1
|
Moses AS, Korzun T, Mamnoon B, Baldwin MK, Myatt L, Taratula O, Taratula OR. Nanomedicines for Improved Management of Ectopic Pregnancy: A Narrative Review. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2301873. [PMID: 37471169 PMCID: PMC10837845 DOI: 10.1002/smll.202301873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 07/04/2023] [Indexed: 07/22/2023]
Abstract
Ectopic pregnancy (EP) - the implantation of an embryo outside of the endometrial cavity, often in the fallopian tube - is a significant contributor to maternal morbidity and leading cause of maternal death due to hemorrhage in first trimester. Current diagnostic modalities including human chorionic gonadotropin (hCG) quantification and ultrasonography are effective, but may still misdiagnose EP at initial examination in many cases. Depending on the patient's hemodynamic stability and gestational duration of the pregnancy, as assessed by history, hCG measurement and ultrasonography, management strategies may include expectant management, chemotherapeutic treatment using methotrexate (MTX), or surgical intervention. While these strategies are largely successful, expectant management may result in tubal rupture if the pregnancy does not resolve spontaneously; MTX administration is not always successful and may induce significant side effects; and surgical intervention may result in loss of the already-damaged fallopian tube, further hampering the patient's subsequent attempts to conceive. Nanomaterial-based technologies offer the potential to enhance delivery of diagnostic imaging contrast and therapeutic agents to more effectively and safely manage EP. The purpose of this narrative review is to summarize the current state of nanomedicine technology dedicated to its potential to improve both the diagnosis and treatment of EP.
Collapse
Affiliation(s)
- Abraham S Moses
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, 2730 S Moody Avenue, Portland, Oregon, 97201, USA
| | - Tetiana Korzun
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, 2730 S Moody Avenue, Portland, Oregon, 97201, USA
| | - Babak Mamnoon
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, 2730 S Moody Avenue, Portland, Oregon, 97201, USA
| | - Maureen K Baldwin
- Department of Obstetrics and Gynecology, School of Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
| | - Leslie Myatt
- Department of Obstetrics and Gynecology, School of Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
| | - Oleh Taratula
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, 2730 S Moody Avenue, Portland, Oregon, 97201, USA
| | - Olena R Taratula
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, 2730 S Moody Avenue, Portland, Oregon, 97201, USA
| |
Collapse
|
2
|
Bertozzi S, Corradetti B, Seriau L, Diaz Ñañez JA, Cedolini C, Fruscalzo A, Cesselli D, Cagnacci A, Londero AP. Nanotechnologies in Obstetrics and Cancer during Pregnancy: A Narrative Review. J Pers Med 2022; 12:jpm12081324. [PMID: 36013273 PMCID: PMC9410527 DOI: 10.3390/jpm12081324] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/01/2022] [Accepted: 08/14/2022] [Indexed: 11/30/2022] Open
Abstract
Nanotechnology, the art of engineering structures on a molecular level, offers the opportunity to implement new strategies for the diagnosis and management of pregnancy-related disorders. This review aims to summarize the current state of nanotechnology in obstetrics and cancer in pregnancy, focusing on existing and potential applications, and provides insights on safety and future directions. A systematic and comprehensive literature assessment was performed, querying the following databases: PubMed/Medline, Scopus, and Endbase. The databases were searched from their inception to 22 March 2022. Five independent reviewers screened the items and extracted those which were more pertinent within the scope of this review. Although nanotechnology has been on the bench for many years, most of the studies in obstetrics are preclinical. Ongoing research spans from the development of diagnostic tools, including optimized strategies to selectively confine contrast agents in the maternal bloodstream and approaches to improve diagnostics tests to be used in obstetrics, to the synthesis of innovative delivery nanosystems for therapeutic interventions. Using nanotechnology to achieve spatial and temporal control over the delivery of therapeutic agents (e.g., commonly used drugs, more recently defined formulations, or gene therapy-based approaches) offers significant advantages, including the possibility to target specific cells/tissues of interest (e.g., the maternal bloodstream, uterus wall, or fetal compartment). This characteristic of nanotechnology-driven therapy reduces side effects and the amount of therapeutic agent used. However, nanotoxicology appears to be a significant obstacle to adopting these technologies in clinical therapeutic praxis. Further research is needed in order to improve these techniques, as they have tremendous potential to improve the accuracy of the tests applied in clinical praxis. This review showed the increasing interest in nanotechnology applications in obstetrics disorders and pregnancy-related pathologies to improve the diagnostic algorithms, monitor pregnancy-related diseases, and implement new treatment strategies.
Collapse
Affiliation(s)
- Serena Bertozzi
- Breast Unit, Department of Surgery, DAME, University Hospital of “Santa Maria della Misericordia”, 33100 Udine, Italy
- Ennergi Research (Non-Profit Organisation), 33050 Lestizza, Italy
| | - Bruna Corradetti
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX 77030, USA
| | - Luca Seriau
- Breast Unit, Department of Surgery, DAME, University Hospital of “Santa Maria della Misericordia”, 33100 Udine, Italy
| | - José Andrés Diaz Ñañez
- Breast Unit, Department of Surgery, DAME, University Hospital of “Santa Maria della Misericordia”, 33100 Udine, Italy
- Ennergi Research (Non-Profit Organisation), 33050 Lestizza, Italy
| | - Carla Cedolini
- Breast Unit, Department of Surgery, DAME, University Hospital of “Santa Maria della Misericordia”, 33100 Udine, Italy
- Ennergi Research (Non-Profit Organisation), 33050 Lestizza, Italy
| | - Arrigo Fruscalzo
- Clinic of Obstetrics and Gynecology, University Hospital of Fribourg, 1752 Fribourg, Switzerland
| | - Daniela Cesselli
- Institute of Pathology, DAME, University of Udine, University Hospital of Udine, 33100 Udine, Italy
| | - Angelo Cagnacci
- Academic Unit of Obstetrics and Gynaecology, Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Infant Health, University of Genoa, 16132 Genova, Italy
- Academic Unit of Obstetrics and Gynecology, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Ambrogio P. Londero
- Ennergi Research (Non-Profit Organisation), 33050 Lestizza, Italy
- Academic Unit of Obstetrics and Gynaecology, Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Infant Health, University of Genoa, 16132 Genova, Italy
- Correspondence: or
| |
Collapse
|
3
|
Ramadan MM, Mohamed MA, Almoammar H, Abd-Elsalam KA. Magnetic nanomaterials for purification, detection, and control of mycotoxins. NANOMYCOTOXICOLOGY 2020:87-114. [DOI: 10.1016/b978-0-12-817998-7.00005-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
4
|
Ozgur E, Roberts KE, Ozgur EO, Gin AN, Bankhead JR, Wang Z, Su J. Ultrasensitive Detection of Human Chorionic Gonadotropin Using Frequency Locked Microtoroid Optical Resonators. Anal Chem 2019; 91:11872-11878. [PMID: 31415150 PMCID: PMC6991119 DOI: 10.1021/acs.analchem.9b02630] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Clean sport competition is of significant concern to many governments and sporting organizations. Highly sensitive and rapid sensors are needed to improve the detection of performance enhancing drugs in sports as athletes take diuretics to dilute the concentration of drugs in their urine and microdose under the detectable limits of current sensors. Here we demonstrate, using frequency locked microtoroid optical resonators, a 3 orders of magnitude improvement in detection limit over the current gold standard, mass spectrometry, for the common performance enhancing drug, human chorionic gonadotropin (hCG). hCG, also known as the pregnancy hormone, was detected both in simulated urine and in the urine of pregnant donors at a concentration of 1 and 3 femtomolar, respectively. We anticipate that the sensitivity provided by frequency locked optical microcavities can enable a new standard in antidoping research.
Collapse
Affiliation(s)
- Erol Ozgur
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ, 85721 USA
| | - Kara Ellen Roberts
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ, 85721 USA
| | - Ekin Ozge Ozgur
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ, 85721 USA
| | | | | | - Zhikun Wang
- College of Optical Sciences, University of Arizona, Tucson, AZ, 85721 USA
| | - Judith Su
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ, 85721 USA
- College of Optical Sciences, University of Arizona, Tucson, AZ, 85721 USA
| |
Collapse
|
5
|
Wang Y, Gao Z, Yi J, Zhou H, Fang X, Xu H, Zhao J, Gu H. A spherical poly(acrylic acid) brush-enzyme block with high catalytic capacity for signal amplification in digital biological assays. RSC Adv 2019; 9:23658-23665. [PMID: 35530629 PMCID: PMC9069456 DOI: 10.1039/c9ra03404h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 07/20/2019] [Indexed: 11/21/2022] Open
Abstract
Ultrasensitive determination of some ultra-low abundance biological molecules closely related to diseases is currently a wide concern and urgent issue to be addressed. Here, a spherical poly(acrylic acid)-alkaline phosphatase (SP-AKP) signal amplification block using spherical poly(acrylic acid) brush nanoparticles (SP) as the immobilized carriers was designed and synthesized optimally first. The results show that a single SP-AKP with high enzyme binding capacity and high catalytic ability (up to about 4800 effective free AKP per SP-AKP) has much greater fluorescence signal amplification ability than a single free AKP or SiO2-COOH-AKP. Then, a droplet generation microfluidic chip was prepared successfully, and the SP-AKP was loaded and confined in a 14 pL droplet by adjusting its concentration to ensure at most one SP-AKP was encapsulated in each droplet according to Poisson's theory. Finally, the fluorescence signals produced by 4-methylumbelliferyl phosphate (4-MUP) catalyzed via SP-AKP within 6 min were sufficient to be detected by a fluorescence microscope. Thus, the digital signal distribution of "1/0" (signal/background) was obtained, making this SP-AKP signal amplification block a promising enzyme label for potential high sensitivity digital biological detection applications.
Collapse
Affiliation(s)
- Yibei Wang
- School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University Shanghai 200030 PR China
| | - Zehang Gao
- Shanghai Institute of Microsystem and Information Technology, Chinese Academy Science Shanghai 200030 PR China.,School of Information Science and Technology, ShanghaiTech University Shanghai 201210 China.,University of Chinese Academy of Sciences Beijing 100049 China
| | - Jingwei Yi
- School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University Shanghai 200030 PR China
| | - Hongbo Zhou
- Shanghai Institute of Microsystem and Information Technology, Chinese Academy Science Shanghai 200030 PR China
| | - Xiaoxia Fang
- School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University Shanghai 200030 PR China
| | - Hong Xu
- School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University Shanghai 200030 PR China
| | - Jianlong Zhao
- Shanghai Institute of Microsystem and Information Technology, Chinese Academy Science Shanghai 200030 PR China
| | - Hongchen Gu
- School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University Shanghai 200030 PR China
| |
Collapse
|
6
|
Colorimetric immunoassay for human chorionic gonadotropin by using peroxidase-mimicking MnO2 nanorods immobilized in microplate wells. Mikrochim Acta 2019; 186:581. [DOI: 10.1007/s00604-019-3654-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 07/02/2019] [Indexed: 12/26/2022]
|
7
|
Niazi S, Wang X, Pasha I, Khan IM, Zhao S, Shoaib M, Wu S, Wang Z. A novel bioassay based on aptamer-functionalized magnetic nanoparticle for the detection of zearalenone using time resolved-fluorescence NaYF 4: Ce/Tb nanoparticles as signal probe. Talanta 2018; 186:97-103. [PMID: 29784425 DOI: 10.1016/j.talanta.2018.04.013] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 03/27/2018] [Accepted: 04/07/2018] [Indexed: 12/12/2022]
Abstract
Zearalenone (ZEN) is a non-steroidal estrogenic mycotoxin produced by fungi on stored grains. The earlier detection methods used for ZEN rely on expensive equipment, time-consuming sample preparation and temperature sensitive antibodies. The current work, proposed a novel strategy based on ZEN aptamer labeled with amine-functionalized magnetic nanoparticle (MNPs) as a capture probe and time-resolved fluorescence (TRFL) nanoparticles labeled with complementary DNA (cDNA) as a signal probe. Under the optimized conditions, TRFL intensity at 544 nm was used to measure ZEN (R2 = 0.9920) in the range of 0.001-10 ng mL-1 and limits of detection (LOD) for proposed method was 0.21 pg mL-1. The specificity of bioassay was also determined by using other mycotoxins (OTA, AFB2, DON and Patulin) and results showed that the aptamer are specific to recognize only ZEN. The analytical applications of the present bioassay in maize and wheat samples were also examined and results were compared with existing methods. Based on these findings, it is suggested to use current rapid and simple bioassay for the determination of ZEN in food and agricultural products.
Collapse
Affiliation(s)
- Sobia Niazi
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China; School of Food Science and Technology, Jiangnan University, Wuxi, China; Synergetic Innovation Center of Food Safety and Quality Control of Jiangsu Province, Jiangnan University, Wuxi, China
| | - Xiaole Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China; School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Imran Pasha
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Imran Mahmood Khan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China; School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Sen Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China; School of Food Science and Technology, Jiangnan University, Wuxi, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Muhammad Shoaib
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China; School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Shijia Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China; School of Food Science and Technology, Jiangnan University, Wuxi, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China; Synergetic Innovation Center of Food Safety and Quality Control of Jiangsu Province, Jiangnan University, Wuxi, China
| | - Zhouping Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China; School of Food Science and Technology, Jiangnan University, Wuxi, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China; Synergetic Innovation Center of Food Safety and Quality Control of Jiangsu Province, Jiangnan University, Wuxi, China.
| |
Collapse
|
8
|
Wang W, Zou Y, Yan J, Liu J, Chen H, Li S, Zhang L. Ultrasensitive colorimetric immunoassay for hCG detection based on dual catalysis of Au@Pt core-shell nanoparticle functionalized by horseradish peroxidase. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 193:102-108. [PMID: 29223051 DOI: 10.1016/j.saa.2017.12.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 11/11/2017] [Accepted: 12/02/2017] [Indexed: 06/07/2023]
Abstract
In this paper, an ultrasensitive colorimetric biosensor for human chorionic gonadotrophin (hCG) detection was designed from bottom-up method based on the dual catalysis of the horseradish peroxidase (HRP) and Au@Pt nanoparticles (NPs) relative to H2O2-TEM system. HRP and monoclonal mouse anti-hCG antibody (β-submit, mAb1) were co-immobilized onto the Au@Pt NP surface to improve catalytic efficiency and specificity, which formed a dual functionalized Au@Pt-HRP probe with the mean size of 42.8nm (D50). The colorimetric immunoassay was developed for the hCG detection, and the Au@Pt-HRP probe featured a higher sensitivity in the concentration range of 0.4-12.8IUL-1 with a low limit of detection (LOD) of 0.1IUL-1 compared with the LODs of 0.8IUL-1 for BA-ELISA and of 2.0IUL-1 for Au@Pt, which indicated that the Au@Pt-HRP probe possessed higher catalytic efficiency with 2.8-fold increase over Au@Pt and 33.8-fold increase over HRP. Also, the Au@Pt-HRP probe exhibited good precision and reproducibility, high specificity and acceptable accuracy with CV being less than 15%. The dual functionalized Au@Pt-HRP probe as a type of signal amplified method was firstly applied in the colorimetric immunoassay for the hCG detection.
Collapse
Affiliation(s)
- Weiguo Wang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China
| | - Yake Zou
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China
| | - Jinwu Yan
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China
| | - Jing Liu
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, PR China
| | - Huixiong Chen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510640, PR China; CNRS UMR8601, Université Paris Descartes, PRES Sorbonne Paris Cité, UFR Biomédicale, 45 rue des Saints-Pères, 75270 Paris Cedex 06, France
| | - Shan Li
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China.
| | - Lei Zhang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China.
| |
Collapse
|
9
|
Hendrickson O, Chertovich J, Zherdev A, Sveshnikov P, Dzantiev B. Ultrasensitive magnetic ELISA of zearalenone with pre-concentration and chemiluminescent detection. Food Control 2018. [DOI: 10.1016/j.foodcont.2017.08.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
10
|
Abstract
Human chorionic gonadotropin (HCG) is a glycoprotein secreted by placental trophoblast cells in pregnancy. HCG is a heterodimer composed of two different α- and β-subunits, with the latter being unique to HCG. As well as being the most important diagnostic markers for pregnancy, HCG is also a tumor marker, therefore, quantitative detection of HCG is of great value. Numerous advanced technologies have been developed for HCG concentration detection including electrochemical immunoassay, chemiluminescent immunoassay, fluorescence immunoassay, resonance scattering spectrometry, atomic emission spectrometry, radioimmunoassay, MS and so on. Some have pursued simple and easy operation, while others have emphasized on accuracy and applications in clinical medicine. This review provides a comprehensive summary of various methods of detecting HCG.
Collapse
|
11
|
A Magnetic Nanoparticle Based Enzyme-Linked Immunosorbent Assay for Sensitive Quantification of Zearalenone in Cereal and Feed Samples. Toxins (Basel) 2015; 7:4216-31. [PMID: 26492271 PMCID: PMC4626730 DOI: 10.3390/toxins7104216] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 10/06/2015] [Accepted: 10/13/2015] [Indexed: 01/18/2023] Open
Abstract
A novel enzyme-linked immunosorbent assay based on magnetic nanoparticles and biotin/streptavidin-HRP (MNP-bsELISA) was developed for rapid and sensitive detection of zearalenone (ZEN). The detection signal was enhanced and the sensitivity of the assay was improved by combined use of antibody-conjugated magnetic nanoparticles and biotin-streptavidin system. Under the optimized conditions, the regression equation for quantification of ZEN was y = −0.4287x + 0.3132 (R2 = 0.9904). The working range was 0.07–2.41 ng/mL. The detection limit was 0.04 ng/mL and IC50 was 0.37 ng/mL. The recovery rates of intra-assay and inter-assay ranged from 92.8%–111.9% and 91.7%–114.5%, respectively, in spiked corn samples. Coefficients of variation were less than 10% in both cases. Parallel analysis of cereal and feed samples showed good correlation between MNP-bsELISA and liquid chromatograph-tandem mass spectrometry (R2 = 0.9283). We conclude that this method is suitable for rapid detection of zearalenone in cereal and feed samples in relevant laboratories.
Collapse
|
12
|
Ivanova T, Godjevargova T. Sensitive Progesterone Determination Using a Magnetic Particle-Based Enzyme-Linked Immunosorbent Assay. ANAL LETT 2014. [DOI: 10.1080/00032719.2014.963596] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
13
|
Conde J, Dias JT, Grazú V, Moros M, Baptista PV, de la Fuente JM. Revisiting 30 years of biofunctionalization and surface chemistry of inorganic nanoparticles for nanomedicine. Front Chem 2014; 2:48. [PMID: 25077142 PMCID: PMC4097105 DOI: 10.3389/fchem.2014.00048] [Citation(s) in RCA: 225] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 06/24/2014] [Indexed: 01/04/2023] Open
Abstract
In the last 30 years we have assisted to a massive advance of nanomaterials in material science. Nanomaterials and structures, in addition to their small size, have properties that differ from those of larger bulk materials, making them ideal for a host of novel applications. The spread of nanotechnology in the last years has been due to the improvement of synthesis and characterization methods on the nanoscale, a field rich in new physical phenomena and synthetic opportunities. In fact, the development of functional nanoparticles has progressed exponentially over the past two decades. This work aims to extensively review 30 years of different strategies of surface modification and functionalization of noble metal (gold) nanoparticles, magnetic nanocrystals and semiconductor nanoparticles, such as quantum dots. The aim of this review is not only to provide in-depth insights into the different biofunctionalization and characterization methods, but also to give an overview of possibilities and limitations of the available nanoparticles.
Collapse
Affiliation(s)
- João Conde
- Harvard-MIT Division for Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of TechnologyCambridge, MA, USA
| | - Jorge T. Dias
- Nanotherapy and Nanodiagnostics Group, Instituto de Nanociencia de Aragon, Universidad de ZaragozaZaragoza, Spain
| | - Valeria Grazú
- Nanotherapy and Nanodiagnostics Group, Instituto de Nanociencia de Aragon, Universidad de ZaragozaZaragoza, Spain
| | - Maria Moros
- Nanotherapy and Nanodiagnostics Group, Instituto de Nanociencia de Aragon, Universidad de ZaragozaZaragoza, Spain
| | - Pedro V. Baptista
- CIGMH, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de LisboaCaparica, Portugal
| | - Jesus M. de la Fuente
- Nanotherapy and Nanodiagnostics Group, Instituto de Nanociencia de Aragon, Universidad de ZaragozaZaragoza, Spain
- Fundacion ARAIDZaragoza, Spain
- Key Laboratory for Thin Film and Microfabrication Technology of the Ministry of Education, Department of Bio-Nano Science and Engineering, Institute of Nano Biomedicine and Engineering, Research Institute of Translation Medicine, Shanghai Jiao Tong UniversityShanghai, China
| |
Collapse
|
14
|
Zong S, Wang Z, Zhang R, Wang C, Xu S, Cui Y. A multiplex and straightforward aqueous phase immunoassay protocol through the combination of SERS-fluorescence dual mode nanoprobes and magnetic nanobeads. Biosens Bioelectron 2013; 41:745-51. [DOI: 10.1016/j.bios.2012.09.057] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 09/19/2012] [Accepted: 09/27/2012] [Indexed: 12/12/2022]
|
15
|
König K, Vogeser M. Sample preparation for measurement of plasma mycophenolic acid concentrations using chromatographically functionalized magnetic micro-particles. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2012; 18:413-417. [PMID: 23221116 DOI: 10.1255/ejms.1197] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Utilizing chromatographically modified magnetic micro-particles is an innovative principle of sample preparation for quantitative analysis of small molecules in complex biomedical samples by liquid chromatography tandem mass spectrometry. Since no vacuum or pressure has to be applied-in contrast to cartridge based solid phase extraction protocols-the principle's main characteristics are potentially straightforward automation and a high extraction performance (in terms of µg of extraction material per µL of sample). Following first descriptions of the approach, this article reports, the validation of a magnetic particle-based, analytical method for the quantification of the immunosuppressant mycophenolic acid in plasma. This sample preparation technology has shown a good performance for this clinically relevant analyte. As a result, we conclude that further work towards the implementation of this technology in a multi- analyte approach on robotic systems, aiming towards a fully automated process, is justified.
Collapse
Affiliation(s)
- Katrin König
- Institute of Laboratory Medicine, University of Munich, München, Germany.
| | | |
Collapse
|