2561. [PMID: 29435617 DOI: 10.1007/s00253-018-8827-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 01/30/2018] [Accepted: 01/31/2018] [Indexed: 12/13/2022]
Abstract
Yeast display is a powerful strategy that consists in exposing peptides or proteins of interest on the cell surface of this microorganism. Ever since initial experiments with this methodology were carried out, its scope has extended and many applications have been successfully developed in different science and technology fields. Several yeast display systems have been designed, which all involve introducting into yeast cells the gene fusions that contain the coding regions of a signal peptide, an anchor protein, to properly attach the target to the cell surface, and the protein of interest to be exposed, all of which are controlled by a strong promoter. In this work, we report the description of such elements for the alternative systems introduced by focusing particularly on anchor proteins. The comparisons made between them are included whenever possible, and the main advantages and inconveniences of each one are discussed. Despite the huge number of publications on yeast surface display and the revisions published to date, this topic has not yet been widely considered. Finally, given the growing interest in developing systems for non-Saccharomyces yeasts, the main strategies reported for some are also summarized.
Collapse
Affiliation(s)
- Cecilia Andreu
- Departament de Química Orgànica, Facultat de Farmàcia, Universitat de València, Vicent Andrés Estellés s/n. 46100 Burjassot, València, Spain
| | - Marcel Lí Del Olmo
- Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de València, Dr. Moliner 50, E-46100 Burjassot, València, Spain.
| |
Collapse
|
3
|
Abstract
The critical need for renewable, high-quality affinity reagents in biological research, as well as for diagnostic and therapeutic applications, has required the development of new platforms of discovery. Yeast display is one of the main methods of in vitro display technology with phage display. Yeast display has been chosen by numerous groups to refine both affinity and specificity of antibodies because it enables fine discrimination between mutant clones of similar affinity. In addition, the construction of display libraries of antibody fragments in yeast permits to sample the immune antibody repertoire more fully than using phage. This chapter gives an updated overview of the available systems of yeast display platforms and libraries, followed up by technical descriptions of selection methods of antibody fragments by yeast display.
Collapse
|
4
|
Abstract
Since the development of therapeutic antibodies the demand of recombinant human antibodies is steadily increasing. Traditionally, therapeutic antibodies were generated by immunization of rat or mice, the generation of hybridoma clones, cloning of the antibody genes and subsequent humanization and engineering of the lead candidates. In the last few years, techniques were developed that use transgenic animals with a human antibody gene repertoire. Here, modern recombinant DNA technologies can be combined with well established immunization and hybridoma technologies to generate already affinity maturated human antibodies. An alternative are in vitro technologies which enabled the generation of fully human antibodies from antibody gene libraries that even exceed the human antibody repertoire. Specific antibodies can be isolated from these libraries in a very short time and therefore reduce the development time of an antibody drug at a very early stage.In this review, we describe different technologies that are currently used for the in vitro and in vivo generation of human antibodies.
Collapse
|
5
|
Engineering of Immunoglobulin Fc Heterodimers Using Yeast Surface-Displayed Combinatorial Fc Library Screening. PLoS One 2015; 10:e0145349. [PMID: 26675656 PMCID: PMC4682967 DOI: 10.1371/journal.pone.0145349] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Accepted: 12/02/2015] [Indexed: 11/19/2022] Open
Abstract
Immunoglobulin Fc heterodimers, which are useful scaffolds for the generation of bispecific antibodies, have been mostly generated through structure-based rational design methods that introduce asymmetric mutations into the CH3 homodimeric interface to favor heterodimeric Fc formation. Here, we report an approach to generate heterodimeric Fc variants through directed evolution combined with yeast surface display. We developed a combinatorial heterodimeric Fc library display system by mating two haploid yeast cell lines, one haploid cell line displayed an Fc chain library (displayed FcCH3A) with mutations in one CH3 domain (CH3A) on the yeast cell surface, and the other cell line secreted an Fc chain library (secreted FcCH3B) with mutations in the other CH3 domain (CH3B). In the mated cells, secreted FcCH3B is displayed on the cell surface through heterodimerization with the displayed FcCH3A, the detection of which enabled us to screen the library for heterodimeric Fc variants. We constructed combinatorial heterodimeric Fc libraries with simultaneous mutations in the homodimer-favoring electrostatic interaction pairs K370-E357/S364 or D399-K392/K409 at the CH3 domain interface. High-throughput screening of the libraries using flow cytometry yielded heterodimeric Fc variants with heterodimer-favoring CH3 domain interface mutation pairs, some of them showed high heterodimerization yields (~80-90%) with previously unidentified CH3 domain interface mutation pairs, such as hydrogen bonds and cation-π interactions. Our study provides a new approach for engineering Fc heterodimers that could be used to engineer other heterodimeric protein-protein interactions through directed evolution combined with yeast surface display.
Collapse
|
6
|
Tanaka T, Kondo A. Cell surface engineering of industrial microorganisms for biorefining applications. Biotechnol Adv 2015; 33:1403-11. [PMID: 26070720 DOI: 10.1016/j.biotechadv.2015.06.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Revised: 06/04/2015] [Accepted: 06/06/2015] [Indexed: 11/19/2022]
Abstract
In order to decrease carbon emissions and negative environmental impacts of various pollutants, biofuel/biochemical production should be promoted for replacing fossil-based industrial processes. Utilization of abundant lignocellulosic biomass as a feedstock has recently become an attractive option. In this review, we focus on recent efforts of cell surface display using industrial microorganisms such as Escherichia coli and yeast. Cell surface display is used primarily for endowing cellulolytic activity on the host cells, and enables direct fermentation to generate useful fuels and chemicals from lignocellulosic biomass. Cell surface display systems are systematically summarized, and the drawbacks/perspectives as well as successful application of surface display for industrial biotechnology are discussed.
Collapse
Affiliation(s)
- Tsutomu Tanaka
- Department of Chemical Science and Technology, Graduate School of Engineering, Kobe University, 1-1, Rokkodaicho, Nada, Kobe 657-8501 Japan
| | - Akihiko Kondo
- Department of Chemical Science and Technology, Graduate School of Engineering, Kobe University, 1-1, Rokkodaicho, Nada, Kobe 657-8501 Japan.
| |
Collapse
|
9
|
Abstract
The critical need for renewable, high-quality affinity reagents in biological research, as well as for diagnostic and therapeutic applications, has required the development of new platforms of discovery. Yeast display is one of the main methods of in vitro display technology with phage display. Yeast display has been chosen by numerous groups to refine both affinity and specificity of antibodies because it enables fine discrimination between mutant clones of similar affinity. In addition, the construction of display libraries of antibody fragments in yeast permit to sample the immune antibody repertoire more fully than using phage. This chapter gives an updated overview of the available systems of yeast display platforms and libraries, followed up by technical descriptions of selection methods of antibody fragments by yeast display.
Collapse
Affiliation(s)
- Nathalie Scholler
- Center for Research on Reproduction and Women's Health, Penn Ovarian Cancer Research Center, University of Pennsylvania School of Medicine, Philadelphia, PA, USA,
| |
Collapse
|
10
|
Lin S, Houston-Cummings NR, Prinz B, Moore R, Bobrowicz B, Davidson RC, Wildt S, Stadheim TA, Zha D. A novel fragment of antigen binding (Fab) surface display platform using glycoengineered Pichia pastoris. J Immunol Methods 2011; 375:159-65. [PMID: 22019510 DOI: 10.1016/j.jim.2011.10.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Revised: 07/26/2011] [Accepted: 10/06/2011] [Indexed: 11/16/2022]
Abstract
A fragment of antigen binding (Fab) surface display system was developed using a glycoengineered Pichia pastoris host strain genetically modified to secrete glycoproteins with mammalian mannose-type Man(5)GlcNAc(2) N-linked glycans. The surface display method described here takes advantage of a pair of coiled-coil peptides as the linker while using the Saccharomyces cerevisiae Sed1p GPI-anchored cell surface protein as an anchoring domain. Several Fabs were successfully displayed on the cell surface using this system and the expression level of the displayed Fabs was correlated to that of secreted Fabs from the same glycoengineered host in the absence of the cell wall anchor. Strains displaying different model Fabs were mixed and, through cell sorting, the strain displaying more expressed Fab molecule or the strain displaying the Fab with higher affinity for an antigen was effectively enriched by FACS. This novel yeast surface display system provides a general platform for the display of Fab libraries for affinity and/or expression maturation using glycoengineered Pichia.
Collapse
Affiliation(s)
- Song Lin
- GlycoFi Inc., A wholly-owned subsidiary of Merck & Co Inc., Lebanon, NH 03766, United States
| | | | | | | | | | | | | | | | | |
Collapse
|