1
|
Li YJ, Chien SH, Huang R, Herrmann A, Zhao Q, Li PC, Zhang C, Martincuks A, Santiago NL, Zong K, Swiderski P, Okimoto RA, Song M, Rodriguez L, Forman SJ, Wang X, Yu H. A platform to deliver single and bi-specific Cas9/guide RNA to perturb genes in vitro and in vivo. Mol Ther 2024; 32:3629-3649. [PMID: 39091030 PMCID: PMC11489542 DOI: 10.1016/j.ymthe.2024.07.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 06/20/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024] Open
Abstract
Although CRISPR-Cas9 technology is poised to revolutionize the treatment of diseases with underlying genetic mutations, it faces some significant issues limiting clinical entry. They include low-efficiency in vivo systemic delivery and undesired off-target effects. Here, we demonstrate, by modifying Cas9 with phosphorothioate-DNA oligos (PSs), that one can efficiently deliver single and bi-specific CRISPR-Cas9/guide RNA (gRNA) dimers in vitro and in vivo with reduced off-target effects. We show that PS-Cas9/gRNA-mediated gene knockout preserves chimeric antigen receptor T cell viability and expansion in vitro and in vivo. PS-Cas9/gRNA mediates gene perturbation in patient-derived tumor organoids and mouse xenograft tumors, leading to potent tumor antitumor effects. Further, HER2 antibody-PS-Cas9/gRNA conjugate selectively perturbs targeted genes in HER2+ ovarian cancer xenografts in vivo. Moreover, we created bi-specific PS-Cas9 with two gRNAs to target two adjacent sequences of the same gene, leading to efficient targeted gene disruption ex vivo and in vivo with markedly reduced unintended gene perturbation. Thus, the cell-penetrating PS-Cas9/gRNA can achieve efficient systemic delivery and precision in gene disruption.
Collapse
Affiliation(s)
- Yi-Jia Li
- Department of Immuno-Oncology, Beckman Research Institute and City of Hope Medical Center, Duarte, CA 91010, USA.
| | - Sheng-Hsuan Chien
- Cellular Immunotherapy Center, Department of Hematology and Hematopoietic Cell Transplantation, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA; Division of Transfusion Medicine, Department of Medicine, Taipei Veterans General Hospital, and Institute of Clinical Medicine, National Yang-Ming Chiao Tung University, Taipei 11201, Taiwan
| | - Rui Huang
- Department of Immuno-Oncology, Beckman Research Institute and City of Hope Medical Center, Duarte, CA 91010, USA
| | - Andreas Herrmann
- Department of Immuno-Oncology, Beckman Research Institute and City of Hope Medical Center, Duarte, CA 91010, USA
| | - Qianqian Zhao
- Department of Immuno-Oncology, Beckman Research Institute and City of Hope Medical Center, Duarte, CA 91010, USA
| | - Pei-Chuan Li
- Department of Immuno-Oncology, Beckman Research Institute and City of Hope Medical Center, Duarte, CA 91010, USA
| | - Chunyan Zhang
- Cellular Immunotherapy Center, Department of Hematology and Hematopoietic Cell Transplantation, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Antons Martincuks
- Department of Immuno-Oncology, Beckman Research Institute and City of Hope Medical Center, Duarte, CA 91010, USA
| | - Nicole Lugo Santiago
- Department of Surgery, Division of Gynecologic Oncology, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Katherine Zong
- Department of Immuno-Oncology, Beckman Research Institute and City of Hope Medical Center, Duarte, CA 91010, USA
| | - Piotr Swiderski
- DNA/RNA Synthesis Laboratory, Beckman Research Institute at City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Ross A Okimoto
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94115, USA
| | - Mihae Song
- Department of Surgery, Division of Gynecologic Oncology, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Lorna Rodriguez
- Department of Surgery, Division of Gynecologic Oncology, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Stephen J Forman
- Cellular Immunotherapy Center, Department of Hematology and Hematopoietic Cell Transplantation, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Xiuli Wang
- Cellular Immunotherapy Center, Department of Hematology and Hematopoietic Cell Transplantation, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Hua Yu
- Department of Immuno-Oncology, Beckman Research Institute and City of Hope Medical Center, Duarte, CA 91010, USA.
| |
Collapse
|
2
|
Sytsma BJ, Allain V, Bourke S, Faizee F, Fathi M, Berdeaux R, Ferreira LM, Brewer WJ, Li L, Pan FL, Rothrock AG, Nyberg WA, Li Z, Wilson LH, Eyquem J, Pawell RS. Scalable intracellular delivery via microfluidic vortex shedding enhances the function of chimeric antigen receptor T-cells. RESEARCH SQUARE 2024:rs.3.rs-4870379. [PMID: 39372944 PMCID: PMC11451650 DOI: 10.21203/rs.3.rs-4870379/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Adoptive chimeric antigen receptor T-cell (CAR-T) therapy is transformative and approved for hematologic malignancies. It is also being developed for the treatment of solid tumors, autoimmune disorders, heart disease, and aging. Despite unprecedented clinical outcomes, CAR-T and other engineered cell therapies face a variety of manufacturing and safety challenges. Traditional methods, such as lentivirus transduction and electroporation, result in random integration or cause significant cellular damage, which can limit the safety and efficacy of engineered cell therapies. We present hydroporation as a gentle and effective alternative for intracellular delivery. Hydroporation resulted in 1.7- to 2-fold higher CAR-T yields compared to electroporation with superior cell viability and recovery. Hydroporated cells exhibited rapid proliferation, robust target cell lysis, and increased pro-inflammatory and regulatory cytokine secretion in addition to improved CAR-T yield by day 5 post-transfection. We demonstrate that scaled-up hydroporation can process 5 × 108 cells in less than 10 s, showcasing the platform as a viable solution for high-yield CAR-T manufacturing with the potential for improved therapeutic outcomes.
Collapse
Affiliation(s)
| | - Vincent Allain
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Université Paris Cité, INSERM UMR976, Hôpital Saint-Louis, Paris, France
| | | | | | | | | | - Leonardo M.R. Ferreira
- Indee Labs, Berkeley, CA, USA
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | | | - Lian Li
- Indee Labs, Berkeley, CA, USA
| | | | - Allison G. Rothrock
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - William A. Nyberg
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Zhongmei Li
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | | | - Justin Eyquem
- Indee Labs, Berkeley, CA, USA
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Institute for Human Genetics (IHG), University of California, San Francisco, San Francisco, CA, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
| | | |
Collapse
|
3
|
Sytsma BJ, Allain V, Bourke S, Faizee F, Fathi M, Berdeaux R, Ferreira LM, Brewer WJ, Li L, Pan FL, Rothrock AG, Nyberg WA, Li Z, Wilson LH, Eyquem J, Pawell RS. Scalable intracellular delivery via microfluidic vortex shedding enhances the function of chimeric antigen receptor T-cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.25.600671. [PMID: 38979201 PMCID: PMC11230359 DOI: 10.1101/2024.06.25.600671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Adoptive chimeric antigen receptor T-cell (CAR-T) therapy is transformative and approved for hematologic malignancies. It is also being developed for the treatment of solid tumors, autoimmune disorders, heart disease, and aging. Despite unprecedented clinical outcomes, CAR-T and other engineered cell therapies face a variety of manufacturing and safety challenges. Traditional methods, such as lentivirus transduction and electroporation, result in random integration or cause significant cellular damage, which can limit the safety and efficacy of engineered cell therapies. We present hydroporation as a gentle and effective alternative for intracellular delivery. Hydroporation resulted in 1.7- to 2-fold higher CAR-T yields compared to electroporation with superior cell viability and recovery. Hydroporated cells exhibited rapid proliferation, robust target cell lysis, and increased pro-inflammatory and regulatory cytokine secretion in addition to improved CAR-T yield by day 5 post-transfection. We demonstrate that scaled-up hydroporation can process 5 x 108 cells in less than 10 s, showcasing the platform as a viable solution for high-yield CAR-T manufacturing with the potential for improved therapeutic outcomes.
Collapse
Affiliation(s)
| | - Vincent Allain
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Université Paris Cité, INSERM UMR976, Hôpital Saint-Louis, Paris, France
| | | | | | | | | | - Leonardo M.R. Ferreira
- Indee Labs, Berkeley, CA, USA
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | | | - Lian Li
- Indee Labs, Berkeley, CA, USA
| | | | - Allison G. Rothrock
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - William A. Nyberg
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Zhongmei Li
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | | | - Justin Eyquem
- Indee Labs, Berkeley, CA, USA
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Institute for Human Genetics (IHG), University of California, San Francisco, San Francisco, CA, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
| | | |
Collapse
|
4
|
Berdecka D, De Smedt SC, De Vos WH, Braeckmans K. Non-viral delivery of RNA for therapeutic T cell engineering. Adv Drug Deliv Rev 2024; 208:115215. [PMID: 38401848 DOI: 10.1016/j.addr.2024.115215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/07/2024] [Accepted: 02/14/2024] [Indexed: 02/26/2024]
Abstract
Adoptive T cell transfer has shown great success in treating blood cancers, resulting in a growing number of FDA-approved therapies using chimeric antigen receptor (CAR)-engineered T cells. However, the effectiveness of this treatment for solid tumors is still not satisfactory, emphasizing the need for improved T cell engineering strategies and combination approaches. Currently, CAR T cells are mainly manufactured using gammaretroviral and lentiviral vectors due to their high transduction efficiency. However, there are concerns about their safety, the high cost of producing them in compliance with current Good Manufacturing Practices (cGMP), regulatory obstacles, and limited cargo capacity, which limit the broader use of engineered T cell therapies. To overcome these limitations, researchers have explored non-viral approaches, such as membrane permeabilization and carrier-mediated methods, as more versatile and sustainable alternatives for next-generation T cell engineering. Non-viral delivery methods can be designed to transport a wide range of molecules, including RNA, which allows for more controlled and safe modulation of T cell phenotype and function. In this review, we provide an overview of non-viral RNA delivery in adoptive T cell therapy. We first define the different types of RNA therapeutics, highlighting recent advancements in manufacturing for their therapeutic use. We then discuss the challenges associated with achieving effective RNA delivery in T cells. Next, we provide an overview of current and emerging technologies for delivering RNA into T cells. Finally, we discuss ongoing preclinical and clinical studies involving RNA-modified T cells.
Collapse
Affiliation(s)
- Dominika Berdecka
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Stefaan C De Smedt
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Winnok H De Vos
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Kevin Braeckmans
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| |
Collapse
|
5
|
Woodruff R, Parekh F, Lamb K, Mekkaoui L, Allen C, Smetanova K, Huang J, Williams A, Toledo GS, Lilova K, Roddie C, Sillibourne J, Pule M. Large-scale manufacturing of base-edited chimeric antigen receptor T cells. Mol Ther Methods Clin Dev 2023; 31:101123. [PMID: 37886606 PMCID: PMC10597784 DOI: 10.1016/j.omtm.2023.101123] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 09/29/2023] [Indexed: 10/28/2023]
Abstract
Base editing is a revolutionary gene-editing technique enabling the introduction of point mutations into the genome without generating detrimental DNA double-stranded breaks. Base-editing enzymes are commonly delivered in the form of modified linear messenger RNA (mRNA) that is costly to produce. Here, we address this problem by developing a simple protocol for manufacturing base-edited cells using circular RNA (circRNA), which is less expensive to synthesize. Compared with linear mRNA, higher editing efficiencies were achieved with circRNA, enabling an 8-fold reduction in the amount of RNA required. We used this protocol to manufacture a clinical dose (1 × 108 cells) of base-edited chimeric antigen receptor (CAR) T cells lacking expression of the inhibitory receptor, PD-1. Editing efficiencies of up to 86% were obtained using 0.25 μg circRNA/1 × 106 cells. Increased editing efficiencies with circRNA were attributed to more efficient translation. These results suggest that circRNA, which is less expensive to produce than linear mRNA, is a viable option for reducing the cost of manufacturing base-edited cells at scale.
Collapse
Affiliation(s)
- Rosie Woodruff
- Autolus Therapeutics, The Mediaworks, 191 Wood Lane, W12 7FP London, UK
| | - Farhaan Parekh
- Autolus Therapeutics, The Mediaworks, 191 Wood Lane, W12 7FP London, UK
| | - Katarina Lamb
- Autolus Therapeutics, The Mediaworks, 191 Wood Lane, W12 7FP London, UK
| | - Leila Mekkaoui
- Autolus Therapeutics, The Mediaworks, 191 Wood Lane, W12 7FP London, UK
| | - Christopher Allen
- Autolus Therapeutics, The Mediaworks, 191 Wood Lane, W12 7FP London, UK
| | | | - Jasmine Huang
- Imperial College London, South Kensington Campus, SW7 2AZ London, UK
| | - Alex Williams
- Autolus Therapeutics, The Mediaworks, 191 Wood Lane, W12 7FP London, UK
| | | | - Koki Lilova
- Autolus Therapeutics, The Mediaworks, 191 Wood Lane, W12 7FP London, UK
| | - Claire Roddie
- Deparment of Haematology, Cancer Institute, 72 Huntley Street, WC1E 6BT London, UK
| | - James Sillibourne
- Autolus Therapeutics, The Mediaworks, 191 Wood Lane, W12 7FP London, UK
| | - Martin Pule
- Autolus Therapeutics, The Mediaworks, 191 Wood Lane, W12 7FP London, UK
- Deparment of Haematology, Cancer Institute, 72 Huntley Street, WC1E 6BT London, UK
| |
Collapse
|
6
|
Shoop WK, Lape J, Trum M, Powell A, Sevigny E, Mischler A, Bacman SR, Fontanesi F, Smith J, Jantz D, Gorsuch CL, Moraes CT. Efficient elimination of MELAS-associated m.3243G mutant mitochondrial DNA by an engineered mitoARCUS nuclease. Nat Metab 2023; 5:2169-2183. [PMID: 38036771 PMCID: PMC10730414 DOI: 10.1038/s42255-023-00932-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 10/16/2023] [Indexed: 12/02/2023]
Abstract
Nuclease-mediated editing of heteroplasmic mitochondrial DNA (mtDNA) seeks to preferentially cleave and eliminate mutant mtDNA, leaving wild-type genomes to repopulate the cell and shift mtDNA heteroplasmy. Various technologies are available, but many suffer from limitations based on size and/or specificity. The use of ARCUS nucleases, derived from naturally occurring I-CreI, avoids these pitfalls due to their small size, single-component protein structure and high specificity resulting from a robust protein-engineering process. Here we describe the development of a mitochondrial-targeted ARCUS (mitoARCUS) nuclease designed to target one of the most common pathogenic mtDNA mutations, m.3243A>G. mitoARCUS robustly eliminated mutant mtDNA without cutting wild-type mtDNA, allowing for shifts in heteroplasmy and concomitant improvements in mitochondrial protein steady-state levels and respiration. In vivo efficacy was demonstrated using a m.3243A>G xenograft mouse model with mitoARCUS delivered systemically by adeno-associated virus. Together, these data support the development of mitoARCUS as an in vivo gene-editing therapeutic for m.3243A>G-associated diseases.
Collapse
Affiliation(s)
- Wendy K Shoop
- Precision BioSciences, Durham, NC, USA
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, USA
| | | | | | | | | | | | - Sandra R Bacman
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Flavia Fontanesi
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, USA
| | | | | | | | - Carlos T Moraes
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
7
|
Berdecka D, Harizaj A, Goemaere I, Punj D, Goetgeluk G, De Munter S, De Keersmaecker H, Boterberg V, Dubruel P, Vandekerckhove B, De Smedt SC, De Vos WH, Braeckmans K. Delivery of macromolecules in unstimulated T cells by photoporation with polydopamine nanoparticles. J Control Release 2023; 354:680-693. [PMID: 36681281 DOI: 10.1016/j.jconrel.2023.01.047] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 01/11/2023] [Accepted: 01/16/2023] [Indexed: 01/23/2023]
Abstract
Ex vivo modification of T cells with exogenous cargo is a common prerequisite for the development of T cell therapies, such as chimeric antigen receptor therapy. Despite the clinical success and FDA approval of several such products, T cell manufacturing presents unique challenges related to therapeutic efficacy after adoptive cell transfer and several drawbacks of viral transduction-based manufacturing, such as high cost and safety concerns. To generate cellular products with optimal potency, engraftment potential and persistence in vivo, recent studies have shown that minimally differentiated T cell phenotypes are preferred. However, genetic engineering of quiescent T cells remains challenging. Photoporation is an upcoming alternative non-viral transfection method which makes use of photothermal nanoparticles, such as polydopamine nanoparticles (PDNPs), to induce transient membrane permeabilization by distinct photothermal effects upon laser irradiation, allowing exogenous molecules to enter cells. In this study, we analyzed the capability of PDNP-photoporation to deliver large model macromolecules (FITC-dextran 500 kDa, FD500) in unstimulated and expanded human T cells. We compared different sizes of PDNPs (150, 250 and 400 nm), concentrations of PDNPs and laser fluences and found an optimal condition that generated high delivery yields of FD500 in both T cell phenotypes. A multiparametric analysis of cell proliferation, surface activation markers and cytokine production, revealed that unstimulated T cells photoporated with 150 nm and 250 nm PDNPs retained their propensity to become activated, whereas those photoporated with 400 nm PDNPs did less. Our findings show that PDNP-photoporation is a promising strategy for transfection of quiescent T cells, but that PDNPs should be small enough to avoid excessive cell damage.
Collapse
Affiliation(s)
- Dominika Berdecka
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Aranit Harizaj
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Ilia Goemaere
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Deep Punj
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Glenn Goetgeluk
- Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University Hospital, Heymanslaan 10, 9000 Ghent, Belgium
| | - Stijn De Munter
- Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University Hospital, Heymanslaan 10, 9000 Ghent, Belgium
| | - Herlinde De Keersmaecker
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; Ghent Light Microscopy Core, Ghent University, 9000 Ghent, Belgium
| | - Veerle Boterberg
- Polymer Chemistry and Biomaterials Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, 9000 Ghent, Belgium
| | - Peter Dubruel
- Polymer Chemistry and Biomaterials Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, 9000 Ghent, Belgium
| | - Bart Vandekerckhove
- Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University Hospital, Heymanslaan 10, 9000 Ghent, Belgium
| | - Stefaan C De Smedt
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Winnok H De Vos
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Kevin Braeckmans
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; Ghent Light Microscopy Core, Ghent University, 9000 Ghent, Belgium.
| |
Collapse
|
8
|
Duckert B, Fauvart M, Goos P, Stakenborg T, Lagae L, Braeken D. High-definition electroporation: Precise and efficient transfection on a microelectrode array. J Control Release 2022; 352:61-73. [PMID: 36208793 DOI: 10.1016/j.jconrel.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 09/14/2022] [Accepted: 10/01/2022] [Indexed: 11/05/2022]
Abstract
Intracellular delivery is critical for a plethora of biomedical applications, including mRNA transfection and gene editing. High transfection efficiency and low cytotoxicity, however, are often beyond the capabilities of bulk techniques and synonymous with extensive empirical optimization. Moreover, bulk techniques are not amenable to large screening applications. Here, we propose an expeditious workflow for achieving optimal electroporation-based intracellular delivery. Using the multiplexing ability of a high-definition microelectrode array (MEA) chip, we performed a sequence of carefully designed experiments, multiple linear regression modelling and validation to obtain optimal conditions for on-chip electroporation of primary fibroblasts. Five electric pulse parameters were varied to generate 32 different electroporation conditions. The effect of the parameters on cytotoxicity and intracellular delivery could be evaluated with just two experiments. Most successful electroporation conditions resulted in no cell death, highlighting the low cytotoxicity of on-chip electroporation. The resulting delivery models were then used to achieve dosage-controlled delivery of small molecules, delivery of Cas9-GFP single-guide RNA complexes and transfection with an mCherry-encoding mRNA, resulting in previously unreported high-efficiency, single-cell transfection on MEAs: cells expressed mCherry on 81% of the actuated electrodes, underscoring the vast potential of CMOS MEA technology for the transfection of primary cells.
Collapse
Affiliation(s)
- Bastien Duckert
- Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200d, 3001, Leuven, Belgium; imec, Kapeldreef 75, 3001, Leuven, Belgium.
| | | | - Peter Goos
- Department of Biosystems, KU Leuven, Willem de Croylaan 42, 3001, Leuven, Belgium; Department of Engineering Management, University of Antwerp, Prinsstraat 13, 2000, Antwerp, Belgium.
| | | | - Liesbet Lagae
- Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200d, 3001, Leuven, Belgium; imec, Kapeldreef 75, 3001, Leuven, Belgium.
| | | |
Collapse
|
9
|
Tsai HC, Pietrobon V, Peng M, Wang S, Zhao L, Marincola FM, Cai Q. Current strategies employed in the manipulation of gene expression for clinical purposes. J Transl Med 2022; 20:535. [PMID: 36401279 PMCID: PMC9673226 DOI: 10.1186/s12967-022-03747-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 09/29/2022] [Indexed: 11/19/2022] Open
Abstract
Abnormal gene expression level or expression of genes containing deleterious mutations are two of the main determinants which lead to genetic disease. To obtain a therapeutic effect and thus to cure genetic diseases, it is crucial to regulate the host's gene expression and restore it to physiological conditions. With this purpose, several molecular tools have been developed and are currently tested in clinical trials. Genome editing nucleases are a class of molecular tools routinely used in laboratories to rewire host's gene expression. Genome editing nucleases include different categories of enzymes: meganucleses (MNs), zinc finger nucleases (ZFNs), clustered regularly interspaced short palindromic repeats (CRISPR)- CRISPR associated protein (Cas) and transcription activator-like effector nuclease (TALENs). Transposable elements are also a category of molecular tools which includes different members, for example Sleeping Beauty (SB), PiggyBac (PB), Tol2 and TcBuster. Transposons have been used for genetic studies and can serve as gene delivery tools. Molecular tools to rewire host's gene expression also include episomes, which are divided into different categories depending on their molecular structure. Finally, RNA interference is commonly used to regulate gene expression through the administration of small interfering RNA (siRNA), short hairpin RNA (shRNA) and bi-functional shRNA molecules. In this review, we will describe the different molecular tools that can be used to regulate gene expression and discuss their potential for clinical applications. These molecular tools are delivered into the host's cells in the form of DNA, RNA or protein using vectors that can be grouped into physical or biochemical categories. In this review we will also illustrate the different types of payloads that can be used, and we will discuss recent developments in viral and non-viral vector technology.
Collapse
Affiliation(s)
| | | | - Maoyu Peng
- Kite Pharma Inc, Santa Monica, CA, 90404, USA
| | - Suning Wang
- Kite Pharma Inc, Santa Monica, CA, 90404, USA
| | - Lihong Zhao
- Kite Pharma Inc, Santa Monica, CA, 90404, USA
| | | | - Qi Cai
- Kite Pharma Inc, Santa Monica, CA, 90404, USA.
| |
Collapse
|
10
|
Chen N, He Y, Zang M, Zhang Y, Lu H, Zhao Q, Wang S, Gao Y. Approaches and materials for endocytosis-independent intracellular delivery of proteins. Biomaterials 2022; 286:121567. [DOI: 10.1016/j.biomaterials.2022.121567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 04/26/2022] [Accepted: 05/03/2022] [Indexed: 12/12/2022]
|
11
|
Light triggered nanoscale biolistics for efficient intracellular delivery of functional macromolecules in mammalian cells. Nat Commun 2022; 13:1996. [PMID: 35422038 PMCID: PMC9010410 DOI: 10.1038/s41467-022-29713-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 03/22/2022] [Indexed: 11/17/2022] Open
Abstract
Biolistic intracellular delivery of functional macromolecules makes use of dense microparticles which are ballistically fired onto cells with a pressurized gun. While it has been used to transfect plant cells, its application to mammalian cells has met with limited success mainly due to high toxicity. Here we present a more refined nanotechnological approach to biolistic delivery with light-triggered self-assembled nanobombs (NBs) that consist of a photothermal core particle surrounded by smaller nanoprojectiles. Upon irradiation with pulsed laser light, fast heating of the core particle results in vapor bubble formation, which propels the nanoprojectiles through the cell membrane of nearby cells. We show successful transfection of both adherent and non-adherent cells with mRNA and pDNA, outperforming electroporation as the most used physical transfection technology by a factor of 5.5–7.6 in transfection yield. With a throughput of 104-105 cells per second, biolistic delivery with NBs offers scalable and highly efficient transfections of mammalian cells. Ballistic delivery with micro/nano-particles has been successfully used to transfect plant cells, however, has failed in mammalian cells due to toxic effects. Here, the authors report on a self-assembled nano-ballistic delivery system for the delivery of functional macromolecules and demonstrate efficient transfection of mammalian cells.
Collapse
|
12
|
Van Hoeck J, Braeckmans K, De Smedt SC, Raemdonck K. Non-viral siRNA delivery to T cells: Challenges and opportunities in cancer immunotherapy. Biomaterials 2022; 286:121510. [DOI: 10.1016/j.biomaterials.2022.121510] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 03/17/2022] [Accepted: 04/01/2022] [Indexed: 12/12/2022]
|
13
|
Kiru L, Zlitni A, Tousley AM, Dalton GN, Wu W, Lafortune F, Liu A, Cunanan KM, Nejadnik H, Sulchek T, Moseley ME, Majzner RG, Daldrup-Link HE. In vivo imaging of nanoparticle-labeled CAR T cells. Proc Natl Acad Sci U S A 2022; 119:e2102363119. [PMID: 35101971 PMCID: PMC8832996 DOI: 10.1073/pnas.2102363119] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 12/10/2021] [Indexed: 01/20/2023] Open
Abstract
Metastatic osteosarcoma has a poor prognosis with a 2-y, event-free survival rate of ∼15 to 20%, highlighting the need for the advancement of efficacious therapeutics. Chimeric antigen receptor (CAR) T-cell therapy is a potent strategy for eliminating tumors by harnessing the immune system. However, clinical trials with CAR T cells in solid tumors have encountered significant challenges and have not yet demonstrated convincing evidence of efficacy for a large number of patients. A major bottleneck for the success of CAR T-cell therapy is our inability to monitor the accumulation of the CAR T cells in the tumor with clinical-imaging techniques. To address this, we developed a clinically translatable approach for labeling CAR T cells with iron oxide nanoparticles, which enabled the noninvasive detection of the iron-labeled T cells with magnetic resonance imaging (MRI), photoacoustic imaging (PAT), and magnetic particle imaging (MPI). Using a custom-made microfluidics device for T-cell labeling by mechanoporation, we achieved significant nanoparticle uptake in the CAR T cells, while preserving T-cell proliferation, viability, and function. Multimodal MRI, PAT, and MPI demonstrated homing of the T cells to osteosarcomas and off-target sites in animals administered with T cells labeled with the iron oxide nanoparticles, while T cells were not visualized in animals infused with unlabeled cells. This study details the successful labeling of CAR T cells with ferumoxytol, thereby paving the way for monitoring CAR T cells in solid tumors.
Collapse
Affiliation(s)
- Louise Kiru
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 94305
| | - Aimen Zlitni
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 94305
| | | | | | - Wei Wu
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 94305
| | - Famyrah Lafortune
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 94305
| | - Anna Liu
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332
| | - Kristen May Cunanan
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 94305
| | - Hossein Nejadnik
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA 19104
| | - Todd Sulchek
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332
| | - Michael Eugene Moseley
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 94305
| | - Robbie G Majzner
- Department of Pediatrics, Stanford University, Stanford, CA 94305
- Stanford Cancer Institute, Stanford University, Stanford, CA 94305
| | - Heike Elisabeth Daldrup-Link
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 94305;
- Department of Pediatrics, Stanford University, Stanford, CA 94305
- Stanford Cancer Institute, Stanford University, Stanford, CA 94305
| |
Collapse
|
14
|
Houthaeve G, De Smedt SC, Braeckmans K, De Vos WH. The cellular response to plasma membrane disruption for nanomaterial delivery. NANO CONVERGENCE 2022; 9:6. [PMID: 35103909 PMCID: PMC8807741 DOI: 10.1186/s40580-022-00298-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/05/2022] [Indexed: 06/14/2023]
Abstract
Delivery of nanomaterials into cells is of interest for fundamental cell biological research as well as for therapeutic and diagnostic purposes. One way of doing so is by physically disrupting the plasma membrane (PM). Several methods that exploit electrical, mechanical or optical cues have been conceived to temporarily disrupt the PM for intracellular delivery, with variable effects on cell viability. However, apart from acute cytotoxicity, subtler effects on cell physiology may occur as well. Their nature and timing vary with the severity of the insult and the efficiency of repair, but some may provoke permanent phenotypic alterations. With the growing palette of nanoscale delivery methods and applications, comes a need for an in-depth understanding of this cellular response. In this review, we summarize current knowledge about the chronology of cellular events that take place upon PM injury inflicted by different delivery methods. We also elaborate on their significance for cell homeostasis and cell fate. Based on the crucial nodes that govern cell fitness and functionality, we give directions for fine-tuning nano-delivery conditions.
Collapse
Affiliation(s)
- Gaëlle Houthaeve
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerp, Belgium
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Ghent, Belgium
| | - Stefaan C De Smedt
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Ghent, Belgium
| | - Kevin Braeckmans
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Ghent, Belgium
| | - Winnok H De Vos
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
15
|
Rezalotfi A, Fritz L, Förster R, Bošnjak B. Challenges of CRISPR-Based Gene Editing in Primary T Cells. Int J Mol Sci 2022; 23:ijms23031689. [PMID: 35163611 PMCID: PMC8835901 DOI: 10.3390/ijms23031689] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 01/29/2022] [Indexed: 12/30/2022] Open
Abstract
Adaptive T-cell immunotherapy holds great promise for the successful treatment of leukemia, as well as other types of cancers. More recently, it was also shown to be an effective treatment option for chronic virus infections in immunosuppressed patients. Autologous or allogeneic T cells used for immunotherapy are usually genetically modified to express novel T-cell or chimeric antigen receptors. The production of such cells was significantly simplified with the CRISPR/Cas system, allowing for the deletion or insertion of novel genes at specific locations within the genome. In this review, we describe recent methodological breakthroughs that were important for the conduction of these genetic modifications, summarize crucial points to be considered when conducting such experiments, and highlight the potential pitfalls of these approaches.
Collapse
Affiliation(s)
- Alaleh Rezalotfi
- Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany; (A.R.); (L.F.); (R.F.)
| | - Lea Fritz
- Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany; (A.R.); (L.F.); (R.F.)
| | - Reinhold Förster
- Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany; (A.R.); (L.F.); (R.F.)
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, 30625 Hannover, Germany
- German Centre for Infection Research (DZIF), Partner Site Hannover, 30625 Hannover, Germany
| | - Berislav Bošnjak
- Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany; (A.R.); (L.F.); (R.F.)
- Correspondence: ; Tel.: +49-511-532-9731
| |
Collapse
|
16
|
Xiong R, Hua D, Van Hoeck J, Berdecka D, Léger L, De Munter S, Fraire JC, Raes L, Harizaj A, Sauvage F, Goetgeluk G, Pille M, Aalders J, Belza J, Van Acker T, Bolea-Fernandez E, Si T, Vanhaecke F, De Vos WH, Vandekerckhove B, van Hengel J, Raemdonck K, Huang C, De Smedt SC, Braeckmans K. Photothermal nanofibres enable safe engineering of therapeutic cells. NATURE NANOTECHNOLOGY 2021; 16:1281-1291. [PMID: 34675410 PMCID: PMC7612007 DOI: 10.1038/s41565-021-00976-3] [Citation(s) in RCA: 135] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 08/03/2021] [Indexed: 05/18/2023]
Abstract
Nanoparticle-sensitized photoporation is an upcoming approach for the intracellular delivery of biologics, combining high efficiency and throughput with excellent cell viability. However, as it relies on close contact between nanoparticles and cells, its translation towards clinical applications is hampered by safety and regulatory concerns. Here we show that light-sensitive iron oxide nanoparticles embedded in biocompatible electrospun nanofibres induce membrane permeabilization by photothermal effects without direct cellular contact with the nanoparticles. The photothermal nanofibres have been successfully used to deliver effector molecules, including CRISPR-Cas9 ribonucleoprotein complexes and short interfering RNA, to adherent and suspension cells, including embryonic stem cells and hard-to-transfect T cells, without affecting cell proliferation or phenotype. In vivo experiments furthermore demonstrated successful tumour regression in mice treated with chimeric antibody receptor T cells in which the expression of programmed cell death protein 1 (PD1) is downregulated after nanofibre photoporation with short interfering RNA to PD1. In conclusion, cell membrane permeabilization with photothermal nanofibres is a promising concept towards the safe and more efficient production of engineered cells for therapeutic applications, including stem cell or adoptive T cell therapy.
Collapse
Affiliation(s)
- Ranhua Xiong
- Joint Laboratory of Advanced Biomedical Materials (Nanjing Forestry University-Ghent University), International Innovation for Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, People's Republic of China.
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium.
| | - Dawei Hua
- Joint Laboratory of Advanced Biomedical Materials (Nanjing Forestry University-Ghent University), International Innovation for Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, People's Republic of China
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Jelter Van Hoeck
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Dominika Berdecka
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Laurens Léger
- Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Stijn De Munter
- Department of Diagnostic Sciences and Cancer Research Institute Ghent, Ghent University, Ghent, Belgium
| | - Juan C Fraire
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Laurens Raes
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Aranit Harizaj
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Félix Sauvage
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Glenn Goetgeluk
- Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Melissa Pille
- Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Jeffrey Aalders
- Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Joke Belza
- Department of Chemistry, Atomic and Mass Spectrometry Research Group, Ghent University, Ghent, Belgium
| | - Thibaut Van Acker
- Department of Chemistry, Atomic and Mass Spectrometry Research Group, Ghent University, Ghent, Belgium
| | - Eduardo Bolea-Fernandez
- Department of Chemistry, Atomic and Mass Spectrometry Research Group, Ghent University, Ghent, Belgium
| | - Ting Si
- Department of Modern Mechanics, University of Science and Technology of China, Hefei, People's Republic of China
| | - Frank Vanhaecke
- Department of Chemistry, Atomic and Mass Spectrometry Research Group, Ghent University, Ghent, Belgium
| | - Winnok H De Vos
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Bart Vandekerckhove
- Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Jolanda van Hengel
- Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Koen Raemdonck
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Chaobo Huang
- Joint Laboratory of Advanced Biomedical Materials (Nanjing Forestry University-Ghent University), International Innovation for Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, People's Republic of China.
| | - Stefaan C De Smedt
- Joint Laboratory of Advanced Biomedical Materials (Nanjing Forestry University-Ghent University), International Innovation for Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, People's Republic of China.
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium.
- Center for Advanced Light Microscopy, Ghent University, Ghent, Belgium.
| | - Kevin Braeckmans
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium.
- Center for Advanced Light Microscopy, Ghent University, Ghent, Belgium.
| |
Collapse
|
17
|
Van Hoeck J, Vanhove C, De Smedt SC, Raemdonck K. Non-invasive cell-tracking methods for adoptive T cell therapies. Drug Discov Today 2021; 27:793-807. [PMID: 34718210 DOI: 10.1016/j.drudis.2021.10.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/26/2021] [Accepted: 10/20/2021] [Indexed: 12/12/2022]
Abstract
Adoptive T cell therapies (ACT) have demonstrated groundbreaking results in blood cancers and melanoma. Nevertheless, their significant cost, the occurrence of severe adverse events, and their poor performance in solid tumors are important hurdles hampering more widespread applicability. In vivo cell tracking allows instantaneous and non-invasive monitoring of the distribution, tumor homing, persistence, and redistribution to other organs of infused T cells in patients. Furthermore, cell tracking could aid in the clinical management of patients, allowing the detection of non-responders or severe adverse events at an early stage. This review provides a concise overview of the main principles and potential of cell tracking, followed by a discussion of the clinically relevant labeling strategies and their application in ACT.
Collapse
Affiliation(s)
- Jelter Van Hoeck
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Christian Vanhove
- Infinity Lab, Medical Imaging and Signal Processing Group-IBiTech, Faculty of Engineering and Architecture, Ghent University, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - Stefaan C De Smedt
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Koen Raemdonck
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| |
Collapse
|
18
|
Raes L, Pille M, Harizaj A, Goetgeluk G, Van Hoeck J, Stremersch S, Fraire JC, Brans T, de Jong OG, Maas-Bakker R, Mastrobattista E, Vader P, De Smedt SC, Vandekerckhove B, Raemdonck K, Braeckmans K. Cas9 RNP transfection by vapor nanobubble photoporation for ex vivo cell engineering. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 25:696-707. [PMID: 34589287 PMCID: PMC8463438 DOI: 10.1016/j.omtn.2021.08.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 08/13/2021] [Indexed: 01/18/2023]
Abstract
The CRISPR-Cas9 technology represents a powerful tool for genome engineering in eukaryotic cells, advancing both fundamental research and therapeutic strategies. Despite the enormous potential of the technology, efficient and direct intracellular delivery of Cas9 ribonucleoprotein (RNP) complexes in target cells poses a significant hurdle, especially in refractive primary cells. In the present work, vapor nanobubble (VNB) photoporation was explored for Cas9 RNP transfection in a variety of cell types. Proof of concept was first demonstrated in H1299-EGFP cells, before proceeding to hard-to-transfect stem cells and T cells. Gene knock-out levels over 80% and up to 60% were obtained for H1299 cells and mesenchymal stem cells, respectively. In these cell types, the unique possibility of VNB photoporation to knock out genes according to user-defined spatial patterns was demonstrated as well. Next, effective targeting of the programmed cell death 1 receptor and Wiskott-Aldrich syndrome gene in primary human T cells was demonstrated, reaching gene knock-out levels of 25% and 34%, respectively. With a throughput of >200,000 T cells per second, VNB photoporation is a scalable and versatile intracellular delivery method that holds great promise for CRISPR-Cas9-mediated ex vivo engineering of cell therapy products.
Collapse
Affiliation(s)
- Laurens Raes
- Laboratory of General Biochemistry & Physical Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Melissa Pille
- Department of Diagnostic Sciences, Ghent University, University Hospital Ghent, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - Aranit Harizaj
- Laboratory of General Biochemistry & Physical Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Glenn Goetgeluk
- Department of Diagnostic Sciences, Ghent University, University Hospital Ghent, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - Jelter Van Hoeck
- Laboratory of General Biochemistry & Physical Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Stephan Stremersch
- Laboratory of General Biochemistry & Physical Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Juan C. Fraire
- Laboratory of General Biochemistry & Physical Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Toon Brans
- Laboratory of General Biochemistry & Physical Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Olivier Gerrit de Jong
- Department of Pharmaceutics, Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, the Netherlands
| | - Roel Maas-Bakker
- Department of Pharmaceutics, Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, the Netherlands
| | - Enrico Mastrobattista
- Department of Pharmaceutics, Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, the Netherlands
| | - Pieter Vader
- CDL Research, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands
| | - Stefaan C. De Smedt
- Laboratory of General Biochemistry & Physical Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Bart Vandekerckhove
- Department of Diagnostic Sciences, Ghent University, University Hospital Ghent, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - Koen Raemdonck
- Laboratory of General Biochemistry & Physical Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Kevin Braeckmans
- Laboratory of General Biochemistry & Physical Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
- Corresponding author: Kevin Braeckmans, Laboratory of General Biochemistry & Physical Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.E-mail:
| |
Collapse
|
19
|
Joo B, Hur J, Kim GB, Yun SG, Chung AJ. Highly Efficient Transfection of Human Primary T Lymphocytes Using Droplet-Enabled Mechanoporation. ACS NANO 2021; 15:12888-12898. [PMID: 34142817 DOI: 10.1021/acsnano.0c10473] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Whole-cell-based therapy has been extensively used as an effective disease treatment approach, and it has rapidly changed the therapeutic paradigm. To fully accommodate this shift, advances in genome modification and cell reprogramming methodologies are critical. Traditionally, molecular tools such as viral and polymer nanocarriers and electroporation have been the norm for internalizing external biomolecules into cells for cellular engineering. However, these approaches are not fully satisfactory considering their cytotoxicity, high cost, low scalability, and/or inconsistent and ineffective delivery and transfection. To address these challenges, we present an approach that leverages droplet microfluidics with cell mechanoporation, bringing intracellular delivery to the next level. In our approach, cells and external cargos such as mRNAs and plasmid DNAs are coencapsulated into droplets, and as they pass through a series of narrow constrictions, the cell membrane is mechanically permeabilized where the cargos in the vicinity are internalized via convective solution exchange enhanced by recirculation flows developed in the droplets. Using this principle, we demonstrated a high level of functional macromolecule delivery into various immune cells, including human primary T cells. By utilizing droplets, the cargo consumption was drastically reduced, and near-zero clogging was realized. Furthermore, high scalability without sacrificing cell viability and superior delivery over state-of-the-art methods and benchtop techniques were demonstrated. Notably, the droplet-based intracellular delivery strategy presented here can be further applied to other mechanoporation microfluidic techniques, highlighting its potential for cellular engineering and cell-based therapies.
Collapse
Affiliation(s)
- Byeongju Joo
- School of Biomedical Engineering, Korea University, 02841 Seoul, Republic of Korea
| | - Jeongsoo Hur
- School of Biomedical Engineering, Korea University, 02841 Seoul, Republic of Korea
| | - Gi-Beom Kim
- School of Biomedical Engineering, Korea University, 02841 Seoul, Republic of Korea
- Interdisciplinary Program in Precision Public Health, Korea University, 02841 Seoul, Republic of Korea
| | - Seung Gyu Yun
- Department of Laboratory Medicine, College of Medicine, Korea University, 02841 Seoul, Republic of Korea
| | - Aram J Chung
- School of Biomedical Engineering, Korea University, 02841 Seoul, Republic of Korea
- Interdisciplinary Program in Precision Public Health, Korea University, 02841 Seoul, Republic of Korea
| |
Collapse
|
20
|
Hur J, Chung AJ. Microfluidic and Nanofluidic Intracellular Delivery. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2004595. [PMID: 34096197 PMCID: PMC8336510 DOI: 10.1002/advs.202004595] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 04/14/2021] [Indexed: 05/05/2023]
Abstract
Innate cell function can be artificially engineered and reprogrammed by introducing biomolecules, such as DNAs, RNAs, plasmid DNAs, proteins, or nanomaterials, into the cytosol or nucleus. This process of delivering exogenous cargos into living cells is referred to as intracellular delivery. For instance, clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 gene editing begins with internalizing Cas9 protein and guide RNA into cells, and chimeric antigen receptor-T (CAR-T) cells are prepared by delivering CAR genes into T lymphocytes for cancer immunotherapies. To deliver external biomolecules into cells, tools, including viral vectors, and electroporation have been traditionally used; however, they are suboptimal for achieving high levels of intracellular delivery while preserving cell viability, phenotype, and function. Notably, as emerging solutions, microfluidic and nanofluidic approaches have shown remarkable potential for addressing this open challenge. This review provides an overview of recent advances in microfluidic and nanofluidic intracellular delivery strategies and discusses new opportunities and challenges for clinical applications. Furthermore, key considerations for future efforts to develop microfluidics- and nanofluidics-enabled next-generation intracellular delivery platforms are outlined.
Collapse
Affiliation(s)
- Jeongsoo Hur
- School of Biomedical EngineeringKorea UniversitySeoul02841Republic of Korea
| | - Aram J. Chung
- School of Biomedical EngineeringInterdisciplinary Program in Precision Public HealthKorea UniversitySeoul02841Republic of Korea
| |
Collapse
|
21
|
Jarrell JA, Sytsma BJ, Wilson LH, Pan FL, Lau KHWJ, Kirby GTS, Lievano AA, Pawell RS. Numerical optimization of microfluidic vortex shedding for genome editing T cells with Cas9. Sci Rep 2021; 11:11818. [PMID: 34083685 PMCID: PMC8175688 DOI: 10.1038/s41598-021-91307-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 05/25/2021] [Indexed: 12/27/2022] Open
Abstract
Microfluidic vortex shedding (µVS) can rapidly deliver mRNA to T cells with high yield and minimal perturbation of the cell state. The mechanistic underpinning of µVS intracellular delivery remains undefined and µVS-Cas9 genome editing requires further studies. Herein, we evaluated a series of µVS devices containing splitter plates to attenuate vortex shedding and understand the contribution of computed force and frequency on efficiency and viability. We then selected a µVS design to knockout the expression of the endogenous T cell receptor in primary human T cells via delivery of Cas9 ribonucleoprotein (RNP) with and without brief exposure to an electric field (eµVS). µVS alone resulted in an equivalent yield of genome-edited T cells relative to electroporation with improved cell quality. A 1.8-fold increase in editing efficiency was demonstrated with eµVS with negligible impact on cell viability. Herein, we demonstrate efficient processing of 5 × 106 cells suspend in 100 µl of cGMP OptiMEM in under 5 s, with the capacity of a single device to process between 106 to 108 in 1 to 30 s. Cumulatively, these results demonstrate the rapid and robust utility of µVS and eµVS for genome editing human primary T cells with Cas9 RNPs.
Collapse
Affiliation(s)
| | | | | | | | | | - Giles T S Kirby
- Future Industries Institute, University of South Australia, Mawson Lakes, SA, Australia
| | | | | |
Collapse
|
22
|
Kavanagh H, Dunne S, Martin DS, McFadden E, Gallagher L, Schwaber J, Leonard S, O'Dea S. A novel non-viral delivery method that enables efficient engineering of primary human T cells for ex vivo cell therapy applications. Cytotherapy 2021; 23:852-860. [PMID: 33941482 PMCID: PMC8386197 DOI: 10.1016/j.jcyt.2021.03.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/02/2021] [Accepted: 03/12/2021] [Indexed: 11/28/2022]
Abstract
Background aims Next-generation immune cell therapy products will require complex modifications using engineering technologies that can maintain high levels of cell functionality. Non-viral engineering methods have the potential to address limitations associated with viral vectors. However, while electroporation is the most widely used non-viral modality, concerns about its effects on cell functionality have led to the exploration of alternative approaches. Here the authors have examined the suitability of the Solupore non-viral delivery system for engineering primary human T cells for cell therapy applications. Methods The Solupore system was used to deliver messenger RNA (mRNA) and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) guide RNA ribonucleoprotein (RNP) cargos to T cells, and efficiency was measured by flow cytometry. Cell perturbation was assessed by immune gene expression profiling, including an electroporation comparator. In vitro and in vivo cytotoxicity of chimeric antigen receptor (CAR) T cells generated using the Solupore system was evaluated using a real-time cellular impedance assay and a Raji-luciferase mouse tumor model, respectively. Results Efficient transfection was demonstrated through delivery of mRNA and CRISPR CAS9 RNP cargos individually, simultaneously and sequentially using the Solupore system while consistently maintaining high levels of cell viability. Gene expression profiling revealed minimal alteration in immune gene expression, demonstrating the low level of perturbation experienced by the cells during this transfection process. By contrast, electroporation resulted in substantial changes in immune gene expression in T cells. CAR T cells generated using the Solupore system exhibited efficient cytotoxicity against target cancer cells in vitro and in vivo. Conclusions The Solupore system is a non-viral means of simply, rapidly and efficiently delivering cargos to primary human immune cells with retention of high cell viability and functionality.
Collapse
|
23
|
Raes L, De Smedt SC, Raemdonck K, Braeckmans K. Non-viral transfection technologies for next-generation therapeutic T cell engineering. Biotechnol Adv 2021; 49:107760. [PMID: 33932532 DOI: 10.1016/j.biotechadv.2021.107760] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 04/24/2021] [Accepted: 04/24/2021] [Indexed: 12/24/2022]
Abstract
Genetically engineered T cells have sparked interest in advanced cancer treatment, reaching a milestone in 2017 with two FDA-approvals for CD19-directed chimeric antigen receptor (CAR) T cell therapeutics. It is becoming clear that the next generation of CAR T cell therapies will demand more complex engineering strategies and combinations thereof, including the use of revolutionary gene editing approaches. To date, manufacturing of CAR T cells mostly relies on γ-retroviral or lentiviral vectors, but their use is associated with several drawbacks, including safety issues, high manufacturing cost and vector capacity constraints. Non-viral approaches, including membrane permeabilization and carrier-based techniques, have therefore gained a lot of interest to replace viral transductions in the manufacturing of T cell therapeutics. This review provides an in-depth discussion on the avid search for alternatives to viral vectors, discusses key considerations for T cell engineering technologies, and provides an overview of the emerging spectrum of non-viral transfection technologies for T cells. Strengths and weaknesses of each technology will be discussed in relation to T cell engineering. Altogether, this work emphasizes the potential of non-viral transfection approaches to advance the next-generation of genetically engineered T cells.
Collapse
Affiliation(s)
- Laurens Raes
- Laboratory of General Biochemistry & Physical Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Stefaan C De Smedt
- Laboratory of General Biochemistry & Physical Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Koen Raemdonck
- Laboratory of General Biochemistry & Physical Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Kevin Braeckmans
- Laboratory of General Biochemistry & Physical Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| |
Collapse
|
24
|
Hur J, Park I, Lim KM, Doh J, Cho SG, Chung AJ. Microfluidic Cell Stretching for Highly Effective Gene Delivery into Hard-to-Transfect Primary Cells. ACS NANO 2020; 14:15094-15106. [PMID: 33034446 DOI: 10.1021/acsnano.0c05169] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Cell therapy and cellular engineering begin with internalizing synthetic biomolecules and functional nanomaterials into primary cells. Conventionally, electroporation, lipofection, or viral transduction has been used; however, these are limited by their cytotoxicity, low scalability, cost, and/or preparation complexity, especially in primary cells. Thus, a universal intracellular delivery method that outperforms the existing methods must be established. Here, we present a versatile intracellular delivery platform that leverages intrinsic inertial flow developed in a T-junction microchannel with a cavity. The elongational recirculating flows exerted in the channel substantially stretch the cells, creating discontinuities on cell membranes, thereby enabling highly effective internalization of nanomaterials, such as plasmid DNA (7.9 kbp), mRNA, siRNA, quantum dots, and large nanoparticles (300 nm), into different cell types, including hard-to-transfect primary stem and immune cells. We identified that the internalization mechanism of external cargos during the cell elongation-restoration process is achieved by both passive diffusion and convection-based rapid solution exchange across the cell membrane. Using fluidic cell mechanoporation, we demonstrated a transfection yield superior to that of other state-of-the-art microfluidic platforms as well as current benchtop techniques, including lipofectamine and electroporation. In summary, the intracellular delivery platform developed in the present study enables a high delivery efficiency (up to 98%), easy operation (single-step), low material cost (<$1), high scalability (1 × 106 cells/min), minimal cell perturbation (up to 90%), and cell type/cargo insensitive delivery, providing a practical and robust approach anticipated to critically impact cell-based research.
Collapse
Affiliation(s)
- Jeongsoo Hur
- School of Biomedical Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Inae Park
- School of Interdisciplinary Bioscience and Bioengineering (I-Bio), Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Kyung Min Lim
- Department of Stem Cell and Regenerative Biotechnology and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Seoul 05029, Republic of Korea
| | - Junsang Doh
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Ssang-Goo Cho
- Department of Stem Cell and Regenerative Biotechnology and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Seoul 05029, Republic of Korea
| | - Aram J Chung
- School of Biomedical Engineering, Korea University, Seoul 02841, Republic of Korea
- Interdisciplinary Program in Precision Public Health, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
25
|
Harizaj A, De Smedt SC, Lentacker I, Braeckmans K. Physical transfection technologies for macrophages and dendritic cells in immunotherapy. Expert Opin Drug Deliv 2020; 18:229-247. [PMID: 32985919 DOI: 10.1080/17425247.2021.1828340] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Dendritic cells (DCs) and macrophages, two important antigen presenting cells (APCs) of the innate immune system, are being explored for the use in cell-based cancer immunotherapy. For this application, the therapeutic potential of patient-derived APCs is increased by delivering different types of functional macromolecules, such as mRNA and pDNA, into their cytosol. Compared to the use of viral and non-viral delivery vectors, physical intracellular delivery techniques are known to be more straightforward, more controllable, faster and generate high delivery efficiencies. AREAS COVERED This review starts with electroporation as the most traditional physical transfection method, before continuing with the more recent technologies such as sonoporation, nanowires and microfluidic cell squeezing. A description is provided of each of those intracellular delivery technologies with their strengths and weaknesses, especially paying attention to delivery efficiency and safety profile. EXPERT OPINION Given the common use of electroporation for the production of therapeutic APCs, it is recommended that more detailed studies are performed on the effect of electroporation on APC fitness, even down to the genetic level. Newer intracellular delivery technologies seem to have less impact on APC functionality but further work is needed to fully uncover their suitability to transfect APCs with different types of macromolecules.
Collapse
Affiliation(s)
- Aranit Harizaj
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Ghent, Belgium
| | - Stefaan C De Smedt
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Ghent, Belgium
| | - Ine Lentacker
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Ghent, Belgium
| | - Kevin Braeckmans
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Ghent, Belgium
| |
Collapse
|
26
|
Raes L, Stremersch S, Fraire JC, Brans T, Goetgeluk G, De Munter S, Van Hoecke L, Verbeke R, Van Hoeck J, Xiong R, Saelens X, Vandekerckhove B, De Smedt S, Raemdonck K, Braeckmans K. Intracellular Delivery of mRNA in Adherent and Suspension Cells by Vapor Nanobubble Photoporation. NANO-MICRO LETTERS 2020; 12:185. [PMID: 34138203 PMCID: PMC7770675 DOI: 10.1007/s40820-020-00523-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 08/22/2020] [Indexed: 05/23/2023]
Abstract
Efficient and safe cell engineering by transfection of nucleic acids remains one of the long-standing hurdles for fundamental biomedical research and many new therapeutic applications, such as CAR T cell-based therapies. mRNA has recently gained increasing attention as a more safe and versatile alternative tool over viral- or DNA transposon-based approaches for the generation of adoptive T cells. However, limitations associated with existing nonviral mRNA delivery approaches hamper progress on genetic engineering of these hard-to-transfect immune cells. In this study, we demonstrate that gold nanoparticle-mediated vapor nanobubble (VNB) photoporation is a promising upcoming physical transfection method capable of delivering mRNA in both adherent and suspension cells. Initial transfection experiments on HeLa cells showed the importance of transfection buffer and cargo concentration, while the technology was furthermore shown to be effective for mRNA delivery in Jurkat T cells with transfection efficiencies up to 45%. Importantly, compared to electroporation, which is the reference technology for nonviral transfection of T cells, a fivefold increase in the number of transfected viable Jurkat T cells was observed. Altogether, our results point toward the use of VNB photoporation as a more gentle and efficient technology for intracellular mRNA delivery in adherent and suspension cells, with promising potential for the future engineering of cells in therapeutic and fundamental research applications.
Collapse
Affiliation(s)
- Laurens Raes
- Laboratory of General Biochemistry & Physical Pharmacy, Ghent University, 9000, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), 9000, Ghent, Belgium
| | - Stephan Stremersch
- Laboratory of General Biochemistry & Physical Pharmacy, Ghent University, 9000, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), 9000, Ghent, Belgium
| | - Juan C Fraire
- Laboratory of General Biochemistry & Physical Pharmacy, Ghent University, 9000, Ghent, Belgium
| | - Toon Brans
- Laboratory of General Biochemistry & Physical Pharmacy, Ghent University, 9000, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), 9000, Ghent, Belgium
| | - Glenn Goetgeluk
- Cancer Research Institute Ghent (CRIG), 9000, Ghent, Belgium
- Department of Diagnostic Sciences, Ghent University, 9000, Ghent, Belgium
| | - Stijn De Munter
- Cancer Research Institute Ghent (CRIG), 9000, Ghent, Belgium
- Department of Diagnostic Sciences, Ghent University, 9000, Ghent, Belgium
| | - Lien Van Hoecke
- Cancer Research Institute Ghent (CRIG), 9000, Ghent, Belgium
- VIB-UGent Center for Medical Biotechnology, 9052, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, 9000, Ghent, Belgium
| | - Rein Verbeke
- Laboratory of General Biochemistry & Physical Pharmacy, Ghent University, 9000, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), 9000, Ghent, Belgium
| | - Jelter Van Hoeck
- Laboratory of General Biochemistry & Physical Pharmacy, Ghent University, 9000, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), 9000, Ghent, Belgium
| | - Ranhua Xiong
- Laboratory of General Biochemistry & Physical Pharmacy, Ghent University, 9000, Ghent, Belgium
| | - Xavier Saelens
- VIB-UGent Center for Medical Biotechnology, 9052, Ghent, Belgium
- Department of Biochemistry and Microbiology, Ghent University, 9000, Ghent, Belgium
| | - Bart Vandekerckhove
- Cancer Research Institute Ghent (CRIG), 9000, Ghent, Belgium
- Department of Diagnostic Sciences, Ghent University, 9000, Ghent, Belgium
| | - Stefaan De Smedt
- Laboratory of General Biochemistry & Physical Pharmacy, Ghent University, 9000, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), 9000, Ghent, Belgium
| | - Koen Raemdonck
- Laboratory of General Biochemistry & Physical Pharmacy, Ghent University, 9000, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), 9000, Ghent, Belgium
| | - Kevin Braeckmans
- Laboratory of General Biochemistry & Physical Pharmacy, Ghent University, 9000, Ghent, Belgium.
- Cancer Research Institute Ghent (CRIG), 9000, Ghent, Belgium.
| |
Collapse
|
27
|
Bourges C, Groff AF, Burren OS, Gerhardinger C, Mattioli K, Hutchinson A, Hu T, Anand T, Epping MW, Wallace C, Smith KG, Rinn JL, Lee JC. Resolving mechanisms of immune-mediated disease in primary CD4 T cells. EMBO Mol Med 2020; 12:e12112. [PMID: 32239644 PMCID: PMC7207160 DOI: 10.15252/emmm.202012112] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 03/04/2020] [Accepted: 03/09/2020] [Indexed: 12/11/2022] Open
Abstract
Deriving mechanisms of immune-mediated disease from GWAS data remains a formidable challenge, with attempts to identify causal variants being frequently hampered by strong linkage disequilibrium. To determine whether causal variants could be identified from their functional effects, we adapted a massively parallel reporter assay for use in primary CD4 T cells, the cell type whose regulatory DNA is most enriched for immune-mediated disease SNPs. This enabled the effects of candidate SNPs to be examined in a relevant cellular context and generated testable hypotheses into disease mechanisms. To illustrate the power of this approach, we investigated a locus that has been linked to six immune-mediated diseases but cannot be fine-mapped. By studying the lead expression-modulating SNP, we uncovered an NF-κB-driven regulatory circuit which constrains T-cell activation through the dynamic formation of a super-enhancer that upregulates TNFAIP3 (A20), a key NF-κB inhibitor. In activated T cells, this feedback circuit is disrupted-and super-enhancer formation prevented-by the risk variant at the lead SNP, leading to unrestrained T-cell activation via a molecular mechanism that appears to broadly predispose to human autoimmunity.
Collapse
Affiliation(s)
- Christophe Bourges
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
- Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's Hospital, Cambridge, UK
| | - Abigail F Groff
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Oliver S Burren
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
- Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's Hospital, Cambridge, UK
| | - Chiara Gerhardinger
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Kaia Mattioli
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Anna Hutchinson
- MRC Biostatistics Unit, Cambridge Institute of Public Health, Cambridge, UK
| | - Theodore Hu
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
- Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's Hospital, Cambridge, UK
| | - Tanmay Anand
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
- Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's Hospital, Cambridge, UK
| | - Madeline W Epping
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
- Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's Hospital, Cambridge, UK
| | - Chris Wallace
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Kenneth Gc Smith
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
- Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's Hospital, Cambridge, UK
| | - John L Rinn
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Department of Biochemistry, BioFrontiers Institute, University of Colorado, Boulder, CO, USA
| | - James C Lee
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
- Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's Hospital, Cambridge, UK
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| |
Collapse
|
28
|
Gold Nanoparticle-Mediated Photoporation Enables Delivery of Macromolecules over a Wide Range of Molecular Weights in Human CD4+ T Cells. CRYSTALS 2019. [DOI: 10.3390/cryst9080411] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The modification of CD4+ T cells with exogenous nucleic acids or proteins is a critical step in several research and therapeutic applications, such as HIV studies and cancer immunotherapies. However, efficient cell transfections are not always easily achieved when working with these primary hard-to-transfect cells. While the modification of T cells is typically performed by viral transduction or electroporation, their use is associated with safety issues or cytotoxicity. Vapor nanobubble (VNB) photoporation with sensitizing gold nanoparticles (AuNPs) has recently emerged as a new technology for safe and flexible cell transfections. In this work, we evaluated the potential of VNB photoporation as a novel technique for the intracellular delivery of macromolecules in primary human CD4+ T cells using fluorescent dextrans as model molecules. Our results show that VNB photoporation enables efficient delivery of fluorescent dextrans of 10 kDa in Jurkat (>60% FD10+ cells) as well as in primary human CD4+ T cells (±40% FD10+ cells), with limited cell toxicity (>70% cell viability). We also demonstrated that the technique allows the delivery of dextrans that are up to 500 kDa in Jurkat cells, suggesting its applicability for the delivery of biological macromolecules with a wide range of molecular weights. Altogether, VNB photoporation represents a promising technique for the universal delivery of macromolecules in view of engineering CD4+ T cells for use in a wide variety of research and therapeutic applications.
Collapse
|
29
|
Intracellular delivery of mRNA to human primary T cells with microfluidic vortex shedding. Sci Rep 2019; 9:3214. [PMID: 30824814 PMCID: PMC6397276 DOI: 10.1038/s41598-019-40147-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 02/07/2019] [Indexed: 02/06/2023] Open
Abstract
Intracellular delivery of functional macromolecules, such as DNA and RNA, across the cell membrane and into the cytosol, is a critical process in both biology and medicine. Herein, we develop and use microfluidic chips containing post arrays to induce microfluidic vortex shedding, or μVS, for cell membrane poration that permits delivery of mRNA into primary human T lymphocytes. We demonstrate transfection with μVS by delivery of a 996-nucleotide mRNA construct encoding enhanced green fluorescent protein (EGFP) and assessed transfection efficiencies by quantifying levels of EGFP protein expression. We achieved high transfection efficiency (63.6 ± 3.44% EGFP + viable cells) with high cell viability (77.3 ± 0.58%) and recovery (88.7 ± 3.21%) in CD3 + T cells 19 hrs after μVS processing. Importantly, we show that processing cells via μVS does not negatively affect cell growth rates or alter cell states. We also demonstrate processing speeds of greater than 2.0 × 106 cells s-1 at volumes ranging from 0.1 to 1.5 milliliters. Altogether, these results highlight the use of μVS as a rapid and gentle delivery method with promising potential to engineer primary human cells for research and clinical applications.
Collapse
|
30
|
Klug YA, Schwarzer R, Rotem E, Charni M, Nudelman A, Gramatica A, Zarmi B, Rotter V, Shai Y. The HIV gp41 Fusion Protein Inhibits T-Cell Activation through the Lentiviral Lytic Peptide 2 Motif. Biochemistry 2019; 58:818-832. [PMID: 30602116 DOI: 10.1021/acs.biochem.8b01175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The human immunodeficiency virus enters its host cells by membrane fusion, initiated by the gp41 subunit of its envelope protein. gp41 has also been shown to bind T-cell receptor (TCR) complex components, interfering with TCR signaling leading to reduced T-cell activation. This immunoinhibitory activity is suggested to occur during the membrane fusion process and is attributed to various membranotropic regions of the gp41 ectodomain and to the transmembrane domain. Although extensively studied, the cytosolic region of gp41, termed the cytoplasmic tail (CT), has not been examined in the context of immune suppression. Here we investigated whether the CT inhibits T-cell activation in different T-cell models by utilizing gp41-derived peptides and expressed full gp41 proteins. We found that a conserved region of the CT, termed lentiviral lytic peptide 2 (LLP2), specifically inhibits the activation of mouse, Jurkat, and human primary T-cells. This inhibition resulted in reduced T-cell proliferation, gene expression, cytokine secretion, and cell surface expression of CD69. Differential activation of the TCR signaling cascade revealed that CT-based immune suppression occurs downstream of the TCR complex. Moreover, LLP2 peptide treatment of Jurkat and primary human T-cells impaired Akt but not NFκB and ERK1/2 activation, suggesting that immune suppression occurs through the Akt pathway. These findings identify a novel gp41 T-cell suppressive element with a unique inhibitory mechanism that can take place post-membrane fusion.
Collapse
Affiliation(s)
- Yoel A Klug
- Department of Biomolecular Sciences , Weizmann Institute of Science , Rehovot 7610001 , Israel
| | - Roland Schwarzer
- Gladstone Institute for Virology and Immunology , University of California, San Francisco , San Francisco , California 94158 , United States
| | - Etai Rotem
- Department of Biomolecular Sciences , Weizmann Institute of Science , Rehovot 7610001 , Israel
| | - Meital Charni
- Department of Molecular Cell Biology , Weizmann Institute of Science , Rehovot 7610001 , Israel
| | - Alon Nudelman
- Department of Biomolecular Sciences , Weizmann Institute of Science , Rehovot 7610001 , Israel
| | - Andrea Gramatica
- Gladstone Institute for Virology and Immunology , University of California, San Francisco , San Francisco , California 94158 , United States
| | - Batya Zarmi
- Department of Biomolecular Sciences , Weizmann Institute of Science , Rehovot 7610001 , Israel
| | - Varda Rotter
- Department of Molecular Cell Biology , Weizmann Institute of Science , Rehovot 7610001 , Israel
| | - Yechiel Shai
- Department of Biomolecular Sciences , Weizmann Institute of Science , Rehovot 7610001 , Israel
| |
Collapse
|
31
|
Stewart MP, Langer R, Jensen KF. Intracellular Delivery by Membrane Disruption: Mechanisms, Strategies, and Concepts. Chem Rev 2018; 118:7409-7531. [PMID: 30052023 PMCID: PMC6763210 DOI: 10.1021/acs.chemrev.7b00678] [Citation(s) in RCA: 412] [Impact Index Per Article: 68.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Intracellular delivery is a key step in biological research and has enabled decades of biomedical discoveries. It is also becoming increasingly important in industrial and medical applications ranging from biomanufacture to cell-based therapies. Here, we review techniques for membrane disruption-based intracellular delivery from 1911 until the present. These methods achieve rapid, direct, and universal delivery of almost any cargo molecule or material that can be dispersed in solution. We start by covering the motivations for intracellular delivery and the challenges associated with the different cargo types-small molecules, proteins/peptides, nucleic acids, synthetic nanomaterials, and large cargo. The review then presents a broad comparison of delivery strategies followed by an analysis of membrane disruption mechanisms and the biology of the cell response. We cover mechanical, electrical, thermal, optical, and chemical strategies of membrane disruption with a particular emphasis on their applications and challenges to implementation. Throughout, we highlight specific mechanisms of membrane disruption and suggest areas in need of further experimentation. We hope the concepts discussed in our review inspire scientists and engineers with further ideas to improve intracellular delivery.
Collapse
Affiliation(s)
- Martin P. Stewart
- Department of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, USA
- The Koch Institute for Integrative Cancer Research,
Massachusetts Institute of Technology, Cambridge, USA
| | - Robert Langer
- Department of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, USA
- The Koch Institute for Integrative Cancer Research,
Massachusetts Institute of Technology, Cambridge, USA
| | - Klavs F. Jensen
- Department of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, USA
| |
Collapse
|
32
|
Pierini A, Iliopoulou BP, Peiris H, Pérez-Cruz M, Baker J, Hsu K, Gu X, Zheng PP, Erkers T, Tang SW, Strober W, Alvarez M, Ring A, Velardi A, Negrin RS, Kim SK, Meyer EH. T cells expressing chimeric antigen receptor promote immune tolerance. JCI Insight 2017; 2:92865. [PMID: 29046484 DOI: 10.1172/jci.insight.92865] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 09/14/2017] [Indexed: 12/22/2022] Open
Abstract
Cellular therapies based on permanent genetic modification of conventional T cells have emerged as a promising strategy for cancer. However, it remains unknown if modification of T cell subsets, such as Tregs, could be useful in other settings, such as allograft transplantation. Here, we use a modular system based on a chimeric antigen receptor (CAR) that binds covalently modified mAbs to control Treg activation in vivo. Transient expression of this mAb-directed CAR (mAbCAR) in Tregs permitted Treg targeting to specific tissue sites and mitigated allograft responses, such as graft-versus-host disease. mAbCAR Tregs targeted to MHC class I proteins on allografts prolonged islet allograft survival and also prolonged the survival of secondary skin grafts specifically matched to the original islet allograft. Thus, transient genetic modification to produce mAbCAR T cells led to durable immune modulation, suggesting therapeutic targeting strategies for controlling alloreactivity in settings such as organ or tissue transplantation.
Collapse
Affiliation(s)
- Antonio Pierini
- Division of Blood and Marrow Transplantation, Stanford University School of Medicine, Stanford, California, USA.,Department of Medicine, Hematopoietic Stem Cell Transplantation Program, University of Perugia, Perugia, Italy
| | - Bettina P Iliopoulou
- Division of Blood and Marrow Transplantation, Stanford University School of Medicine, Stanford, California, USA
| | - Heshan Peiris
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California, USA
| | - Magdiel Pérez-Cruz
- Division of Blood and Marrow Transplantation, Stanford University School of Medicine, Stanford, California, USA
| | - Jeanette Baker
- Division of Blood and Marrow Transplantation, Stanford University School of Medicine, Stanford, California, USA
| | - Katie Hsu
- Division of Blood and Marrow Transplantation, Stanford University School of Medicine, Stanford, California, USA
| | - Xueying Gu
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California, USA
| | - Ping-Ping Zheng
- Division of Blood and Marrow Transplantation, Stanford University School of Medicine, Stanford, California, USA
| | - Tom Erkers
- Division of Blood and Marrow Transplantation, Stanford University School of Medicine, Stanford, California, USA
| | - Sai-Wen Tang
- Division of Blood and Marrow Transplantation, Stanford University School of Medicine, Stanford, California, USA
| | - William Strober
- Division of Blood and Marrow Transplantation, Stanford University School of Medicine, Stanford, California, USA
| | - Maite Alvarez
- Division of Blood and Marrow Transplantation, Stanford University School of Medicine, Stanford, California, USA
| | - Aaron Ring
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, California, USA
| | - Andrea Velardi
- Department of Medicine, Hematopoietic Stem Cell Transplantation Program, University of Perugia, Perugia, Italy
| | - Robert S Negrin
- Division of Blood and Marrow Transplantation, Stanford University School of Medicine, Stanford, California, USA
| | - Seung K Kim
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California, USA
| | - Everett H Meyer
- Division of Blood and Marrow Transplantation, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
33
|
Joshi RN, Binai NA, Marabita F, Sui Z, Altman A, Heck AJR, Tegnér J, Schmidt A. Phosphoproteomics Reveals Regulatory T Cell-Mediated DEF6 Dephosphorylation That Affects Cytokine Expression in Human Conventional T Cells. Front Immunol 2017; 8:1163. [PMID: 28993769 PMCID: PMC5622166 DOI: 10.3389/fimmu.2017.01163] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 09/01/2017] [Indexed: 12/25/2022] Open
Abstract
Regulatory T cells (Tregs) control key events of immune tolerance, primarily by suppression of effector T cells. We previously revealed that Tregs rapidly suppress T cell receptor (TCR)-induced calcium store depletion in conventional CD4+CD25− T cells (Tcons) independently of IP3 levels, consequently inhibiting NFAT signaling and effector cytokine expression. Here, we study Treg suppression mechanisms through unbiased phosphoproteomics of primary human Tcons upon TCR stimulation and Treg-mediated suppression, respectively. Tregs induced a state of overall decreased phosphorylation as opposed to TCR stimulation. We discovered novel phosphosites (T595_S597) in the DEF6 (SLAT) protein that were phosphorylated upon TCR stimulation and conversely dephosphorylated upon coculture with Tregs. Mutation of these DEF6 phosphosites abrogated interaction of DEF6 with the IP3 receptor and affected NFAT activation and cytokine transcription in primary Tcons. This novel mechanism and phosphoproteomics data resource may aid in modifying sensitivity of Tcons to Treg-mediated suppression in autoimmune disease or cancer.
Collapse
Affiliation(s)
- Rubin N Joshi
- Unit of Computational Medicine, Center for Molecular Medicine, Department of Medicine Solna, Karolinska University Hospital, Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Nadine A Binai
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands.,Netherlands Proteomics Centre, Utrecht, Netherlands
| | - Francesco Marabita
- Unit of Computational Medicine, Center for Molecular Medicine, Department of Medicine Solna, Karolinska University Hospital, Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Zhenhua Sui
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States
| | - Amnon Altman
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands.,Netherlands Proteomics Centre, Utrecht, Netherlands
| | - Jesper Tegnér
- Unit of Computational Medicine, Center for Molecular Medicine, Department of Medicine Solna, Karolinska University Hospital, Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden.,Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.,Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Angelika Schmidt
- Unit of Computational Medicine, Center for Molecular Medicine, Department of Medicine Solna, Karolinska University Hospital, Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
34
|
Kidacki M, Lehman HL, Green MV, Warrick JI, Stairs DB. p120-Catenin Downregulation and PIK3CA Mutations Cooperate to Induce Invasion through MMP1 in HNSCC. Mol Cancer Res 2017. [PMID: 28637905 DOI: 10.1158/1541-7786.mcr-17-0108] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Despite recent improvements in treatment for head and neck squamous cell carcinoma (HNSCC), half of all patients with a regional or advanced disease will die within 5 years from diagnosis. Therefore, identification of mechanisms driving the aggressive behavior of HNSCC is of utmost importance. Because p120-catenin (CTNND1/P120CTN) downregulation and PIK3CA mutations are commonly found in HNSCC, the objective of this study was to identify their impact on fundamental processes of metastasis, specifically, migration and invasion. Furthermore, this study aimed to identify the key effector proteins regulated by P120CTN downregulation and PIK3CA mutations. Studies using oral keratinocytes demonstrated that P120CTN downregulation and PIK3CA mutations increased migration and invasion. In addition, P120CTN downregulation and PIK3CA mutations resulted in elevated matrix metallopeptidase 1 (MMP1) levels. Inhibition of MMP1 resulted in decreased invasion, suggesting that MMP1 plays a critical role in HNSCC invasion. Moreover, analysis of HNSCC patient specimens from The Cancer Genome Atlas confirmed these findings. Tumors with low P120CTN and PI3K pathway mutations have higher levels of MMP1 compared to tumors with high P120CTN and no PI3K pathway mutations. In conclusion, this study demonstrates that P120CTN downregulation and PIK3CA mutations promote MMP1-driven invasion, providing a potential novel target for limiting metastasis in HNSCC.Implications: Because of its role in invasion, MMP1 represents a novel, potential target for limiting metastasis in a subset of HNSCCs with P120CTN downregulation and PIK3CA mutations. Mol Cancer Res; 15(10); 1398-409. ©2017 AACR.
Collapse
Affiliation(s)
- Michal Kidacki
- Department of Pathology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Heather L Lehman
- Department of Pathology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Michelle V Green
- Department of Pathology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Joshua I Warrick
- Department of Pathology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Douglas B Stairs
- Department of Pathology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania.
| |
Collapse
|
35
|
WANG CHUNYAN, YU PEIFA, HE XIAOBING, FANG YONGXIANG, CHENG WENYU, JING ZHIZHONG. αβ T-cell receptor bias in disease and therapy (Review). Int J Oncol 2016; 48:2247-56. [DOI: 10.3892/ijo.2016.3492] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Accepted: 03/21/2016] [Indexed: 11/06/2022] Open
|
36
|
Belikov AV, Schraven B, Simeoni L. T cells and reactive oxygen species. J Biomed Sci 2015; 22:85. [PMID: 26471060 PMCID: PMC4608155 DOI: 10.1186/s12929-015-0194-3] [Citation(s) in RCA: 176] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Accepted: 10/06/2015] [Indexed: 02/07/2023] Open
Abstract
Reactive oxygen species (ROS) have been long considered simply as harmful by-products of metabolism, which damage cellular proteins, lipids, and nucleic acids. ROS are also known as a weapon of phagocytes, employed against pathogens invading the host. However, during the last decade, an understanding has emerged that ROS also have important roles as signaling messengers in a multitude of pathways, in all cells, tissues, and organs. T lymphocytes are the key players of the adaptive immune response, which both coordinate other immune cells and destroy malignant and virus-infected cells. ROS have been extensively implicated in T-cell hyporesponsiveness, apoptosis, and activation. It has also become evident that the source, the kinetics, and the localization of ROS production all influence cell responses. Thus, the characterization of the precise mechanisms by which ROS are involved in the regulation of T-cell functions is important for our understanding of the immune response and for the development of new therapeutic treatments against immune-mediated diseases. This review summarizes the 30-year-long history of research on ROS in T lymphocytes, with the emphasis on the physiological roles of ROS.
Collapse
Affiliation(s)
- Aleksey V Belikov
- Otto-von-Guericke University, Universitätsplatz 2, 39106, Magdeburg, Germany.
| | - Burkhart Schraven
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke University, Leipziger Str. 44, Magdeburg, 39120, Germany.
| | - Luca Simeoni
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke University, Leipziger Str. 44, Magdeburg, 39120, Germany.
| |
Collapse
|
37
|
Chettab K, Roux S, Mathé D, Cros-Perrial E, Lafond M, Lafon C, Dumontet C, Mestas JL. Spatial and Temporal Control of Cavitation Allows High In Vitro Transfection Efficiency in the Absence of Transfection Reagents or Contrast Agents. PLoS One 2015; 10:e0134247. [PMID: 26274324 PMCID: PMC4537239 DOI: 10.1371/journal.pone.0134247] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 07/07/2015] [Indexed: 12/21/2022] Open
Abstract
Sonoporation using low-frequency high-pressure ultrasound (US) is a non-viral approach for in vitro and in vivo gene delivery. In this study, we developed a new sonoporation device designed for spatial and temporal control of ultrasound cavitation. The regulation system incorporated in the device allowed a real-time control of the cavitation level during sonoporation. This device was evaluated for the in vitro transfection efficiency of a plasmid coding for Green Fluorescent Protein (pEGFP-C1) in adherent and non-adherent cell lines. The transfection efficiency of the device was compared to those observed with lipofection and nucleofection methods. In both adherent and non-adherent cell lines, the sonoporation device allowed high rate of transfection of pEGFP-C1 (40–80%), as determined by flow cytometry analysis of GFP expression, along with a low rate of mortality assessed by propidium iodide staining. The transfection efficiency and toxicity of sonoporation on the non-adherent cell lines Jurkat and K562 were similar to those of nucleofection, while these two cell lines were resistant to transfection by lipofection. Moreover, sonoporation was used to produce three stably transfected human lymphoma and leukemia lines. Significant transfection efficiency was also observed in two fresh samples of human acute myeloid leukemia cells. In conclusion, we developed a user-friendly and cost-effective ultrasound device, well adapted for routine in vitro high-yield transfection experiments and which does not require the use of any transfection reagent or gas micro-bubbles.
Collapse
Affiliation(s)
- Kamel Chettab
- Université de Lyon, 69000, Lyon, France
- Université de Lyon 1, 69000, Lyon, France
- INSERM U1052, Centre de Recherche en Cancérologie de Lyon, 69008, Lyon, France
- CNRS UMR 5286, Centre de Recherche en Cancérologie de Lyon, 69008, Lyon, France
- Caviskills SAS, Vaulx-en-Velin, France
- * E-mail:
| | - Stéphanie Roux
- Université de Lyon, 69000, Lyon, France
- Université de Lyon 1, 69000, Lyon, France
- INSERM U1052, Centre de Recherche en Cancérologie de Lyon, 69008, Lyon, France
- CNRS UMR 5286, Centre de Recherche en Cancérologie de Lyon, 69008, Lyon, France
| | - Doriane Mathé
- Université de Lyon, 69000, Lyon, France
- Université de Lyon 1, 69000, Lyon, France
- INSERM U1052, Centre de Recherche en Cancérologie de Lyon, 69008, Lyon, France
- CNRS UMR 5286, Centre de Recherche en Cancérologie de Lyon, 69008, Lyon, France
| | - Emeline Cros-Perrial
- Université de Lyon, 69000, Lyon, France
- Université de Lyon 1, 69000, Lyon, France
- INSERM U1052, Centre de Recherche en Cancérologie de Lyon, 69008, Lyon, France
- CNRS UMR 5286, Centre de Recherche en Cancérologie de Lyon, 69008, Lyon, France
| | - Maxime Lafond
- Université de Lyon, 69000, Lyon, France
- Université de Lyon 1, 69000, Lyon, France
- Inserm, U1032, LabTau, Lyon, F-69003, France
| | - Cyril Lafon
- Université de Lyon, 69000, Lyon, France
- Université de Lyon 1, 69000, Lyon, France
- Caviskills SAS, Vaulx-en-Velin, France
- Inserm, U1032, LabTau, Lyon, F-69003, France
| | - Charles Dumontet
- Université de Lyon, 69000, Lyon, France
- Université de Lyon 1, 69000, Lyon, France
- INSERM U1052, Centre de Recherche en Cancérologie de Lyon, 69008, Lyon, France
- CNRS UMR 5286, Centre de Recherche en Cancérologie de Lyon, 69008, Lyon, France
| | - Jean-Louis Mestas
- Université de Lyon, 69000, Lyon, France
- Université de Lyon 1, 69000, Lyon, France
- Caviskills SAS, Vaulx-en-Velin, France
- Inserm, U1032, LabTau, Lyon, F-69003, France
| |
Collapse
|
38
|
Optimization of methods for the genetic modification of human T cells. Immunol Cell Biol 2015; 93:896-908. [PMID: 26027856 PMCID: PMC4659746 DOI: 10.1038/icb.2015.59] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 05/06/2015] [Accepted: 05/13/2015] [Indexed: 12/18/2022]
Abstract
CD4+ T cells are critical in the fight against parasitic, bacterial, and viral infections, but are also involved in many autoimmune and pathological disorders. Studies of protein function in human T cells are confined to techniques such as RNAi due to ethical reasons and relative simplicity of these methods. However, introduction of RNAi or genes into primary human T cells is often hampered by toxic effects from transfection or transduction methods that yield cell numbers inadequate for downstream assays. Additionally, the efficiency of recombinant DNA expression is frequently low due to multiple factors including efficacy of the method and strength of the targeting RNAs. Here, we describe detailed protocols that will aid in the study of primary human CD4+ T cells. First, we describe a method for development of effective microRNA/shRNAs using available online algorithms. Second, we illustrate an optimized protocol for high efficacy retroviral or lentiviral transduction of human T cell lines. Importantly, we demonstrate that activated primary human CD4+ T cells can be transduced efficiently with lentiviruses, with a highly activated population of T cells receiving the largest number of copies of integrated DNA. We also illustrate a method for efficient lentiviral transduction of hard-to-transduce un-activated primary human CD4+ T cells. These protocols will significantly assist in understanding the activation and function of human T cells and will ultimately aid in the development or improvement of current drugs that target human CD4+ T cells.
Collapse
|