1
|
Bülck C, Nyström EE, Koudelka T, Mannbar-Frahm M, Andresen G, Radhouani M, Tran F, Scharfenberg F, Schrell F, Armbrust F, Dahlke E, Zhao B, Vervaeke A, Theilig F, Rosenstiel P, Starkl P, Rosshart SP, Fickenscher H, Tholey A, Hansson GC, Becker-Pauly C. Proteolytic processing of galectin-3 by meprin metalloproteases is crucial for host-microbiome homeostasis. SCIENCE ADVANCES 2023; 9:eadf4055. [PMID: 37000885 PMCID: PMC10065446 DOI: 10.1126/sciadv.adf4055] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 03/02/2023] [Indexed: 06/19/2023]
Abstract
The metalloproteases meprin α and meprin β are highly expressed in the healthy gut but significantly decreased in inflammatory bowel disease, implicating a protective role in mucosal homeostasis. In the colon, meprin α and meprin β form covalently linked heterodimers tethering meprin α to the plasma membrane, therefore presenting dual proteolytic activity in a unique enzyme complex. To unravel its function, we applied N-terminomics and identified galectin-3 as the major intestinal substrate for meprin α/β heterodimers. Galectin-3-deficient and meprin α/β double knockout mice show similar alterations in their microbiome in comparison to wild-type mice. We further demonstrate that meprin α/β heterodimers differentially process galectin-3 upon bacterial infection, in germ-free, conventionally housed (specific pathogen-free), or wildling mice, which in turn regulates the bacterial agglutination properties of galectin-3. Thus, the constitutive cleavage of galectin-3 by meprin α/β heterodimers may play a key role in colon host-microbiome homeostasis.
Collapse
Affiliation(s)
- Cynthia Bülck
- Institute of Biochemistry, University of Kiel, 24118 Kiel, Germany
| | | | - Tomas Koudelka
- Institute of Experimental Medicine, University of Kiel, 24188 Kiel, Germany
| | - Michael Mannbar-Frahm
- Institute of Infection Medicine, University of Kiel and University Medical Center Schleswig-Holstein, 24015 Kiel, Germany
| | - Gerrit Andresen
- Institute of Infection Medicine, University of Kiel and University Medical Center Schleswig-Holstein, 24015 Kiel, Germany
| | - Mariem Radhouani
- Division of Infection Biology, Department of Medicine I, Medical University of Vienna, 1090 Vienna, Austria
| | - Florian Tran
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, 24105 Kiel, Germany
| | | | | | - Fred Armbrust
- Institute of Biochemistry, University of Kiel, 24118 Kiel, Germany
| | - Eileen Dahlke
- Institute of Anatomy, University of Kiel, 24118 Kiel, Germany
| | - Bei Zhao
- Department of Microbiome Research, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Alex Vervaeke
- Division of Infection Biology, Department of Medicine I, Medical University of Vienna, 1090 Vienna, Austria
| | | | - Philip Rosenstiel
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, 24105 Kiel, Germany
| | - Philipp Starkl
- Division of Infection Biology, Department of Medicine I, Medical University of Vienna, 1090 Vienna, Austria
| | - Stephan P. Rosshart
- Department of Microbiome Research, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology, and Infectious Diseases), Medical Center–University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Helmut Fickenscher
- Institute of Infection Medicine, University of Kiel and University Medical Center Schleswig-Holstein, 24015 Kiel, Germany
| | - Andreas Tholey
- Institute of Experimental Medicine, University of Kiel, 24188 Kiel, Germany
| | - Gunnar C. Hansson
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, 405 30 Gothenburg, Sweden
| | | |
Collapse
|
2
|
Abo-El Fetoh ME, Abdel-Fattah MM, Mohamed WR, Ramadan LAA, Afify H. Cyclooxygenase-2 activates EGFR-ERK1/2 pathway via PGE2-mediated ADAM-17 signaling in testosterone-induced benign prostatic hyperplasia. Inflammopharmacology 2023; 31:499-516. [PMID: 36586043 PMCID: PMC9958186 DOI: 10.1007/s10787-022-01123-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/25/2022] [Indexed: 01/01/2023]
Abstract
OBJECTIVE AND DESIGN Prostatic inflammation is the driving force in benign prostatic hyperplasia (BPH). This work investigated the potential modulatory effect of COX-2 inhibition on ADAM-17/EGFR/ERK1/2 axis. MATERIALS OR SUBJECTS Adult male Wistar rats were used. TREATMENT Celecoxib (10 and 20 mg/kg; i.p.) was injected i.p. daily for three weeks. Testosterone (TST) (3 mg/kg; s.c.) was used to induce BPH. METHODS Prostatic inflammation and hyperplasia were assessed by organ weight and histopathology. Inflammatory mediators were measured using ELISA technique. Protein analysis was performed using western blotting and immunohistochemistry. Gene expression analysis was performed using qRT-PCR. Statistical analyses included one-way ANOVA and Tukey's multiple comparison test. RESULTS Testosterone-treated rats had a marked increase in COX-2, prostate weight, and index. Moreover, TST-induced COX-2 was inferred from cytoskeletal changes and was attributable to the overexpression of PGE2, NF-κB (p65), and IL-6. COX-2-derived PGE2 increased the activity of ADAM-17, TGF-α, and TNF-α. Consequently, EGFR-ERK1/2 pathway was over-activated, disrupting anti-apoptotic Bcl-2, cyclin D1, and pro-apoptotic Bax. Celecoxib reversed these effects. CONCLUSION COX-2 stimulates the ERK1/2 pathway via PGE2-ADAM-17-catalyzed shedding of TGF-α in testosterone-induced BPH. The results indicate a functional correlation between inflammation and hyperplasia in BPH.
Collapse
Affiliation(s)
- Mohammed E. Abo-El Fetoh
- grid.442695.80000 0004 6073 9704Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
| | - Maha M. Abdel-Fattah
- grid.411662.60000 0004 0412 4932Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514 Egypt
| | - Wafaa R. Mohamed
- grid.411662.60000 0004 0412 4932Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514 Egypt
| | - Laila A. A. Ramadan
- grid.442695.80000 0004 6073 9704Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
| | - Hassan Afify
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt.
| |
Collapse
|
3
|
Verhulst E, Garnier D, De Meester I, Bauvois B. Validating Cell Surface Proteases as Drug Targets for Cancer Therapy: What Do We Know, and Where Do We Go? Cancers (Basel) 2022; 14:624. [PMID: 35158891 PMCID: PMC8833564 DOI: 10.3390/cancers14030624] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 02/06/2023] Open
Abstract
Cell surface proteases (also known as ectoproteases) are transmembrane and membrane-bound enzymes involved in various physiological and pathological processes. Several members, most notably dipeptidyl peptidase 4 (DPP4/CD26) and its related family member fibroblast activation protein (FAP), aminopeptidase N (APN/CD13), a disintegrin and metalloprotease 17 (ADAM17/TACE), and matrix metalloproteinases (MMPs) MMP2 and MMP9, are often overexpressed in cancers and have been associated with tumour dysfunction. With multifaceted actions, these ectoproteases have been validated as therapeutic targets for cancer. Numerous inhibitors have been developed to target these enzymes, attempting to control their enzymatic activity. Even though clinical trials with these compounds did not show the expected results in most cases, the field of ectoprotease inhibitors is growing. This review summarizes the current knowledge on this subject and highlights the recent development of more effective and selective drugs targeting ectoproteases among which small molecular weight inhibitors, peptide conjugates, prodrugs, or monoclonal antibodies (mAbs) and derivatives. These promising avenues have the potential to deliver novel therapeutic strategies in the treatment of cancers.
Collapse
Affiliation(s)
- Emile Verhulst
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, 2000 Antwerp, Belgium; (E.V.); (I.D.M.)
| | - Delphine Garnier
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Cell Death and Drug Resistance in Lymphoproliferative Disorders Team, F-75006 Paris, France;
| | - Ingrid De Meester
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, 2000 Antwerp, Belgium; (E.V.); (I.D.M.)
| | - Brigitte Bauvois
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Cell Death and Drug Resistance in Lymphoproliferative Disorders Team, F-75006 Paris, France;
| |
Collapse
|
4
|
ADAM17-A Potential Blood-Based Biomarker for Detection of Early-Stage Ovarian Cancer. Cancers (Basel) 2021; 13:cancers13215563. [PMID: 34771725 PMCID: PMC8583642 DOI: 10.3390/cancers13215563] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/01/2021] [Accepted: 11/03/2021] [Indexed: 01/11/2023] Open
Abstract
Simple Summary Ovarian cancer has the highest lethality among gynecological tumors. Therefore, it is essential to find reliable biomarkers to improve early detection. This is the first report describing ADAM17 detection in serum and ascites fluid of ovarian cancer patients. A high ADAM17 concentration in serum at primary diagnosis is associated with early FIGO stages and predicts complete resection of the tumor mass. In addition, ADAM17 and CA-125 complement each other, especially in the diagnosis of early stages. In summary, ADAM17 appears to be a promising screening marker for detecting early-stage ovarian cancer. Abstract Ovarian cancer has the highest mortality rate among gynecological tumors. This is based on late diagnosis and the lack of early symptoms. To improve early detection, it is essential to find reliable biomarkers. The metalloprotease ADAM17 could be a potential marker, as it is highly expressed in many solid tumors, including ovarian and breast cancer. The aim of this work is to evaluate the relevance of ADAM17 as a potential diagnostic blood-based biomarker in ovarian cancer. Ovarian cancer cell lines IGROV-1 and A2780, as well as primary patient-derived tumor cells obtained from tumor tissue and ascitic fluid, were cultured to analyze ADAM17 abundance in the culture supernatant. In a translational approach, a cohort of 117 well-characterized ovarian cancer patients was assembled and ADAM17 levels in serum and corresponding ascitic fluid were determined at primary diagnosis. ADAM17 was quantified by enzyme-linked immunosorbent assay (ELISA). In the present study, ADAM17 was detected in the culture supernatant of ovarian cancer cell lines and primary cells. In addition, ADAM17 was found in serum and ascites of ovarian cancer patients. ADAM17 level was significantly increased in ovarian cancer patients compared to an age-matched control group (p < 0.0001). Importantly early FIGO I/II stages, which would not have been detected by CA-125, were associated with higher ADAM17 concentrations (p = 0.007). This is the first study proposing ADAM17 as a serum tumor marker in the setting of a gynecological tumor disease. Usage of ADAM17 in combination with CA-125 and other markers could help detect early stages of ovarian cancer.
Collapse
|
5
|
Cardeñes B, Clares I, Toribio V, Pascual L, López-Martín S, Torres-Gomez A, Sainz de la Cuesta R, Lafuente EM, López-Cabrera M, Yáñez-Mó M, Cabañas C. Cellular Integrin α5β1 and Exosomal ADAM17 Mediate the Binding and Uptake of Exosomes Produced by Colorectal Carcinoma Cells. Int J Mol Sci 2021; 22:ijms22189938. [PMID: 34576100 PMCID: PMC8471098 DOI: 10.3390/ijms22189938] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 09/10/2021] [Indexed: 12/13/2022] Open
Abstract
Approximately 25% of colorectal cancer (CRC) patients develop peritoneal metastasis, a condition associated with a bleak prognosis. The CRC peritoneal dissemination cascade involves the shedding of cancer cells from the primary tumor, their transport through the peritoneal cavity, their adhesion to the peritoneal mesothelial cells (PMCs) that line all peritoneal organs, and invasion of cancer cells through this mesothelial cell barrier and underlying stroma to establish new metastatic foci. Exosomes produced by cancer cells have been shown to influence many processes related to cancer progression and metastasis. In epithelial ovarian cancer these extracellular vesicles (EVs) have been shown to favor different steps of the peritoneal dissemination cascade by changing the functional phenotype of cancer cells and PMCs. Little is currently known, however, about the roles played by exosomes in the pathogenesis and peritoneal metastasis cascade of CRC and especially about the molecules that mediate their interaction and uptake by target PMCs and tumor cells. We isolated exosomes by size−exclusion chromatography from CRC cells and performed cell-adhesion assays to immobilized exosomes in the presence of blocking antibodies against surface proteins and measured the uptake of fluorescently-labelled exosomes. We report here that the interaction between integrin α5β1 on CRC cells (and PMCs) and its ligand ADAM17 on exosomes mediated the binding and uptake of CRC-derived exosomes. Furthermore, this process was negatively regulated by the expression of tetraspanin CD9 on exosomes.
Collapse
Affiliation(s)
- Beatriz Cardeñes
- Centre for Molecular Biology “Severo Ochoa” (CSIC-UAM), Cell-Cell Communication & Inflammation Unit, 28049 Madrid, Spain; (B.C.); (I.C.); (V.T.); (L.P.); (S.L.-M.); (M.L.-C.); (M.Y.-M.)
| | - Irene Clares
- Centre for Molecular Biology “Severo Ochoa” (CSIC-UAM), Cell-Cell Communication & Inflammation Unit, 28049 Madrid, Spain; (B.C.); (I.C.); (V.T.); (L.P.); (S.L.-M.); (M.L.-C.); (M.Y.-M.)
| | - Víctor Toribio
- Centre for Molecular Biology “Severo Ochoa” (CSIC-UAM), Cell-Cell Communication & Inflammation Unit, 28049 Madrid, Spain; (B.C.); (I.C.); (V.T.); (L.P.); (S.L.-M.); (M.L.-C.); (M.Y.-M.)
- Department of Molecular Biology, Faculty of Sciences, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Lucía Pascual
- Centre for Molecular Biology “Severo Ochoa” (CSIC-UAM), Cell-Cell Communication & Inflammation Unit, 28049 Madrid, Spain; (B.C.); (I.C.); (V.T.); (L.P.); (S.L.-M.); (M.L.-C.); (M.Y.-M.)
| | - Soraya López-Martín
- Centre for Molecular Biology “Severo Ochoa” (CSIC-UAM), Cell-Cell Communication & Inflammation Unit, 28049 Madrid, Spain; (B.C.); (I.C.); (V.T.); (L.P.); (S.L.-M.); (M.L.-C.); (M.Y.-M.)
- Department of Molecular Biology, Faculty of Sciences, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Alvaro Torres-Gomez
- Department of Immunology, Ophthalmology and Otorhinolaryngology, School of Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain; (A.T.-G.); (E.M.L.)
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (i+12), 28041 Madrid, Spain
| | - Ricardo Sainz de la Cuesta
- Department of Obstetrics and Gynecology, Hospital Universitario Quironsalud Madrid, 28223 Madrid, Spain;
| | - Esther M. Lafuente
- Department of Immunology, Ophthalmology and Otorhinolaryngology, School of Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain; (A.T.-G.); (E.M.L.)
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (i+12), 28041 Madrid, Spain
| | - Manuel López-Cabrera
- Centre for Molecular Biology “Severo Ochoa” (CSIC-UAM), Cell-Cell Communication & Inflammation Unit, 28049 Madrid, Spain; (B.C.); (I.C.); (V.T.); (L.P.); (S.L.-M.); (M.L.-C.); (M.Y.-M.)
| | - María Yáñez-Mó
- Centre for Molecular Biology “Severo Ochoa” (CSIC-UAM), Cell-Cell Communication & Inflammation Unit, 28049 Madrid, Spain; (B.C.); (I.C.); (V.T.); (L.P.); (S.L.-M.); (M.L.-C.); (M.Y.-M.)
- Department of Molecular Biology, Faculty of Sciences, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Instituto de Investigación Sanitaria Hospital La Princesa, 28006 Madrid, Spain
| | - Carlos Cabañas
- Centre for Molecular Biology “Severo Ochoa” (CSIC-UAM), Cell-Cell Communication & Inflammation Unit, 28049 Madrid, Spain; (B.C.); (I.C.); (V.T.); (L.P.); (S.L.-M.); (M.L.-C.); (M.Y.-M.)
- Department of Immunology, Ophthalmology and Otorhinolaryngology, School of Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain; (A.T.-G.); (E.M.L.)
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (i+12), 28041 Madrid, Spain
- Correspondence: or ; Tel.: +34-911964513
| |
Collapse
|
6
|
Zhang Y, Chen X, Yuan S, Wang L, Guan X. Joint Entropy-Assisted Graphene Oxide-Based Multiplexing Biosensing Platform for Simultaneous Detection of Multiple Proteases. Anal Chem 2020; 92:15042-15049. [PMID: 33118812 DOI: 10.1021/acs.analchem.0c03007] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Due to the limited clinical utility of individual biomarkers, there is growing recognition of the need for combining multiple biomarkers as a panel to improve the accuracy and efficacy of disease diagnosis and prognosis. The conventional method to detect multiple analyte species is to construct a sensor array, which consists of an array of individual selective probes for different species. In this work, by using cancer biomarker matrix metalloproteinases (MMPs) and a disintegrin and metalloproteinases (ADAMs) as model analytes and functionalized nanographene oxide (nGO) as a sensing element, we developed a multiplexing fluorescence sensor in a nonarray format for simultaneous measurement of the activities of multiple proteases. The constructed nGO-based biosensor was rapid, sensitive, and selective and was also utilized for the successful profiling of ADAMs/MMPs in simulated serum samples. Furthermore, we showed that joint entropy and programming could be utilized to guide experiment design, especially in terms of the selection of a subset of proteases from the entire MMPs/ADAMs family as an appropriate biomarker panel. Our developed nGO-based multiplex sensing platform should find useful application in early cancer detection and diagnosis.
Collapse
Affiliation(s)
- Youwen Zhang
- Department of Chemistry, Illinois Institute of Technology, 3101 South Dearborn Street, Chicago, Illinois 60616, United States
| | - Xiaohan Chen
- Department of Chemistry, Illinois Institute of Technology, 3101 South Dearborn Street, Chicago, Illinois 60616, United States
| | - Shaoqing Yuan
- Amazon, 2121 Seventh Avenue, Seattle, Washington 98121, United States
| | - Liang Wang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China.,Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, China
| | - Xiyun Guan
- Department of Chemistry, Illinois Institute of Technology, 3101 South Dearborn Street, Chicago, Illinois 60616, United States
| |
Collapse
|
7
|
Quantitation of novel pentavalent meningococcal polysaccharide conjugate vaccine (Men A-TT, Men C-CRM, Men Y-CRM, Men W-CRM, Men X-TT) using sandwich ELISA. Vaccine 2020; 38:7815-7824. [DOI: 10.1016/j.vaccine.2020.10.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 09/05/2020] [Accepted: 10/07/2020] [Indexed: 11/17/2022]
|
8
|
Zhang Y, Chen X, Roozbahani GM, Guan X. Rapid and sensitive detection of the activity of ADAM17 using a graphene oxide-based fluorescence sensor. Analyst 2019; 144:1825-1830. [PMID: 30675599 PMCID: PMC6800036 DOI: 10.1039/c8an02344a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
A disintegrin and metalloproteinase 17 (ADAM17) has become a novel biomarker and potential therapeutic target for the early detection and treatment of human cancers. In this work, by covalently attaching fluorescently labeled ADAM17 substrate peptide (Pep-FAM) molecules to carboxylated graphene oxide (cGO) and monitoring the cleavage of the peptide substrate by ADAM17, we developed a cGO-Pep-FAM fluorescence sensor for the rapid, sensitive and accurate detection of ADAM17. The sensor was highly sensitive with a detection limit of 17.5 picomolar. Furthermore, the sensor was selective: structure similar proteases such as ADAM9 and MMP-9 would not interfere with ADAM17 detection. In addition, simulated serum samples were successfully analyzed. Our developed cGO-Pep-FAM sensing strategy should find useful applications in disease diagnosis and drug screening.
Collapse
Affiliation(s)
- Youwen Zhang
- Department of Chemistry, Illinois Institute of Technology, Chicago, IL 60616, USA.
| | | | | | | |
Collapse
|
9
|
Chen X, Zhang Y, Roozbahani GM, Guan X. Salt-Mediated Nanopore Detection of ADAM-17. ACS APPLIED BIO MATERIALS 2018; 2:504-509. [PMID: 32529174 DOI: 10.1021/acsabm.8b00689] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
ADAM-17 (a disintegrin and metalloproteinase 17) plays an important role in various physiological and pathophysiological processes. Overexpression/underexpression of ADAM-17 could lead to various diseases. In this work, by taking advantage of ionic strength and salt gradient, and monitoring the cleavage of a substrate peptide by ADAM-17 in a nanopore, we developed a label-free sensor for the rapid detection of ADAM-17. The sensor was highly sensitive and selective: picomolar concentrations of ADAM-17 could be detected within minutes, while structure similar proteases such as ADAM-9 and MMP-9 did not interfere with its detection. Our developed nanopore sensing strategy should find useful applications in the development of nanopore sensors for other proteases of biological, pharmaceutical, and medical importance.
Collapse
Affiliation(s)
- Xiaohan Chen
- Department of Chemistry, Illinois Institute of Technology, Chicago, IL, 60616, USA
| | - Youwen Zhang
- Department of Chemistry, Illinois Institute of Technology, Chicago, IL, 60616, USA
| | | | - Xiyun Guan
- Department of Chemistry, Illinois Institute of Technology, Chicago, IL, 60616, USA
| |
Collapse
|
10
|
Machado-Pineda Y, Cardeñes B, Reyes R, López-Martín S, Toribio V, Sánchez-Organero P, Suarez H, Grötzinger J, Lorenzen I, Yáñez-Mó M, Cabañas C. CD9 Controls Integrin α5β1-Mediated Cell Adhesion by Modulating Its Association With the Metalloproteinase ADAM17. Front Immunol 2018; 9:2474. [PMID: 30455686 PMCID: PMC6230984 DOI: 10.3389/fimmu.2018.02474] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 10/08/2018] [Indexed: 12/21/2022] Open
Abstract
Integrin α5β1 is a crucial adhesion molecule that mediates the adherence of many cell types to the extracellular matrix through recognition of its classic ligand fibronectin as well as to other cells through binding to an alternative counter-receptor, the metalloproteinase ADAM17/TACE. Interactions between integrin α5β1 and ADAM17 may take place both in trans (between molecules expressed on different cells) or in cis (between molecules expressed on the same cell) configurations. It has been recently reported that the cis association between α5β1 and ADAM17 keeps both molecules inactive, whereas their dissociation results in activation of their adhesive and metalloproteinase activities. Here we show that the tetraspanin CD9 negatively regulates integrin α5β1-mediated cell adhesion by enhancing the cis interaction of this integrin with ADAM17 on the cell surface. Additionally we show that, similarly to CD9, the monoclonal antibody 2A10 directed to the disintegrin domain of ADAM17 specifically inhibits integrin α5β1-mediated cell adhesion to its ligands fibronectin and ADAM17.
Collapse
Affiliation(s)
- Yesenia Machado-Pineda
- Departamento de Biología Celular e Inmunología, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
| | - Beatriz Cardeñes
- Departamento de Biología Celular e Inmunología, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
| | - Raquel Reyes
- Departamento de Biología Celular e Inmunología, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
| | - Soraya López-Martín
- Departamento de Biología Celular e Inmunología, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain.,Departamento de Biología Molecular, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - Víctor Toribio
- Departamento de Biología Celular e Inmunología, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain.,Departamento de Biología Molecular, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - Paula Sánchez-Organero
- Departamento de Biología Celular e Inmunología, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
| | - Henar Suarez
- Departamento de Biología Celular e Inmunología, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain.,Departamento de Biología Molecular, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - Joachim Grötzinger
- Institute of Biochemistry, Christian-Albrechts University, Kiel, Germany
| | - Inken Lorenzen
- Department of Structural Biology, Institute of Zoology, Kiel, Germany
| | - María Yáñez-Mó
- Departamento de Biología Celular e Inmunología, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain.,Departamento de Biología Molecular, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain.,Centro de Biología Molecular Severo Ochoa, Instituto de Investigación Sanitaria la Princesa (IIS-IP), Madrid, Spain
| | - Carlos Cabañas
- Departamento de Biología Celular e Inmunología, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain.,Departamento de Inmunología, Oftalmología y OTR, Facultad de Medicina, Universidad Complutense, Madrid, Spain
| |
Collapse
|
11
|
Meka IA, Anyim OB, Enebe JT, Ukwaja KN, Ugonabo MC. Association of MiRNA122 & ADAM17 with Lipids among Hypertensives in Nigeria. Open Med (Wars) 2018; 13:350-358. [PMID: 30211317 PMCID: PMC6132086 DOI: 10.1515/med-2018-0053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 06/25/2018] [Indexed: 11/15/2022] Open
Abstract
Background Dyslipidaemia and hypertension are established major risk factors for cardiovascular diseases. The suggested roles of miRNA-122 and ADAM17 in lipid metabolism can therefore be applied in the management of metabolic disorders. The authors’ aim was to determine the association between miRNA-122 and ADAM17, as well as the association between miRNA-122 and lipid fractions, in the study participants. Method A comparative cross-sectional study was conducted among 200 hypertensive patients and 100 non-hypertensive adult controls between May, 2015, and June, 2016, in Nigeria. Lipids were analysed with spectrophotometric methods whereas ADAM17 and miRNA-122 were analysed with enzyme linked immunosorbent assay and quantitative polymerase chain reaction, respectively. Results The mean (standard deviation [SD]) ages of 200 hypertensives and 100 controls were 56.3 (6.9) and 54.9 (8.3) years, respectively. miRNA-112 and ADAM17 had significantly higher values among dyslipidaemic individuvals compared with non-dyslipidaemic participants. The correlation between miRNA-122 and ADAM17 levels was strongly positive, r=0.82, p<0.05. LDL-cholesterol and total cholesterol also showed statistically significant positive correlation with miRNA-122, r=0.53, r=0.51, (p< 0.001) respectively. Conclusion In this study, miRNA-122 showed a strong correlation with ADAM17 and a positive correlation with LDL-cholesterol and total cholesterol. These findings support the stimulant roles of miRNA-122 and ADAM17 in lipid metabolism and thus could be used in the management of dyslipidaemia.
Collapse
Affiliation(s)
- Ijeoma A Meka
- Department of Chemical Pathology, University of Nigeria Enugu Campus, Enugu, Nigeria
| | - Obumneme B Anyim
- Department of Internal Medicine, University of Nigeria Teaching Hospital, Ituku-Ozalla, Enugu State, Enugu, Nigeria
| | - Joseph T Enebe
- Department of Obstetrics and Gynaecology, Enugu State University of Science and Technology, Enugu State, Enugu, Nigeria
| | - Kingsley N Ukwaja
- Department of Internal Medicine, Federal Teaching Hospital Abakaliki, Ebonyi State, Enugu, Nigeria
| | - Martin C Ugonabo
- Department of Chemical Pathology, University of Nigeria Enugu Campus, Enugu State, Enugu, Nigeria
| |
Collapse
|
12
|
Oikonomidi I, Burbridge E, Cavadas M, Sullivan G, Collis B, Naegele H, Clancy D, Brezinova J, Hu T, Bileck A, Gerner C, Bolado A, von Kriegsheim A, Martin SJ, Steinberg F, Strisovsky K, Adrain C. iTAP, a novel iRhom interactor, controls TNF secretion by policing the stability of iRhom/TACE. eLife 2018; 7:35032. [PMID: 29897333 PMCID: PMC6042963 DOI: 10.7554/elife.35032] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 06/10/2018] [Indexed: 12/11/2022] Open
Abstract
The apical inflammatory cytokine TNF regulates numerous important biological processes including inflammation and cell death, and drives inflammatory diseases. TNF secretion requires TACE (also called ADAM17), which cleaves TNF from its transmembrane tether. The trafficking of TACE to the cell surface, and stimulation of its proteolytic activity, depends on membrane proteins, called iRhoms. To delineate how the TNF/TACE/iRhom axis is regulated, we performed an immunoprecipitation/mass spectrometry screen to identify iRhom-binding proteins. This identified a novel protein, that we name iTAP (iRhom Tail-Associated Protein) that binds to iRhoms, enhancing the cell surface stability of iRhoms and TACE, preventing their degradation in lysosomes. Depleting iTAP in primary human macrophages profoundly impaired TNF production and tissues from iTAP KO mice exhibit a pronounced depletion in active TACE levels. Our work identifies iTAP as a physiological regulator of TNF signalling and a novel target for the control of inflammation. Inflammation forms part of the body's defense system against pathogens, but if the system becomes faulty, it can cause problems linked to inflammatory and autoimmune diseases. Immune cells coordinate their activity using specific signaling molecules called cytokines. For example, the cytokine TNF is an important trigger of inflammation and is produced at the surface of immune cells. A specific enzyme called TACE is needed to release TNF, as well as other signaling molecules, including proteins that trigger healing. Previous work revealed that TACE works with proteins called iRhoms, which regulate its activity and help TACE to reach the surface of the cell to release TNF. To find out how, Oikonomidi et al. screened human cells to see what other proteins interact with iRhoms. The results revealed a new protein named iTAP, which is required to release TNF from the surface of cells. It also protects the TACE-iRhom complex from being destroyed by the cell’s waste disposal system. When iTAP was experimentally removed in human immune cells, the cells were unable to release TNF. Instead, iRhom and TACE travelled to the cell's garbage system, the lysosome, where the proteins were destroyed. Removing the iTAP gene in mice had the same effect, and the TACE-iRhom complex was no longer found on the surface of the cell, but instead degraded in lysosomes. This suggests that in healthy cells, the iTAP protein prevents the cell from destroying this protein complex. TNF controls many beneficial processes, including fighting infection and cancer. However, when the immune system releases too many cytokines, it can lead to inflammatory diseases or even cause cancer. Specific drugs that target TNF are not always effective administered on their own, and sometimes, patients stop responding to the drugs. Since the new protein iTAP works as a switch to turn TNF release on or off, it could provide a target for the development of new treatments.
Collapse
Affiliation(s)
- Ioanna Oikonomidi
- Membrane Traffic Lab, Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Emma Burbridge
- Membrane Traffic Lab, Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Miguel Cavadas
- Membrane Traffic Lab, Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Graeme Sullivan
- Molecular Cell Biology Laboratory, Department of Genetics, The Smurfit Institute, Trinity College Dublin, Dublin, Ireland
| | - Blanka Collis
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Heike Naegele
- Center for Biological Systems Analysis, Faculty of Biology, Albert Ludwigs Universitaet Freiburg, Freiburg, Germany
| | - Danielle Clancy
- Molecular Cell Biology Laboratory, Department of Genetics, The Smurfit Institute, Trinity College Dublin, Dublin, Ireland
| | - Jana Brezinova
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Tianyi Hu
- Membrane Traffic Lab, Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Andrea Bileck
- Institut für Analytische Chemie, Universität Wien, Vienna, Austria
| | | | - Alfonso Bolado
- Edinburgh Cancer Research UK Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Alex von Kriegsheim
- Edinburgh Cancer Research UK Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Seamus J Martin
- Molecular Cell Biology Laboratory, Department of Genetics, The Smurfit Institute, Trinity College Dublin, Dublin, Ireland
| | - Florian Steinberg
- Center for Biological Systems Analysis, Faculty of Biology, Albert Ludwigs Universitaet Freiburg, Freiburg, Germany
| | - Kvido Strisovsky
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Colin Adrain
- Membrane Traffic Lab, Instituto Gulbenkian de Ciência, Oeiras, Portugal
| |
Collapse
|
13
|
Hedemann N, Rogmans C, Sebens S, Wesch D, Reichert M, Schmidt-Arras D, Oberg HH, Pecks U, van Mackelenbergh M, Weimer J, Arnold N, Maass N, Bauerschlag DO. ADAM17 inhibition enhances platinum efficiency in ovarian cancer. Oncotarget 2018; 9:16043-16058. [PMID: 29662625 PMCID: PMC5882316 DOI: 10.18632/oncotarget.24682] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 02/28/2018] [Indexed: 12/18/2022] Open
Abstract
Chemotherapeutic resistance evolves in about 70 % of ovarian cancer patients and is a major cause of death in this tumor entity. Novel approaches to overcome these therapeutic limitations are therefore highly warranted. A disintegrin and metalloprotease 17 (ADAM17) is highly expressed in ovarian cancer and required for releasing epidermal growth factor receptor (EGFR) ligands like amphiregulin (AREG). This factor has recently been detected in ascites of advanced stage ovarian cancer patients. However, it is not well understood, whether and how ADAM17 might contribute to chemo resistance of ovarian cancer. In this study, we identified ADAM17 as an essential upstream regulator of AREG release under chemotherapeutic treatment in ovarian cancer cell lines and patient derived cells. In the majority of ovarian cancer cells cisplatin treatment resulted in enhanced ADAM17 activity, as shown by an increased shedding of AREG. Moreover, both mRNA and the protein content of AREG were dose-dependently increased by cisplatin exposure. Consequently, cisplatin strongly induced phosphorylation of ADAM17-downstream mediators, the EGFR and extracellular signal-regulated kinases (ERK). Phorbol 12-myristate 13-acetate (PMA), similarly to cisplatin, mediated AREG shedding and membrane fading of surface ADAM17. Inhibition of ADAM17 with either GW280264X or the anti-ADAM17 antibody D1 (A12) as well as silencing of ADAM17 by siRNA selectively reduced AREG release. Thus, ADAM17 inhibition sensitized cancer cells to cisplatin-induced apoptosis, and significantly reduced cell viability. Based on these findings, we propose that targeting of ADAM17 in parallel to chemotherapeutic treatment suppresses survival pathways and potentially diminish evolving secondary chemo resistance mechanisms.
Collapse
Affiliation(s)
- Nina Hedemann
- Department of Gynecology and Obstetrics, Christian-Albrechts-University Kiel and University Medical Center Schleswig-Holstein Campus Kiel, Kiel, Germany
| | - Christoph Rogmans
- Department of Gynecology and Obstetrics, Christian-Albrechts-University Kiel and University Medical Center Schleswig-Holstein Campus Kiel, Kiel, Germany
| | - Susanne Sebens
- Institute for Experimental Cancer Research, Christian-Albrechts-University Kiel and University Medical Center Schleswig-Holstein Campus Kiel, Kiel, Germany
| | - Daniela Wesch
- Institute of Immunology, Christian-Albrechts-University and University Medical Center Schleswig-Holstein Campus Kiel, Kiel, Germany
| | - Manuel Reichert
- Institute of Biochemistry, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Dirk Schmidt-Arras
- Institute of Biochemistry, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Hans-Heinrich Oberg
- Institute of Immunology, Christian-Albrechts-University and University Medical Center Schleswig-Holstein Campus Kiel, Kiel, Germany
| | - Ulrich Pecks
- Department of Gynecology and Obstetrics, Christian-Albrechts-University Kiel and University Medical Center Schleswig-Holstein Campus Kiel, Kiel, Germany
| | - Marion van Mackelenbergh
- Department of Gynecology and Obstetrics, Christian-Albrechts-University Kiel and University Medical Center Schleswig-Holstein Campus Kiel, Kiel, Germany
| | - Jörg Weimer
- Department of Gynecology and Obstetrics, Christian-Albrechts-University Kiel and University Medical Center Schleswig-Holstein Campus Kiel, Kiel, Germany
| | - Norbert Arnold
- Department of Gynecology and Obstetrics, Christian-Albrechts-University Kiel and University Medical Center Schleswig-Holstein Campus Kiel, Kiel, Germany
| | - Nicolai Maass
- Department of Gynecology and Obstetrics, Christian-Albrechts-University Kiel and University Medical Center Schleswig-Holstein Campus Kiel, Kiel, Germany
| | - Dirk O Bauerschlag
- Department of Gynecology and Obstetrics, Christian-Albrechts-University Kiel and University Medical Center Schleswig-Holstein Campus Kiel, Kiel, Germany
| |
Collapse
|
14
|
Seipold L, Damme M, Prox J, Rabe B, Kasparek P, Sedlacek R, Altmeppen H, Willem M, Boland B, Glatzel M, Saftig P. Tetraspanin 3: A central endocytic membrane component regulating the expression of ADAM10, presenilin and the amyloid precursor protein. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1864:217-230. [PMID: 27818272 DOI: 10.1016/j.bbamcr.2016.11.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 10/28/2016] [Accepted: 11/02/2016] [Indexed: 12/31/2022]
Abstract
Despite existing knowledge about the role of the A Disintegrin and Metalloproteinase 10 (ADAM10) as the α-secretase involved in the non-amyloidogenic processing of the amyloid precursor protein (APP) and Notch signalling we have only limited information about its regulation. In this study, we have identified ADAM10 interactors using a split ubiquitin yeast two hybrid approach. Tetraspanin 3 (Tspan3), which is highly expressed in the murine brain and elevated in brains of Alzheimer´s disease (AD) patients, was identified and confirmed to bind ADAM10 by co-immunoprecipitation experiments in mammalian cells in complex with APP and the γ-secretase protease presenilin. Tspan3 expression increased the cell surface levels of its interacting partners and was mainly localized in early and late endosomes. In contrast to the previously described ADAM10-binding tetraspanins, Tspan3 did not affect the endoplasmic reticulum to plasma membrane transport of ADAM10. Heterologous Tspan3 expression significantly increased the appearance of carboxy-terminal cleavage products of ADAM10 and APP, whereas N-cadherin ectodomain shedding appeared unaffected. Inhibiting the endocytosis of Tspan3 by mutating a critical cytoplasmic tyrosine-based internalization motif led to increased surface expression of APP and ADAM10. After its downregulation in neuroblastoma cells and in brains of Tspan3-deficient mice, ADAM10 and APP levels appeared unaltered possibly due to a compensatory increase in the expression of Tspans 5 and 7, respectively. In conclusion, our data suggest that Tspan3 acts in concert with other tetraspanins as a stabilizing factor of active ADAM10, APP and the γ-secretase complex at the plasma membrane and within the endocytic pathway.
Collapse
Affiliation(s)
- Lisa Seipold
- Institut für Biochemie, Christian-Albrechts-Universität zu Kiel, Olshausenstrasse 40, D-24098 Kiel, Germany
| | - Markus Damme
- Institut für Biochemie, Christian-Albrechts-Universität zu Kiel, Olshausenstrasse 40, D-24098 Kiel, Germany
| | - Johannes Prox
- Institut für Biochemie, Christian-Albrechts-Universität zu Kiel, Olshausenstrasse 40, D-24098 Kiel, Germany
| | - Björn Rabe
- Institut für Biochemie, Christian-Albrechts-Universität zu Kiel, Olshausenstrasse 40, D-24098 Kiel, Germany
| | - Petr Kasparek
- Czech Centre for Phenogenomics and Laboratory of Transgenic Models of Diseases, Division BIOCEV, Institute of Molecular Genetics of the CAS, v. v. i., Vestec, Czech Republic
| | - Radislav Sedlacek
- Czech Centre for Phenogenomics and Laboratory of Transgenic Models of Diseases, Division BIOCEV, Institute of Molecular Genetics of the CAS, v. v. i., Vestec, Czech Republic
| | - Hermann Altmeppen
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michael Willem
- Biomedical Center, Ludwig-Maximilians-University, 81337 Munich, Germany
| | - Barry Boland
- Department of Pharmacology and Therapeutics, School of Medicine, University College Cork, Cork, Ireland
| | - Markus Glatzel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Paul Saftig
- Institut für Biochemie, Christian-Albrechts-Universität zu Kiel, Olshausenstrasse 40, D-24098 Kiel, Germany.
| |
Collapse
|
15
|
Control of ADAM17 activity by regulation of its cellular localisation. Sci Rep 2016; 6:35067. [PMID: 27731361 PMCID: PMC5059621 DOI: 10.1038/srep35067] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Accepted: 09/21/2016] [Indexed: 12/13/2022] Open
Abstract
An important, irreversible step in many signalling pathways is the shedding of membrane-anchored proteins. A Disintegrin And Metalloproteinase (ADAM) 17 is one of the major sheddases involved in a variety of physiological and pathophysiological processes including regeneration, differentiation, and cancer progression. This central role in signalling implies that ADAM17 activity has to be tightly regulated, including at the level of localisation. Most mature ADAM17 is localised intracellularly, with only a small amount at the cell surface. We found that ADAM17 is constitutively internalised by clathrin-coated pits and that physiological stimulators such as GPCR ligands induce ADAM17-mediated shedding, but do not alter the cell-surface abundance of the protease. In contrast, the PKC-activating phorbol ester PMA, often used as a strong inducer of ADAM17, causes not only proteolysis by ADAM17 but also a rapid increase of the mature protease at the cell surface. This is followed by internalisation and subsequent degradation of the protease. Eventually, this leads to a substantial downregulation of mature ADAM17. Our results therefore imply that physiological activation of ADAM17 does not rely on its relocalisation, but that PMA-induced PKC activity drastically dysregulates the localisation of ADAM17.
Collapse
|
16
|
Cleavage Site Localization Differentially Controls Interleukin-6 Receptor Proteolysis by ADAM10 and ADAM17. Sci Rep 2016; 6:25550. [PMID: 27151651 PMCID: PMC4858764 DOI: 10.1038/srep25550] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 04/19/2016] [Indexed: 12/29/2022] Open
Abstract
Limited proteolysis of the Interleukin-6 Receptor (IL-6R) leads to the release of the IL-6R ectodomain. Binding of the cytokine IL-6 to the soluble IL-6R (sIL-6R) results in an agonistic IL-6/sIL-6R complex, which activates cells via gp130 irrespective of whether the cells express the IL-6R itself. This signaling pathway has been termed trans-signaling and is thought to mainly account for the pro-inflammatory properties of IL-6. A Disintegrin And Metalloprotease 10 (ADAM10) and ADAM17 are the major proteases that cleave the IL-6R. We have previously shown that deletion of a ten amino acid long stretch within the stalk region including the cleavage site prevents ADAM17-mediated cleavage, whereas the receptor retained its full biological activity. In the present study, we show that deletion of a triple serine (3S) motif (Ser-359 to Ser-361) adjacent to the cleavage site is sufficient to prevent IL-6R cleavage by ADAM17, but not ADAM10. We find that the impaired shedding is caused by the reduced distance between the cleavage site and the plasma membrane. Positioning of the cleavage site in greater distance towards the plasma membrane abrogates ADAM17-mediated shedding and reveals a novel cleavage site of ADAM10. Our findings underline functional differences in IL-6R proteolysis by ADAM10 and ADAM17.
Collapse
|
17
|
Secreted Frizzled-related protein 3 (sFRP3)-mediated suppression of interleukin-6 receptor release by A disintegrin and metalloprotease 17 (ADAM17) is abrogated in the osteoarthritis-associated rare double variant of sFRP3. Biochem J 2015; 468:507-18. [DOI: 10.1042/bj20141231] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 04/07/2015] [Indexed: 11/17/2022]
Abstract
A disintegrin and metalloprotease 17 (ADAM17) activity and secreted Frizzled-related protein 3 (sFRP3) down-regulation or expression of its rare double variant is associated with arthritis. sFRP3 interacts with interleukin-6 receptor (IL-6R) and ADAM17 and suppresses ADAM17 activity, whereas the rare variant does not; these findings provide explanation for their opposing pathogenic associations.
Collapse
|
18
|
Effenberger T, Heyde J, Bartsch K, Garbers C, Schulze‐Osthoff K, Chalaris A, Murphy G, Rose‐John S, Rabe B. Senescence‐associated release of transmembrane proteins involves proteolytic processing by ADAM17 and microvesicle shedding. FASEB J 2014; 28:4847-56. [DOI: 10.1096/fj.14-254565] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Timo Effenberger
- Institute of BiochemistryChristian‐Albrechts‐University KielKielGermany
| | - Jan Heyde
- Institute of BiochemistryChristian‐Albrechts‐University KielKielGermany
| | - Kareen Bartsch
- Institute of BiochemistryChristian‐Albrechts‐University KielKielGermany
| | - Christoph Garbers
- Institute of BiochemistryChristian‐Albrechts‐University KielKielGermany
| | - Klaus Schulze‐Osthoff
- Interfaculty Institute for BiochemistryEberhard Karls UniversityTübingenGermany
- German Cancer Consortium (DKTK)HeidelbergGermany
- German Cancer Research CenterHeidelbergGermany
| | - Athena Chalaris
- Institute of BiochemistryChristian‐Albrechts‐University KielKielGermany
| | - Gillian Murphy
- Department of OncologyCancer Research UK Cambridge InstituteUniversity of CambridgeCambridgeUK
| | - Stefan Rose‐John
- Institute of BiochemistryChristian‐Albrechts‐University KielKielGermany
| | - Björn Rabe
- Institute of BiochemistryChristian‐Albrechts‐University KielKielGermany
| |
Collapse
|
19
|
Development of four sandwich ELISAs for quantitation of capsular polysaccharides from Neisseria meningitidis serogroups A, C, W and Y in multivalent vaccines. J Immunol Methods 2014; 407:58-62. [DOI: 10.1016/j.jim.2014.03.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 03/21/2014] [Accepted: 03/25/2014] [Indexed: 11/15/2022]
|
20
|
Ebsen H, Schröder A, Kabelitz D, Janssen O. Differential surface expression of ADAM10 and ADAM17 on human T lymphocytes and tumor cells. PLoS One 2013; 8:e76853. [PMID: 24130797 PMCID: PMC3793918 DOI: 10.1371/journal.pone.0076853] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 08/26/2013] [Indexed: 12/25/2022] Open
Abstract
A disintegrin and metalloproteases (ADAMs) have been implicated in many processes controlling organismic development and integrity. Important substrates of ADAM proteases include growth factors, cytokines and their receptors and adhesion proteins. The inducible but irreversible cleavage of their substrates alters cell-cell communication and signaling. The crucial role of ADAM proteases (e.g. ADAM10 and 17) for mammalian development became evident from respective knockout mice, that displayed pre- or perinatal lethality with severe defects in many organs and tissues. Although many substrates for these two ADAM proteases were identified over the last decade, the regulation of their surface appearance, their enzymatic activity and their substrate specificity are still not well understood. We therefore analyzed the constitutive and inducible surface expression of ADAM10 and ADAM17 on a variety of human T cell and tumor cell lines. We demonstrate that ADAM10 is constitutively present at comparably high levels on the majority of the tested cell types. Stimulation with phorbol ester and calcium ionophore does not significantly alter the amount of surface ADAM10, except for a slight down-regulation from T cell blasts. Using FasL shedding as a readout for ADAM10 activity, we show that PKC activation and calcium mobilization are both prerequisite for activation of ADAM10 resulting in a production of soluble FasL. In contrast to ADAM10, the close relative ADAM17 is detected at only low levels on unstimulated cells. ADAM17 surface expression on T cell blasts is rapidly induced by stimulation. Since this inducible mobilization of ADAM17 is sensitive to inhibitors of actin filament formation, we propose that ADAM17 but not ADAM10 is prestored in a subcellular compartment that is transported to the cell surface in an activation- and actin-dependent manner.
Collapse
Affiliation(s)
- Henriette Ebsen
- University of Kiel, Institute for Immunology, University Hospital Schleswig-Holstein Campus Kiel, Kiel, Germany
| | - Alexandra Schröder
- University of Kiel, Institute for Immunology, University Hospital Schleswig-Holstein Campus Kiel, Kiel, Germany
| | - Dieter Kabelitz
- University of Kiel, Institute for Immunology, University Hospital Schleswig-Holstein Campus Kiel, Kiel, Germany
| | - Ottmar Janssen
- University of Kiel, Institute for Immunology, University Hospital Schleswig-Holstein Campus Kiel, Kiel, Germany
- * E-mail:
| |
Collapse
|
21
|
TRAD AHMAD, RIESE MICHEL, SHOMALI MOHAMMAD, HEDEMAN NINA, EFFENBERGER TIMO, GRÖTZINGER JOACHIM, LORENZEN INKEN. The disintegrin domain of ADAM17 antagonises fibroblast-carcinoma cell interactions. Int J Oncol 2013; 42:1793-800. [DOI: 10.3892/ijo.2013.1864] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 02/12/2013] [Indexed: 11/06/2022] Open
|
22
|
Trad A, Hansen HP, Shomali M, Peipp M, Klausz K, Hedemann N, Yamamoto K, Mauermann A, Desel C, Lorenzen I, Lemke H, Rose-John S, Grötzinger J. ADAM17-overexpressing breast cancer cells selectively targeted by antibody-toxin conjugates. Cancer Immunol Immunother 2013; 62:411-21. [PMID: 22940887 PMCID: PMC11028912 DOI: 10.1007/s00262-012-1346-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 08/17/2012] [Indexed: 11/25/2022]
Abstract
A disintegrin and metalloproteinase 17 (ADAM17) is significantly upregulated not only in malignant cells but also in the pro-inflammatory microenvironment of breast cancer. There, ADAM17 is critically involved in the processing of tumor-promoting proteins. Therefore, ADAM17 appears to be an attractive therapeutic target to address not only tumor cells but also the tumor-promoting environment. In a previous study, we generated a monoclonal anti-ADAM17 antibody (A300E). Although showing no complement-dependent cytotoxicity or antibody-dependent cellular cytotoxicity, the antibody was rapidly internalized by ADAM17-expressing cells and was able to transport a conjugated toxin into target cells. As a result, doxorubicin-coupled A300E or Pseudomonas exotoxin A-loaded A300E was able to kill ADAM17-expressing cells. This effect was strictly dependent on the presence of ADAM17 on the surface of target cells. As a proof of principle, both immunotoxins killed MDA-MB-231 breast cancer cells in an ADAM17-dependent manner. These data suggest that the use of anti-ADAM17 monoclonal antibodies as a carrier might be a promising new strategy for selective anti-cancer drug delivery.
Collapse
Affiliation(s)
- Ahmad Trad
- Institute of Biochemistry, Christian-Albrechts-University of Kiel, Olshausenstr. 40, 24098 Kiel, Germany
| | - Hinrich P. Hansen
- Laboratory of Immunotherapy, Department I of Internal Medicine, University Clinic of Cologne, Cologne, Germany
| | - Mohammad Shomali
- Institute of Biochemistry, Christian-Albrechts-University of Kiel, Olshausenstr. 40, 24098 Kiel, Germany
| | - Matthias Peipp
- Division of Stem Cell Transplantation and Immunotherapy, 2nd Department of Medicine, Christian-Albrechts-University, Kiel, Germany
| | - Katja Klausz
- Division of Stem Cell Transplantation and Immunotherapy, 2nd Department of Medicine, Christian-Albrechts-University, Kiel, Germany
| | - Nina Hedemann
- Institute of Biochemistry, Christian-Albrechts-University of Kiel, Olshausenstr. 40, 24098 Kiel, Germany
| | - Kosuke Yamamoto
- Institute of Biochemistry, Christian-Albrechts-University of Kiel, Olshausenstr. 40, 24098 Kiel, Germany
| | - André Mauermann
- Institute of Biochemistry, Christian-Albrechts-University of Kiel, Olshausenstr. 40, 24098 Kiel, Germany
| | - Christine Desel
- Institute of Biochemistry, Christian-Albrechts-University of Kiel, Olshausenstr. 40, 24098 Kiel, Germany
| | - Inken Lorenzen
- Institute of Biochemistry, Christian-Albrechts-University of Kiel, Olshausenstr. 40, 24098 Kiel, Germany
| | - Hilmar Lemke
- Institute of Biochemistry, Christian-Albrechts-University of Kiel, Olshausenstr. 40, 24098 Kiel, Germany
| | - Stefan Rose-John
- Institute of Biochemistry, Christian-Albrechts-University of Kiel, Olshausenstr. 40, 24098 Kiel, Germany
| | - Joachim Grötzinger
- Institute of Biochemistry, Christian-Albrechts-University of Kiel, Olshausenstr. 40, 24098 Kiel, Germany
| |
Collapse
|
23
|
A novel bispecific single-chain antibody for ADAM17 and CD3 induces T-cell-mediated lysis of prostate cancer cells. Biochem J 2012; 445:135-44. [DOI: 10.1042/bj20120433] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
ADAM17 (A disintegrin and metalloproteinase 17) is a membrane-bound protease that cleaves various cell surface proteins, including cytokines and cytokine receptors. Recently it was shown that ADAM17 is highly expressed on the surface of many cancer cells, whereas normal cells express low levels of ADAM17, implying that ADAM17 is a potential immunotherapeutic target. We have generated a monoclonal antibody against human ADAM17, which recognized the membrane proximal cysteine-rich extension of the ADAM17 protein. Unlike normal cells, tumour cell lines, such as a prostate cancer cell line, pancreatic cancer cell lines, a breast cancer cell line and a non-small lung cancer cell line, expressed ADAM17 on the cell surface. Using the sequence of the antibody we generated an ADAM17-specific scFv (single-chain variable fragment) and fused this to a CD3-specific scFv to generate a bispecific T-cell engager antibody [A300E-BiTE (bispecific T-cell engager antibody)]. Specificity was demonstrated on cells in which ADAM17 was knocked down with a specific shRNA (short hairpin RNA). A300E-BiTE recognized ADAM17 and CD3 on the cell surface of tumour cells and T-cells respectively. In the presence of primary human peripheral blood mononuclear cells or human T-cells the addition of A300E-BiTE led to ADAM17-specific killing of prostate tumour cells indicating a novel strategy for the treatment of cancer.
Collapse
|
24
|
Lorenzen I, Lokau J, Düsterhöft S, Trad A, Garbers C, Scheller J, Rose-John S, Grötzinger J. The membrane-proximal domain of A Disintegrin and Metalloprotease 17 (ADAM17) is responsible for recognition of the interleukin-6 receptor and interleukin-1 receptor II. FEBS Lett 2012; 586:1093-100. [PMID: 22575642 DOI: 10.1016/j.febslet.2012.03.012] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Revised: 03/05/2012] [Accepted: 03/08/2012] [Indexed: 10/28/2022]
Abstract
A great number of physiological processes are regulated by the release of ectodomains of membrane proteins. A Disintegrin And Metalloprotease 17 (ADAM17) is one of the important enzymes, which mediate this process called shedding. Today, more than 70 substrates of this transmembrane metalloprotease are known. This broad spectrum raises the question how ADAM17 recognizes its substrates specifically. Differently tagged ADAM17 deletion variants were used to demonstrate that exclusively the extracellular domains of ADAM17 are needed for interaction with two of its substrates, the IL-6R and the IL-1RII; whereas the transmembrane- and cytoplasmic-region are dispensable for this process. In the extracellular part solely the membrane-proximal domain of ADAM17 is mandatory for recognition of the two type-I transmembrane proteins, but not for the interaction with the type-II transmembrane molecule TNF-α.
Collapse
Affiliation(s)
- Inken Lorenzen
- Institute of Biochemistry, Christian-Albrechts-University, Kiel, Germany
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Lorenzen I, Trad A, Grötzinger J. Multimerisation of A disintegrin and metalloprotease protein-17 (ADAM17) is mediated by its EGF-like domain. Biochem Biophys Res Commun 2011; 415:330-6. [PMID: 22033402 DOI: 10.1016/j.bbrc.2011.10.056] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Accepted: 10/11/2011] [Indexed: 11/19/2022]
Abstract
A disintegrin and metalloprotease protein 17 (ADAM17) is a transmembrane zinc dependent metalloprotease. The catalytic activity of the enzyme results in the shedding of a broad range of membrane proteins. The release of the corresponding ectodomains induces a switch in various physiological and pathophysiological processes. So far there is not much information about the molecular mechanism of ADAM17 activation available. As for other transmembrane proteases, multimerisation may play a critical role in the activation and function of ADAM17. The present work demonstrates that ADAM17 indeed exists as a multimer in the cell membrane and that this multimerisation is mediated by its EGF-like domain.
Collapse
Affiliation(s)
- Inken Lorenzen
- Biochemisches Institut der Christian-Albrechts-Universität Kiel, Olshausenstr. 40, 24118 Kiel, Germany.
| | | | | |
Collapse
|