1
|
Laszlofy C, Fazekas G, Barath Z, Vajo Z. Evaluation of Vaccine Immunogenicity-Correlates to Real-World Protection: Influenza. Viruses 2024; 16:441. [PMID: 38543806 PMCID: PMC10975834 DOI: 10.3390/v16030441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/26/2024] [Accepted: 03/11/2024] [Indexed: 05/23/2024] Open
Abstract
Recent events highlighted that, despite decades of studying vaccine immunogenicity and efforts toward finding correlates of protection, evaluating real-world vaccine efficacy as well as establishing meaningful licensing criteria still represents a significant challenge. In this paper, we review all aspects of influenza vaccine immunogenicity, including animal and human challenge studies, humoral and cellular immunity parameters, and their potential correlation with real-life protection from disease.
Collapse
Affiliation(s)
- Csaba Laszlofy
- Department of Prosthodontics, Faculty of Dentistry, University of Szeged, 6720 Szeged, Hungary; (C.L.); (Z.B.)
| | | | - Zoltan Barath
- Department of Prosthodontics, Faculty of Dentistry, University of Szeged, 6720 Szeged, Hungary; (C.L.); (Z.B.)
| | - Zoltan Vajo
- Department of Family Medicine, Semmelweis University Medical School, 1085 Budapest, Hungary
| |
Collapse
|
2
|
Swanson IM, Haralambieva IH, Rasche MM, Ovsyannikova IG, Kennedy RB. Frequencies of SARS-CoV-2 Spike Protein-Specific Memory B Cells in Human PBMCs, Quantified by ELISPOT Assay. Methods Mol Biol 2024; 2768:153-166. [PMID: 38502393 DOI: 10.1007/978-1-0716-3690-9_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Vaccination against SARS-CoV-2 with coronavirus vaccines that elicit protective immune responses is critical to the prevention of severe disease and mortality associated with SARS-CoV-2 infection. Understanding the adaptive immune responses to SARS-CoV-2 infection and/or vaccination will continue to aid in the development of next-generation vaccines. Studies have shown the important role of SARS-CoV-2-specific antibodies for both disease resolution and prevention of COVID-19 serious sequelae following vaccination. However, antibody responses are short-lived, highlighting the importance of studying antigen-specific B-cell responses to better understand durable immunity and immunologic memory. Since the spike protein is the main target of antibody-producing B cells, we developed a SARS-CoV-2 memory B cell ELISPOT assay to measure the frequencies of spike-specific B cells after COVID-19 infection and/or vaccination. Here, we describe in detail the methodology for using this ELISPOT assay to quantify SARS-CoV-2 spike-specific memory B cells produced by infection and/or vaccination in human PBMC samples. Application of this assay may help better understand and predict SARS-CoV-2 recall immune responses and to develop potential B cell correlates of protection at the methodological level.
Collapse
Affiliation(s)
- Ilya M Swanson
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN, USA
| | | | | | | | - Richard B Kennedy
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
3
|
Bissa M, Kim S, Galli V, Fourati S, Sarkis S, Arakelyan A, de Castro IS, Rahman MA, Fujiwara S, Vaccari M, Tomalka JA, Stamos JD, Schifanella L, Gorini G, Moles R, Gutowska A, Ferrari G, Lobanov A, Montefiori DC, Nelson GW, Cam MC, Chakhtoura M, Haddad EK, Doster MN, McKinnon K, Brown S, Venzon DJ, Choo-Wosoba H, Breed MW, Killoran KE, Kramer J, Margolis L, Sekaly RP, Hager GL, Franchini G. HIV vaccine candidate efficacy in female macaques mediated by cAMP-dependent efferocytosis and V2-specific ADCC. Nat Commun 2023; 14:575. [PMID: 36732510 PMCID: PMC9894672 DOI: 10.1038/s41467-023-36109-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 01/15/2023] [Indexed: 02/04/2023] Open
Abstract
The development of an effective vaccine to protect against HIV acquisition will be greatly bolstered by in-depth understanding of the innate and adaptive responses to vaccination. We report here that the efficacy of DNA/ALVAC/gp120/alum vaccines, based on V2-specific antibodies mediating apoptosis of infected cells (V2-ADCC), is complemented by efferocytosis, a cyclic AMP (cAMP)-dependent antiphlogistic engulfment of apoptotic cells by CD14+ monocytes. Central to vaccine efficacy is the engagement of the CCL2/CCR2 axis and tolerogenic dendritic cells producing IL-10 (DC-10). Epigenetic reprogramming in CD14+ cells of the cyclic AMP/CREB pathway and increased systemic levels of miRNA-139-5p, a negative regulator of expression of the cAMP-specific phosphodiesterase PDE4D, correlated with vaccine efficacy. These data posit that efferocytosis, through the prompt and effective removal of apoptotic infected cells, contributes to vaccine efficacy by decreasing inflammation and maintaining tissue homeostasis.
Collapse
Affiliation(s)
- Massimiliano Bissa
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, Bethesda, MD, USA.
| | - Sohyoung Kim
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Veronica Galli
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, Bethesda, MD, USA
| | - Slim Fourati
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
- Department of Pathology, Emory University, Atlanta, GA, USA
| | - Sarkis Sarkis
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, Bethesda, MD, USA
| | - Anush Arakelyan
- Section on Intercellular Interactions, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | | | - Mohammad Arif Rahman
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, Bethesda, MD, USA
| | - Saori Fujiwara
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Monica Vaccari
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, Bethesda, MD, USA
- Tulane National Primate Research Center, Tulane University, Covington, LA, USA
| | - Jeffrey A Tomalka
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
- Department of Pathology, Emory University, Atlanta, GA, USA
| | - James D Stamos
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, Bethesda, MD, USA
| | - Luca Schifanella
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, Bethesda, MD, USA
| | - Giacomo Gorini
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, Bethesda, MD, USA
| | - Ramona Moles
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, Bethesda, MD, USA
| | - Anna Gutowska
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, Bethesda, MD, USA
| | - Guido Ferrari
- Division of Surgical Sciences, Duke University School of Medicine, Durham, NC, USA
| | - Alexei Lobanov
- Collaborative Bioinformatics Resource, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - David C Montefiori
- Division of Surgical Sciences, Duke University School of Medicine, Durham, NC, USA
| | - George W Nelson
- Collaborative Bioinformatics Resource, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Margaret C Cam
- Collaborative Bioinformatics Resource, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Marita Chakhtoura
- Department of Medicine, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Elias K Haddad
- Department of Medicine, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Melvin N Doster
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, Bethesda, MD, USA
| | - Katherine McKinnon
- Vaccine Branch Flow Cytometry Core, National Cancer Institute, Bethesda, MD, USA
| | - Sophia Brown
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, Bethesda, MD, USA
- Vaccine Branch Flow Cytometry Core, National Cancer Institute, Bethesda, MD, USA
| | - David J Venzon
- Biostatistics and Data Management Section, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Hyoyoung Choo-Wosoba
- Biostatistics and Data Management Section, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Matthew W Breed
- Laboratory Animal Sciences Program, Leidos Biomedical Research Inc., Frederick National Laboratory, Frederick, MD, USA
| | - Kristin E Killoran
- Laboratory Animal Sciences Program, Leidos Biomedical Research Inc., Frederick National Laboratory, Frederick, MD, USA
| | - Joshua Kramer
- Laboratory Animal Sciences Program, Leidos Biomedical Research Inc., Frederick National Laboratory, Frederick, MD, USA
| | - Leonid Margolis
- Section on Intercellular Interactions, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Rafick P Sekaly
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
- Department of Pathology, Emory University, Atlanta, GA, USA
| | - Gordon L Hager
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Genoveffa Franchini
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, Bethesda, MD, USA.
| |
Collapse
|
4
|
Janssens Y, Joye J, Waerlop G, Clement F, Leroux-Roels G, Leroux-Roels I. The role of cell-mediated immunity against influenza and its implications for vaccine evaluation. Front Immunol 2022; 13:959379. [PMID: 36052083 PMCID: PMC9424642 DOI: 10.3389/fimmu.2022.959379] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/27/2022] [Indexed: 12/25/2022] Open
Abstract
Influenza vaccines remain the most effective tools to prevent flu and its complications. Trivalent or quadrivalent inactivated influenza vaccines primarily elicit antibodies towards haemagglutinin and neuraminidase. These vaccines fail to induce high protective efficacy, in particular in older adults and immunocompromised individuals and require annual updates to keep up with evolving influenza strains (antigenic drift). Vaccine efficacy declines when there is a mismatch between its content and circulating strains. Current correlates of protection are merely based on serological parameters determined by haemagglutination inhibition or single radial haemolysis assays. However, there is ample evidence showing that these serological correlates of protection can both over- or underestimate the protective efficacy of influenza vaccines. Next-generation universal influenza vaccines that induce cross-reactive cellular immune responses (CD4+ and/or CD8+ T-cell responses) against conserved epitopes may overcome some of the shortcomings of the current inactivated vaccines by eliciting broader protection that lasts for several influenza seasons and potentially enhances pandemic preparedness. Assessment of cellular immune responses in clinical trials that evaluate the immunogenicity of these new generation vaccines is thus of utmost importance. Moreover, studies are needed to examine whether these cross-reactive cellular immune responses can be considered as new or complementary correlates of protection in the evaluation of traditional and next-generation influenza vaccines. An overview of the assays that can be applied to measure cell-mediated immune responses to influenza with their strengths and weaknesses is provided here.
Collapse
Affiliation(s)
- Yorick Janssens
- Center for Vaccinology (CEVAC), Ghent University, Ghent, Belgium
| | - Jasper Joye
- Center for Vaccinology (CEVAC), Ghent University Hospital, Ghent, Belgium
| | - Gwenn Waerlop
- Center for Vaccinology (CEVAC), Ghent University, Ghent, Belgium
| | - Frédéric Clement
- Center for Vaccinology (CEVAC), Ghent University, Ghent, Belgium
| | - Geert Leroux-Roels
- Center for Vaccinology (CEVAC), Ghent University, Ghent, Belgium
- Center for Vaccinology (CEVAC), Ghent University Hospital, Ghent, Belgium
| | - Isabel Leroux-Roels
- Center for Vaccinology (CEVAC), Ghent University, Ghent, Belgium
- Center for Vaccinology (CEVAC), Ghent University Hospital, Ghent, Belgium
- *Correspondence: Isabel Leroux-Roels,
| |
Collapse
|
5
|
Nawab DH. Vaccinal antibodies: Fc antibody engineering to improve the antiviral antibody response and induce vaccine-like effects. Hum Vaccin Immunother 2021; 17:5532-5545. [PMID: 34844516 PMCID: PMC8903937 DOI: 10.1080/21645515.2021.1985891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 09/21/2021] [Indexed: 10/19/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic highlights the urgent clinical need for efficient virus therapies and vaccines. Although the functional importance of antibodies is indisputable in viral infections, there are still significant unmet needs that require vast improvements in antibody-based therapeutics. The IgG Fc domain can be engineered to produce antibodies with tailored and potent responses that will meet these clinical demands. Engaging Fc receptors (FcRs) to perform effector functions as cytotoxicity, phagocytosis, complement activation, intracellular neutralization and controlling antibody persistence. Furthermore, it produces vaccine-like effects by activating signals to stimulate T-cell responses, have proven to be required for protection, as neutralization alone does not off the full protection capacity of antibodies. This review highlights antiviral Fc functions and FcRs' contributions in linking innate and adaptive immunity against viral threats. Moreover, it provides the latest Fc engineering strategies to improve the safety and efficacy of human antiviral antibodies and vaccines.
Collapse
Affiliation(s)
- Dhuha H Nawab
- Pharmacy Department, Ministry of Health, Saudi Arabia
| |
Collapse
|
6
|
Gao R, Sheng Z, Sreenivasan CC, Wang D, Li F. Influenza A Virus Antibodies with Antibody-Dependent Cellular Cytotoxicity Function. Viruses 2020; 12:v12030276. [PMID: 32121563 PMCID: PMC7150983 DOI: 10.3390/v12030276] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/26/2020] [Accepted: 02/26/2020] [Indexed: 12/11/2022] Open
Abstract
Influenza causes millions of cases of hospitalizations annually and remains a public health concern on a global scale. Vaccines are developed and have proven to be the most effective countermeasures against influenza infection. Their efficacy has been largely evaluated by hemagglutinin inhibition (HI) titers exhibited by vaccine-induced neutralizing antibodies, which correlate fairly well with vaccine-conferred protection. Contrarily, non-neutralizing antibodies and their therapeutic potential are less well defined, yet, recent advances in anti-influenza antibody research indicate that non-neutralizing Fc-effector activities, especially antibody-dependent cellular cytotoxicity (ADCC), also serve as a critical mechanism in antibody-mediated anti-influenza host response. Monoclonal antibodies (mAbs) with Fc-effector activities have the potential for prophylactic and therapeutic treatment of influenza infection. Inducing mAbs mediated Fc-effector functions could be a complementary or alternative approach to the existing neutralizing antibody-based prevention and therapy. This review mainly discusses recent advances in Fc-effector functions, especially ADCC and their potential role in influenza countermeasures. Considering the complexity of anti-influenza approaches, future vaccines may need a cocktail of immunogens in order to elicit antibodies with broad-spectrum protection via multiple protective mechanisms.
Collapse
MESH Headings
- Adaptive Immunity
- Animals
- Antibodies, Neutralizing/chemistry
- Antibodies, Neutralizing/immunology
- Antibodies, Viral/chemistry
- Antibodies, Viral/immunology
- Antibody-Dependent Cell Cytotoxicity
- Hemagglutinin Glycoproteins, Influenza Virus/chemistry
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Host-Pathogen Interactions/immunology
- Humans
- Immunity, Innate
- Influenza A virus/immunology
- Influenza Vaccines/immunology
- Influenza, Human/immunology
- Influenza, Human/prevention & control
- Influenza, Human/virology
- Structure-Activity Relationship
Collapse
Affiliation(s)
- Rongyuan Gao
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA; (R.G.); (C.C.S.)
| | - Zizhang Sheng
- Zuckerman Institute, Columbia University, New York, NY 10027, USA;
| | - Chithra C. Sreenivasan
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA; (R.G.); (C.C.S.)
| | - Dan Wang
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA; (R.G.); (C.C.S.)
- Correspondence: (D.W.); (F.L.)
| | - Feng Li
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA; (R.G.); (C.C.S.)
- BioSNTR, Brookings, SD 57007, USA
- Correspondence: (D.W.); (F.L.)
| |
Collapse
|
7
|
Serum Vitamin D and Immunogenicity of Influenza Vaccination in the Elderly. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1324:21-28. [PMID: 32946038 DOI: 10.1007/5584_2020_580] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Vaccination is the most effective preventive measure that reduces the risk of influenza and post-influenza complications. It prevents influenza-related hospitalizations and deaths in 50-60% and about 80% of patients aged over 65, respectively. There is the clinical plausibility of the association between serum vitamin D (VIT D) content and viral respiratory infections. In this study, we addressed the issue of a vitamin D modulatory effect on the immune response to seasonal influenza vaccination in elderly persons. The study comprised 96 participants aged 60-75 during the 2016/17 epidemic season. After the determination of the baseline content of VIT D and anti-hemagglutinin antibodies (H1, H3, and HB), participants were vaccinated with a trivalent vaccine. The content of the anti-hemagglutinin antibodies was rechecked 4-5 weeks afterward, showing inappreciable alterations. The negative findings of this study make the influence of serum VIT D content on the immunogenicity of influenza vaccination highly unlikely in elderly persons.
Collapse
|
8
|
Voigt EA, Ovsyannikova IG, Kennedy RB, Grill DE, Goergen KM, Schaid DJ, Poland GA. Sex Differences in Older Adults' Immune Responses to Seasonal Influenza Vaccination. Front Immunol 2019; 10:180. [PMID: 30873150 PMCID: PMC6400991 DOI: 10.3389/fimmu.2019.00180] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 01/21/2019] [Indexed: 02/06/2023] Open
Abstract
Background: Sex differences in immune responses to influenza vaccine may impact efficacy across populations. Methods: In a cohort of 138 older adults (50-74 years old), we measured influenza A/H1N1 antibody titers, B-cell ELISPOT response, PBMC transcriptomics, and PBMC cell compositions at 0, 3, and 28 days post-immunization with the 2010/11 seasonal inactivated influenza vaccine. Results: We identified higher B-cell ELISPOT responses in females than males. Potential mechanisms for sex effects were identified in four gene clusters related to T, NK, and B cells. Mediation analysis indicated that sex-dependent expression in T and NK cell genes can be partially attributed to higher CD4+ T cell and lower NK cell fractions in females. We identified strong sex effects in 135 B cell genes whose expression correlates with ELISPOT measures, and found that cell subset differences did not explain the effect of sex on these genes' expression. Post-vaccination expression of these genes, however, mediated 41% of the sex effect on ELISPOT responses. Conclusions: These results improve our understanding of sexual dimorphism in immunity and influenza vaccine response.
Collapse
Affiliation(s)
- Emily A. Voigt
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN, United States
| | | | - Richard B. Kennedy
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN, United States
| | - Diane E. Grill
- Division of Biostatistics, Mayo Clinic, Rochester, MN, United States
| | - Krista M. Goergen
- Division of Biostatistics, Mayo Clinic, Rochester, MN, United States
| | - Daniel J. Schaid
- Division of Biostatistics, Mayo Clinic, Rochester, MN, United States
| | - Gregory A. Poland
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
9
|
Voigt EA, Grill DE, Zimmermann MT, Simon WL, Ovsyannikova IG, Kennedy RB, Poland GA. Transcriptomic signatures of cellular and humoral immune responses in older adults after seasonal influenza vaccination identified by data-driven clustering. Sci Rep 2018; 8:739. [PMID: 29335477 PMCID: PMC5768803 DOI: 10.1038/s41598-017-17735-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 11/30/2017] [Indexed: 12/13/2022] Open
Abstract
PBMC transcriptomes after influenza vaccination contain valuable information about factors affecting vaccine responses. However, distilling meaningful knowledge out of these complex datasets is often difficult and requires advanced data mining algorithms. We investigated the use of the data-driven Weighted Gene Correlation Network Analysis (WGCNA) gene clustering method to identify vaccine response-related genes in PBMC transcriptomic datasets collected from 138 healthy older adults (ages 50-74) before and after 2010-2011 seasonal trivalent influenza vaccination. WGCNA separated the 14,197 gene dataset into 15 gene clusters based on observed gene expression patterns across subjects. Eight clusters were strongly enriched for genes involved in specific immune cell types and processes, including B cells, T cells, monocytes, platelets, NK cells, cytotoxic T cells, and antiviral signaling. Examination of gene cluster membership identified signatures of cellular and humoral responses to seasonal influenza vaccination, as well as pre-existing cellular immunity. The results of this study illustrate the utility of this publically available analysis methodology and highlight genes previously associated with influenza vaccine responses (e.g., CAMK4, CD19), genes with functions not previously identified in vaccine responses (e.g., SPON2, MATK, CST7), and previously uncharacterized genes (e.g. CORO1C, C8orf83) likely related to influenza vaccine-induced immunity due to their expression patterns.
Collapse
Affiliation(s)
- Emily A Voigt
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN 55905, USA
| | - Diane E Grill
- Division of Biomedical Statistics and Informatics Mayo Clinic, Rochester, MN 55905, USA
| | - Michael T Zimmermann
- Division of Biomedical Statistics and Informatics Mayo Clinic, Rochester, MN 55905, USA
| | - Whitney L Simon
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Richard B Kennedy
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN 55905, USA
| | - Gregory A Poland
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
10
|
Haralambieva IH, Ovsyannikova IG, Kennedy RB, Poland GA. Detection and Quantification of Influenza A/H1N1 Virus-Specific Memory B Cells in Human PBMCs Using ELISpot Assay. Methods Mol Biol 2018; 1808:221-236. [PMID: 29956187 DOI: 10.1007/978-1-4939-8567-8_19] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Immune response following subsequent encounter of viruses (and vaccines) relies largely on the pool and frequencies of antigen-specific memory B cells. In addition to antibody titers, the reliable measurement of these cells in human blood (peripheral blood mononuclear cells/PBMCs or purified B cells) provides valuable information on the preparedness of the adaptive immune system to respond to infection or vaccines, and potentially supports the discovery of new quantitative correlates of protection. The Mayo Clinic Vaccine Research Group has developed and optimized a high-throughput ELISPOT-based assay for the quantification of influenza A/H1N1 virus-specific memory B cells in human PBMCs. Here, we present the materials and detailed methodology for using this assay on cryopreserved cells for the measurement of recall humoral immunity readiness (antigen-specific memory B cell frequencies) after influenza vaccination. This assay could be readily adapted to other influenza virus strains and other respiratory viruses and vaccines for use in systems biology and larger population-based studies.
Collapse
MESH Headings
- Animals
- Antibodies, Viral/immunology
- Antigens/immunology
- B-Lymphocytes/immunology
- B-Lymphocytes/metabolism
- Chick Embryo
- Enzyme-Linked Immunospot Assay/methods
- Epitopes, B-Lymphocyte/immunology
- Humans
- Immunity, Humoral
- Immunologic Memory
- Influenza A Virus, H1N1 Subtype/immunology
- Influenza Vaccines/immunology
- Influenza, Human/diagnosis
- Influenza, Human/immunology
- Influenza, Human/prevention & control
- Influenza, Human/virology
- Leukocytes, Mononuclear/immunology
- Leukocytes, Mononuclear/metabolism
Collapse
Affiliation(s)
| | | | | | - Gregory A Poland
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
11
|
Sadarangani SP, Ovsyannikova IG, Goergen K, Grill DE, Poland GA. Vitamin D, leptin and impact on immune response to seasonal influenza A/H1N1 vaccine in older persons. Hum Vaccin Immunother 2017; 12:691-8. [PMID: 26575832 DOI: 10.1080/21645515.2015.1097015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Influenza-related complications are highest in the elderly. Vaccine efficacy is lower due to immunosenescence. Vitamin D's immunomodulatory role was studied in the context of vaccine response. METHODS We evaluated the effect of baseline 25-(OH) D on vaccine-induced immunological response in a cohort of 159 healthy subjects ages 50-74 in Rochester, MN, who received one dose of seasonal trivalent 2010-2011 influenza vaccine, containing A/California/H1N1- like virus. We examined correlations between 25-(OH) D, leptin, and leptin-related gene SNPs to understand the role of leptin and vitamin D's effects. RESULTS The median (IQR) baseline for total 25-(OH) D was 44.4 ng/mL (36.6-52.2 ng/mL). No correlation was observed with age. No correlation between 25-(OH) D levels and humoral immune outcomes existed at any timepoint. There was a weak positive correlation between 25-(OH) D levels and change (Day 75-Day 0) in influenza-specific granzyme-B response (r=0.16, p=0.04). We found significant associations between 3 SNPs in the PPARG gene and 25-(OH) D levels (rs1151996, p=0.01; rs1175540, p= 0.02; rs1175544, p=0.03). CONCLUSION Several SNPs in the PPARG gene were significantly associated with baseline 25-(OH) D levels. Understanding the functional and mechanistic relationships between vitamin D and influenza vaccine-induced immunity could assist in directing new influenza vaccine design.
Collapse
Affiliation(s)
- Sapna P Sadarangani
- a Mayo Vaccine Research Group , Rochester , MN , USA.,c Division of Infectious Diseases, Mayo Clinic , Rochester , MN , USA
| | | | - Krista Goergen
- b Department of Health Sciences Research, Mayo Clinic , Rochester , MN , USA
| | - Diane E Grill
- b Department of Health Sciences Research, Mayo Clinic , Rochester , MN , USA
| | | |
Collapse
|
12
|
van Doorn E, Pleguezuelos O, Liu H, Fernandez A, Bannister R, Stoloff G, Oftung F, Norley S, Huckriede A, Frijlink HW, Hak E. Evaluation of the immunogenicity and safety of different doses and formulations of a broad spectrum influenza vaccine (FLU-v) developed by SEEK: study protocol for a single-center, randomized, double-blind and placebo-controlled clinical phase IIb trial. BMC Infect Dis 2017; 17:241. [PMID: 28376743 PMCID: PMC5379643 DOI: 10.1186/s12879-017-2341-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 03/24/2017] [Indexed: 02/05/2023] Open
Abstract
Background Current influenza vaccines, based on antibodies against surface antigens, are unable to provide protection against newly emerging virus strains which differ from the vaccine strains. Therefore the population has to be re-vaccinated annually. It is thus important to develop vaccines which induce protective immunity to a broad spectrum of influenza viruses. This trial is designed to evaluate the immunogenicity and safety of FLU-v, a vaccine composed of four synthetic peptides with conserved epitopes from influenza A and B strains expected to elicit both cell mediated immunity (CMI) and humoral immunity providing protection against a broad spectrum of influenza viruses. Methods In a single-center, randomized, double-blind and placebo-controlled phase IIb trial, 222 healthy volunteers aged 18–60 years will be randomized (2:2:1:1) to receive two injections of a suspension of 500 μg FLU-v in saline (arm 1), one dose of emulsified 500 μg FLU-v in Montanide ISA-51 and water for injection (WFI) followed by one saline dose (arm 2), two saline doses (arm 3), or one dose of Montanide ISA-51 and WFI emulsion followed by one saline dose (arm 4). All injections will be given subcutaneously. Primary endpoints are safety and FLU-v induced CMI, evaluated by cytokine production by antigen specific T cell populations (flow-cytometry and ELISA). Secondary outcomes are measurements of antibody responses (ELISA and multiplex), whereas exploratory outcomes include clinical efficacy and additional CMI assays (ELISpot) to show cross-reactivity. Discussion Broadly protective influenza vaccines able to provide protection against multiple strains of influenza are urgently needed. FLU-v is a promising vaccine which has shown to trigger the cell-mediated immune response. The dosages and formulations tested in this current trial are also estimated to induce antibody response. Therefore, both cellular and humoral immune responses will be evaluated. Trial registration EudraCT number 2015–001932-38; retrospectively registered clinicaltrials.gov NCT02962908 (November 7th 2016).
Collapse
Affiliation(s)
- Eva van Doorn
- University of Groningen, Unit of PharmacoTherapy- Epidemiology & -Economics, Antonius Deusinglaan, 9713 AV, Groningen, The Netherlands.
| | | | - Heng Liu
- University of Groningen, Unit of PharmacoTherapy- Epidemiology & -Economics, Antonius Deusinglaan, 9713 AV, Groningen, The Netherlands
| | - Ana Fernandez
- SEEK, Central Point, 45 Beech Street, London, EC2Y 8AD, UK
| | | | | | - Fredrik Oftung
- Norwegian Institute of Public Health, Department of Infectious Disease Immunology, Oslo, Norway
| | | | - Anke Huckriede
- University Medical Center Groningen, Medical Microbiology, Groningen, The Netherlands
| | - Henderik W Frijlink
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Groningen, The Netherlands
| | - Eelko Hak
- University of Groningen, Unit of PharmacoTherapy- Epidemiology & -Economics, Antonius Deusinglaan, 9713 AV, Groningen, The Netherlands
| |
Collapse
|
13
|
Kennedy RB, Ovsyannikova IG, Haralambieva IH, Oberg AL, Zimmermann MT, Grill DE, Poland GA. Immunosenescence-Related Transcriptomic and Immunologic Changes in Older Individuals Following Influenza Vaccination. Front Immunol 2016; 7:450. [PMID: 27853459 PMCID: PMC5089977 DOI: 10.3389/fimmu.2016.00450] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 10/10/2016] [Indexed: 12/24/2022] Open
Abstract
The goal of annual influenza vaccination is to reduce mortality and morbidity associated with this disease through the generation of protective immune responses. The objective of the current study was to examine markers of immunosenescence and identify immunosenescence-related differences in gene expression, gene regulation, cytokine secretion, and immunologic changes in an older study population receiving seasonal influenza A/H1N1 vaccination. Surprisingly, prior studies in this cohort revealed weak correlations between immunosenescence markers and humoral immune response to vaccination. In this report, we further examined the relationship of each immunosenescence marker (age, T cell receptor excision circle frequency, telomerase expression, percentage of CD28− CD4+ T cells, percentage of CD28− CD8+ T cells, and the CD4/CD8 T cell ratio) with additional markers of immune response (serum cytokine and chemokine expression) and measures of gene expression and/or regulation. Many of the immunosenescence markers indeed correlated with distinct sets of individual DNA methylation sites, miRNA expression levels, mRNA expression levels, serum cytokines, and leukocyte subsets. However, when the individual immunosenescence markers were grouped by pathways or functional terms, several shared biological functions were identified: antigen processing and presentation pathways, MAPK, mTOR, TCR, BCR, and calcium signaling pathways, as well as key cellular metabolic, proliferation and survival activities. Furthermore, the percent of CD4+ and/or CD8+ T cells lacking CD28 expression also correlated with miRNAs regulating clusters of genes known to be involved in viral infection. Integrated (DNA methylation, mRNA, miRNA, and protein levels) network biology analysis of immunosenescence-related pathways and genesets identified both known pathways (e.g., chemokine signaling, CTL, and NK cell activity), as well as a gene expression module not previously annotated with a known function. These results may improve our ability to predict immune responses to influenza and aid in new vaccine development, and highlight the need for additional studies to better define and characterize immunosenescence.
Collapse
Affiliation(s)
- Richard B Kennedy
- Mayo Clinic Vaccine Research Group, Department of General Internal Medicine, Mayo Clinic , Rochester, MN , USA
| | - Inna G Ovsyannikova
- Mayo Clinic Vaccine Research Group, Department of General Internal Medicine, Mayo Clinic , Rochester, MN , USA
| | - Iana H Haralambieva
- Mayo Clinic Vaccine Research Group, Department of General Internal Medicine, Mayo Clinic , Rochester, MN , USA
| | - Ann L Oberg
- Department of Health Sciences Research, Division of Biomedical Statistics and Informatics, Mayo Clinic , Rochester, MN , USA
| | - Michael T Zimmermann
- Department of Health Sciences Research, Division of Biomedical Statistics and Informatics, Mayo Clinic , Rochester, MN , USA
| | - Diane E Grill
- Department of Health Sciences Research, Division of Biomedical Statistics and Informatics, Mayo Clinic , Rochester, MN , USA
| | - Gregory A Poland
- Mayo Clinic Vaccine Research Group, Department of General Internal Medicine, Mayo Clinic , Rochester, MN , USA
| |
Collapse
|
14
|
Gene signatures associated with adaptive humoral immunity following seasonal influenza A/H1N1 vaccination. Genes Immun 2016; 17:371-379. [PMID: 27534615 PMCID: PMC5133148 DOI: 10.1038/gene.2016.34] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 06/07/2016] [Accepted: 06/09/2016] [Indexed: 12/27/2022]
Abstract
This study aimed to identify gene expression markers shared between both influenza hemagglutination-inhibition (HAI) and virus-neutralization antibody (VNA) responses. We enrolled 158 older subjects who received the 2010–2011 trivalent inactivated influenza vaccine (TIV). Influenza-specific HAI and VNA titers, and mRNA-sequencing were performed using blood samples obtained at Days 0, 3 and 28 post-vaccination. For antibody response at Day 28 vs Day 0, several genesets were identified as significant in predictive models for HAI (n=7) and VNA (n=35) responses. Five genesets (comprising the genes MAZ, TTF, GSTM, RABGGTA, SMS, CA, IFNG, and DOPEY) were in common for both HAI and VNA. For response at Day 28 vs Day 3, many genesets were identified in predictive models for HAI (n=13) and VNA (n=41). Ten genesets (comprising biologically related genes, such as MAN1B1, POLL, CEBPG, FOXP3, IL12A, TLR3, TLR7, and others) were shared between HAI and VNA. These identified genesets demonstrated a high degree of network interactions and likelihood for functional relationships. Influenza-specific HAI and VNA responses demonstrated a remarkable degree of similarity. Although unique geneset signatures were identified for each humoral outcome, several genesets were determined to be in common with both HAI and VNA response to influenza vaccine.
Collapse
|
15
|
Haralambieva IH, Ovsyannikova IG, Kennedy RB, Zimmermann MT, Grill DE, Oberg AL, Poland GA. Transcriptional signatures of influenza A/H1N1-specific IgG memory-like B cell response in older individuals. Vaccine 2016; 34:3993-4002. [PMID: 27317456 PMCID: PMC5520794 DOI: 10.1016/j.vaccine.2016.06.034] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 05/23/2016] [Accepted: 06/10/2016] [Indexed: 12/22/2022]
Abstract
BACKGROUND Studies suggest that the recall-based humoral immune responses to influenza A/H1N1 originates from activated memory B cells. The aim of this study was to identify baseline, early and late blood transcriptional signatures (in peripheral blood mononuclear cells/PBMCs) associated with memory B cell response following influenza vaccination. METHODS We used pre- and post-vaccination mRNA-Seq transcriptional profiling on samples from 159 subjects (50-74years old) following receipt of seasonal trivalent influenza vaccine containing the A/California/7/2009/H1N1-like virus, and penalized regression modeling to identify associations with influenza A/H1N1-specific memory B cell ELISPOT response after vaccination. RESULTS Genesets and genes (p-value range 7.92E(-08) to 0.00018, q-value range 0.00019-0.039) demonstrating significant associations (of gene expression levels) with memory B cell response suggest the importance of metabolic (cholesterol and lipid metabolism-related), cell migration/adhesion, MAP kinase, NF-kB cell signaling (chemokine/cytokine signaling) and transcriptional regulation gene signatures in the development of memory B cell response after influenza vaccination. CONCLUSION Through an unbiased transcriptome-wide profiling approach, our study identified signatures of memory B cell response following influenza vaccination, highlighting the underappreciated role of metabolic changes (among the other immune function-related events) in the regulation of influenza vaccine-induced immune memory.
Collapse
Affiliation(s)
| | | | - Richard B Kennedy
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN 55905, USA
| | - Michael T Zimmermann
- Division of Biomedical Statistics and Informatics, Department of Health Science Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Diane E Grill
- Division of Biomedical Statistics and Informatics, Department of Health Science Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Ann L Oberg
- Division of Biomedical Statistics and Informatics, Department of Health Science Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Gregory A Poland
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
16
|
Kennedy RB, Simon WL, Gibson MJ, Goergen KM, Grill DE, Oberg AL, Poland GA. The composition of immune cells serves as a predictor of adaptive immunity in a cohort of 50- to 74-year-old adults. Immunology 2016; 148:266-75. [PMID: 27188667 DOI: 10.1111/imm.12599] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 01/15/2016] [Accepted: 02/11/2016] [Indexed: 01/22/2023] Open
Abstract
Influenza causes significant morbidity and mortality annually. Although vaccination offers a considerable amount of protection, it is far from perfect, especially in aging populations. This is due to age-related defects in immune function, a process called immunosenescence. To date, there are no assays or methods to predict or explain variations in an individual's level of response to influenza vaccination. In this study, we measured levels of several immune cell subsets at baseline (Day 0) and at Days 3 and 28 post-vaccination using flow cytometry. Statistical modelling was performed to assess correlations between levels of cell subsets and Day 28 immune responses - haemagglutination inhibition (HAI) assay, virus neutralizing antibody (VNA) assay, and memory B cell ELISPOT. Changes in several groups of cell types from Day 0 to Day 28 and Day 3 to Day 28 were found to be significantly associated with immune response. Baseline levels of several immune cell subsets, including B cells and regulatory T cells, were able to partially explain variation in memory B-cell ELISPOT results. Increased expression of HLA-DR on plasmacytoid dendritic cells after vaccination was correlated with increased HAI and VNA responses. Our data suggest that the expression of activation markers (HLA-DR and CD86) on various immune cell subsets, as well as the relative distribution of cell subsets, both have value in predicting immune responses to influenza vaccination in older individuals.
Collapse
Affiliation(s)
| | | | | | - Krista M Goergen
- Division of Biomedical Statistics and Informatics, Department of Health Science Research, Mayo Clinic, Rochester, MN, USA
| | - Diane E Grill
- Division of Biomedical Statistics and Informatics, Department of Health Science Research, Mayo Clinic, Rochester, MN, USA
| | - Ann L Oberg
- Division of Biomedical Statistics and Informatics, Department of Health Science Research, Mayo Clinic, Rochester, MN, USA
| | | |
Collapse
|
17
|
Gene signatures related to HAI response following influenza A/H1N1 vaccine in older individuals. Heliyon 2016; 2:e00098. [PMID: 27441275 PMCID: PMC4946173 DOI: 10.1016/j.heliyon.2016.e00098] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 03/10/2016] [Accepted: 04/07/2016] [Indexed: 12/19/2022] Open
Abstract
To assess gene signatures related to humoral response among healthy older subjects following seasonal influenza vaccination, we studied 94 healthy adults (50–74 years old) who received one documented dose of licensed trivalent influenza vaccine containing the A/California/7/2009 (H1N1)-like virus strain. Influenza-specific antibody (HAI) titer in serum samples and next-generation sequencing on PBMCs were performed using blood samples collected prior to (Day 0) and at two timepoints after (Days 3 and 28) vaccination. We identified a number of uncharacterized genes (ZNF300, NUP1333, KLK1 and others) and confirmed previous studies demonstrating specific genes/genesets that are important mediators of host immune responses and that displayed associations with antibody response to influenza A/H1N1 vaccine. These included interferon-regulatory transcription factors (IRF1/IRF2/IRF6/IRF7/IRF9), chemokine/chemokine receptors (CCR5/CCR9/CCL5), cytokine/cytokine receptors (IFNG/IL10RA/TNFRSF1A), protein kinases (MAP2K4/MAPK3), growth factor receptor (TGFBR1). The identification of gene signatures associated with antibody response represents an early stage in the science for which further research is needed. Such research may assist in the design of better vaccines to facilitate improved defenses against new influenza virus strains, as well as better understanding the genetic drivers of immune responses.
Collapse
|
18
|
Theeten H, Mathei C, Peeters K, Ogunjimi B, Goossens H, Ieven M, Van Damme P, Cools N. Cellular Interferon Gamma and Granzyme B Responses to Cytomegalovirus-pp65 and Influenza N1 Are Positively Associated in Elderly. Viral Immunol 2016; 29:169-75. [PMID: 27002465 PMCID: PMC4827302 DOI: 10.1089/vim.2015.0071] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Morbidity and mortality in the elderly are associated with viral infections, including influenza and cytomegalovirus (CMV). With increasing age, cellular immunity gains importance in protection to influenza, but latent CMV is highly prevalent and associated with immune dysfunction. An insight into the association between immunity against influenza and CMV adds to the understanding of healthy aging. Here we first aimed to measure influenza-specific cellular immunity using granzyme B (GrzB) and interferon-gamma (IFN-γ)-ELISpot. Next, influenza-specific cellular immunity was associated with humoral and cellular CMV-specific immunity in healthy 65+ elderly. Vaccine trial participants gave additional blood samples 3 weeks after receiving a H1N1 containing vaccine. CMV serology was determined and peripheral blood mononuclear cells were stimulated with influenza N1 or CMV pp65-derived peptide pools for 7 days and rechallenged to assess antigen-specific GgrzB and IFN-γ responses using ELISpot assays. Results were compared using chi-square and correlation analysis. Eighty-three individuals (60% men, 65% CMV IgG+, age range 65-78y) participated. We found significant positive associations between IFN-γ and GrzB responses to both influenza and CMV, but also between a positive CMV serostatus and an influenza N1-specific activation marker response (p = 0.013). CMV pp65 responses were detected in CMV IgG+ individuals, but remarkably also in CMV IgG- individuals (27%). In this study, following influenza vaccination, elderly with cellular immunity against CMV were more likely to have cellular immunity against influenza vaccine N1 antigen. These findings stress the need to continue exploring the possible role of CMV in immunosenescence.
Collapse
Affiliation(s)
- Heidi Theeten
- Faculty of Medicine and Health Sciences, Center for the Evaluation of Vaccination, Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - Catharina Mathei
- Department of Public Health and Primary Care, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Kelly Peeters
- Faculty of Medicine and Health Sciences, Center for the Evaluation of Vaccination, Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - Benson Ogunjimi
- Faculty of Medicine and Health Sciences, Center for the Evaluation of Vaccination, Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
- Interuniversity Institute for Biostatistics and Statistical Bioinformatics (I-BIOSTAT), Hasselt University, Hasselt, Belgium
| | - Herman Goossens
- Faculty of Medicine and Health Sciences, Center for the Evaluation of Vaccination, Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - Margareta Ieven
- Faculty of Medicine and Health Sciences, Center for the Evaluation of Vaccination, Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - Pierre Van Damme
- Faculty of Medicine and Health Sciences, Center for the Evaluation of Vaccination, Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - Nathalie Cools
- Faculty of Medicine and Health Sciences, Center for the Evaluation of Vaccination, Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
19
|
Zimmermann MT, Oberg AL, Grill DE, Ovsyannikova IG, Haralambieva IH, Kennedy RB, Poland GA. System-Wide Associations between DNA-Methylation, Gene Expression, and Humoral Immune Response to Influenza Vaccination. PLoS One 2016; 11:e0152034. [PMID: 27031986 PMCID: PMC4816338 DOI: 10.1371/journal.pone.0152034] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 03/07/2016] [Indexed: 01/11/2023] Open
Abstract
Failure to achieve a protected state after influenza vaccination is poorly understood but occurs commonly among aged populations experiencing greater immunosenescence. In order to better understand immune response in the elderly, we studied epigenetic and transcriptomic profiles and humoral immune response outcomes in 50-74 year old healthy participants. Associations between DNA methylation and gene expression reveal a system-wide regulation of immune-relevant functions, likely playing a role in regulating a participant's propensity to respond to vaccination. Our findings show that sites of methylation regulation associated with humoral response to vaccination impact known cellular differentiation signaling and antigen presentation pathways. We performed our analysis using per-site and regionally average methylation levels, in addition to continuous or dichotomized outcome measures. The genes and molecular functions implicated by each analysis were compared, highlighting different aspects of the biologic mechanisms of immune response affected by differential methylation. Both cis-acting (within the gene or promoter) and trans-acting (enhancers and transcription factor binding sites) sites show significant associations with measures of humoral immunity. Specifically, we identified a group of CpGs that, when coordinately hypo-methylated, are associated with lower humoral immune response, and methylated with higher response. Additionally, CpGs that individually predict humoral immune responses are enriched for polycomb-group and FOXP2 transcription factor binding sites. The most robust associations implicate differential methylation affecting gene expression levels of genes with known roles in immunity (e.g. HLA-B and HLA-DQB2) and immunosenescence. We believe our data and analysis strategy highlight new and interesting epigenetic trends affecting humoral response to vaccination against influenza; one of the most common and impactful viral pathogens.
Collapse
Affiliation(s)
- Michael T. Zimmermann
- Department of Health Science Research, Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota, United States of America
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Ann L. Oberg
- Department of Health Science Research, Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota, United States of America
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Diane E. Grill
- Department of Health Science Research, Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota, United States of America
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Inna G. Ovsyannikova
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Iana H. Haralambieva
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Richard B. Kennedy
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Gregory A. Poland
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, Minnesota, United States of America
| |
Collapse
|
20
|
Zhang H, He X, Shi Y, Yu Y, Guan S, Gong X, Yin H, Kuai Z, Shan Y. Potential of a novel peptide P16-D from the membrane-proximal external region of human immunodeficiency virus type 1 to enhance retrovirus infection. RSC Adv 2016. [DOI: 10.1039/c6ra10424j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A modified peptide nanofibril “networks” could capture and concentrate enveloped virus easily. Stronger immune response could be elicited by the captured virus implying a potential for P16-D to improve gene transfer rates and vaccine applications.
Collapse
Affiliation(s)
- Huayan Zhang
- National Engineering Laboratory for AIDS Vaccine
- School of Life Sciences
- Jilin University
- Changchun
- China
| | - Xiaoqiu He
- National Engineering Laboratory for AIDS Vaccine
- School of Life Sciences
- Jilin University
- Changchun
- China
| | - Yuhua Shi
- National Engineering Laboratory for AIDS Vaccine
- School of Life Sciences
- Jilin University
- Changchun
- China
| | - Yongjiao Yu
- National Engineering Laboratory for AIDS Vaccine
- School of Life Sciences
- Jilin University
- Changchun
- China
| | - Shanshan Guan
- National Engineering Laboratory for AIDS Vaccine
- School of Life Sciences
- Jilin University
- Changchun
- China
| | - Xin Gong
- National Engineering Laboratory for AIDS Vaccine
- School of Life Sciences
- Jilin University
- Changchun
- China
| | - He Yin
- National Engineering Laboratory for AIDS Vaccine
- School of Life Sciences
- Jilin University
- Changchun
- China
| | - Ziyu Kuai
- National Engineering Laboratory for AIDS Vaccine
- School of Life Sciences
- Jilin University
- Changchun
- China
| | - Yaming Shan
- National Engineering Laboratory for AIDS Vaccine
- School of Life Sciences
- Jilin University
- Changchun
- China
| |
Collapse
|
21
|
Mbawuike IN, Atmar RL, Patel SM, Corry DB, Winokur PL, Brady RC, Chen WH, Edwards KM, Creech CB, Walter EB, Frey SE, Belshe RB, Goll JB, Hill H, Keitel WA. Cell mediated immune responses following revaccination with an influenza A/H5N1 vaccine. Vaccine 2015; 34:547-554. [PMID: 26657997 DOI: 10.1016/j.vaccine.2015.11.055] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 10/15/2015] [Accepted: 11/19/2015] [Indexed: 01/03/2023]
Abstract
PURPOSE The study aims were to determine whether inactivated influenza A/H5N1 vaccine administration elicited cell mediated immune (CMI) responses and the impact of adjuvant, vaccine dose and subject age on these responses. METHODS Adults who were previously primed with either adjuvanted or unadjuvanted, inactivated, A/H5N1/Vietnam/1203/2004 (Clade 1) vaccine or unprimed (received placebo) in previous vaccine studies were randomized to receive one (primed) or two (unprimed) 15- or 90-mcg doses of inactivated, A/H5N1/Indonesia/05/05 (Clade 2) vaccine. Peripheral blood mononuclear cells (PBMCs) were collected and analyzed from a subset of vaccinees to assess CMI responses using IFN-γ and granzyme B ELISPOT assays. Cytokine measurements were performed on PBMC supernatants after stimulation with H5N1 virus. RESULTS PBMCs were available from 177 participants; 88 and 89 received 15-mcg and 90-mcg of unadjuvanted clade 2 vaccine, respectively. Following H5N1 clade 1 stimulation, IFN-γ but not granzyme B normalized spot-forming cell numbers had statistically significant increased numbers at each of the post-vaccination timepoints compared to baseline in pooled analyses of all vaccine doses and age groups. Clade 2 stimulation resulted in statistically significant increased numbers of IFN-γ cells only 180 days following the last vaccination. Responses were similar among younger and older study participants, as were responses among those primed with alum-adjuvanted or non-adjuvanted clade 1 H5N1 vaccines. The dosage of clade 2 vaccine did not impact CMI responses among primed subjects, but responses were statistically significantly greater in unprimed recipients of the 90-mcg dosage compared to unprimed recipients of the 15-mcg dosage. IFN-γ levels in the supernatants of stimulated PBMC were strongly correlated with IFN-γ ELISPOT results. CONCLUSION CMI responses occur in adults administered influenza A/H5N1 inactivated influenza vaccine.
Collapse
Affiliation(s)
- Innocent N Mbawuike
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States
| | - Robert L Atmar
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States; Department of Medicine, Baylor College of Medicine, Houston, TX, United States.
| | - Shital M Patel
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States; Department of Medicine, Baylor College of Medicine, Houston, TX, United States
| | - David B Corry
- Department of Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Patricia L Winokur
- Department of Internal Medicine, University of Iowa, Iowa City, IA, United States
| | - Rebecca C Brady
- Gamble Program for Clinical Studies, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Wilbur H Chen
- Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Kathryn M Edwards
- Vanderbilt Vaccine Research Program, Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - C Buddy Creech
- Vanderbilt Vaccine Research Program, Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Emmanuel B Walter
- Duke Clinical Vaccine Unit, Department of Pediatrics, Duke University School of Medicine, Durham, NC, United States
| | - Sharon E Frey
- Department of Internal Medicine, Saint Louis University School of Medicine, St. Louis, MO, United States
| | - Robert B Belshe
- Department of Internal Medicine, Saint Louis University School of Medicine, St. Louis, MO, United States
| | | | | | - Wendy A Keitel
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States; Department of Medicine, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
22
|
Kennedy RB, Tosh PK, Goergen KM, Grill DE, Oberg AL, Poland GA. Statistical modeling using early markers of innate immunity to explain variation in humoral responses to influenza vaccine in older adults. Vaccine 2015; 33:3682-8. [PMID: 26087295 DOI: 10.1016/j.vaccine.2015.06.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 06/01/2015] [Accepted: 06/04/2015] [Indexed: 01/01/2023]
Abstract
Greater understanding of the factors associated with a protective response to influenza vaccine in older adults could have tremendous public health benefits. We studied 158 participants age 50-74 years vaccinated with 2010-2011 inactivated influenza vaccine and performed innate immunity and humoral immunity assays directed against influenza A/California/2009 (H1N1) as measured through hemagglutination inhibition (HAI), microneutralization, and B cell ELISPOT at days 0, 3, and 28 postvaccination. We report the results of statistical modeling using Day 3 cytokines, chemokines, and innate cell populations to model Day 0 to Day 28 HAI seroconversion, viral neutralization seroconversion, and B cell ELISPOT results.
Collapse
Affiliation(s)
| | - Pritish K Tosh
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN, USA; Division of Infectious Diseases, Mayo Clinic, Rochester, MN, USA
| | - Krista M Goergen
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Diane E Grill
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Ann L Oberg
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Gregory A Poland
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN, USA; Division of General Internal Medicine, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
23
|
The impact of immunosenescence on humoral immune response variation after influenza A/H1N1 vaccination in older subjects. PLoS One 2015; 10:e0122282. [PMID: 25816015 PMCID: PMC4376784 DOI: 10.1371/journal.pone.0122282] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 02/02/2015] [Indexed: 01/02/2023] Open
Abstract
Background Although influenza causes significant morbidity and mortality in the elderly, the factors underlying the reduced vaccine immunogenicity and efficacy in this age group are not completely understood. Age and immunosenescence factors, and their impact on humoral immunity after influenza vaccination, are of growing interest for the development of better vaccines for the elderly. Methods We assessed associations between age and immunosenescence markers (T cell receptor rearrangement excision circles – TREC content, peripheral white blood cell telomerase – TERT expression and CD28 expression on T cells) and influenza A/H1N1 vaccine-induced measures of humoral immunity in 106 older subjects at baseline and three timepoints post-vaccination. Results TERT activity (TERT mRNA expression) was significantly positively correlated with the observed increase in the influenza-specific memory B cell ELISPOT response at Day 28 compared to baseline (p-value=0.025). TREC levels were positively correlated with the baseline and early (Day 3) influenza A/H1N1-specific memory B cell ELISPOT response (p-value=0.042 and p-value=0.035, respectively). The expression and/or expression change of CD28 on CD4+ and/or CD8+ T cells at baseline and Day 3 was positively correlated with the influenza A/H1N1-specific memory B cell ELISPOT response at baseline, Day 28 and Day 75 post-vaccination. In a multivariable analysis, the peak antibody response (HAI and/or VNA at Day 28) was negatively associated with age, the percentage of CD8+CD28low T cells, IgD+CD27- naïve B cells, and percentage overall CD20- B cells and plasmablasts, measured at Day 3 post-vaccination. The early change in influenza-specific memory B cell ELISPOT response was positively correlated with the observed increase in influenza A/H1N1-specific HAI antibodies at Day 28 and Day 75 relative to baseline (p-value=0.007 and p-value=0.005, respectively). Conclusion Our data suggest that influenza-specific humoral immunity is significantly influenced by age, and that specific markers of immunosenescence (e.g., the baseline/early expression of CD28 on CD4+ and/or CD8+ T cells and T cell immune abnormalities) are correlated with different humoral immune response outcomes observed after vaccination in older individuals, and thus can be potentially used to predict vaccine immunogenicity.
Collapse
|
24
|
Leptin and leptin-related gene polymorphisms, obesity, and influenza A/H1N1 vaccine-induced immune responses in older individuals. Vaccine 2013; 32:881-7. [PMID: 24360890 DOI: 10.1016/j.vaccine.2013.12.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 11/15/2013] [Accepted: 12/01/2013] [Indexed: 02/08/2023]
Abstract
Obesity is a risk factor for complicated influenza A/H1N1 disease and poor vaccine immunogenicity. Leptin, an adipocyte-derived hormone/cytokine, has many immune regulatory functions and therefore could explain susceptibility to infections and poor vaccine outcomes. We recruited 159 healthy adults (50-74 years old) who were immunized with inactivated TIV influenza vaccine that contained A/California/7/2009/H1N1 virus. We found a strong correlation between leptin concentration and BMI (r=0.55, p<0.0001), but no association with hemagglutination antibody inhibition (HAI), B-cell, or granzyme B responses. We found a slight correlation between leptin concentration and an immunosenescence marker (TREC: T-cell receptor excision circles) level (r=0.23, p=0.01). We found eight SNPs in the LEP/LEPR/GHRL genes that were associated with leptin levels and four SNPs in the PTPN1/LEPR/STAT3 genes associated with peripheral blood TREC levels (p<0.05). Heterozygosity of the synonymous variant rs2230604 in the PTPN1 gene was associated with a significantly lower (531 vs. 259, p=0.005) TREC level, as compared to the homozygous major variant. We also found eight SNPs in the LEP/PPARG/CRP genes associated with variations in influenza-specific HAI and B-cell responses (p<0.05). Our results suggest that specific allelic variations in the leptin-related genes may influence adaptive immune responses to influenza vaccine.
Collapse
|