1
|
Alharbi A, Thompson JP, Brindle NP, Stover CM. Ex vivo modelling of the formation of inflammatory platelet-leucocyte aggregates and their adhesion on endothelial cells, an early event in sepsis. Clin Exp Med 2019; 19:321-337. [PMID: 30191349 PMCID: PMC6647484 DOI: 10.1007/s10238-018-0526-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 08/27/2018] [Indexed: 12/18/2022]
Abstract
Septicaemia is an acute inflammatory reaction in the bloodstream to the presence of pathogen-associated molecular patterns. Whole blood stimulation assays capture endotoxin-induced formation of aggregates between platelets and leucocytes using flow cytometry. We wanted to assess extent of spontaneous aggregate formation in whole blood stimulation assays and compare the effects of endotoxin and heat-killed, clinically relevant, bacterial pathogens on aggregate formation and then on adhesion of aggregates to TNFα-stimulated endothelial cells. We found that endotoxin (from Escherichia coli or Salmonella enteritidis) was not a suitable stimulus to provoke platelet-leucocyte aggregates in vitro, as it did not further increase the extent of aggregates formed spontaneously in stasis of hirudin-anticoagulated blood. Specifically, whole blood samples stimulated with or without LPS produced aggregates with a mean surface area of 140.97 and 117.68 μm2, respectively. By contrast, incubation of whole blood with heat-killed Klebsiella pneumoniae or Staphylococcus aureus produced significantly enhanced and complex cellular aggregates (with a mean surface area of 470.61 and 518.39 μm2, respectively) which adhered more frequently to TNFα (and free fatty acid)-stimulated endothelial cells. These were reliably captured by scanning electron microscopy. Adhesion of cellular aggregates could be blocked by incubation of endothelial cells with a commercial P-selectin antibody and an angiopoietin-2 ligand trap. In conclusion, we have developed an in vitro method that models the acute inflammatory reaction in whole blood in the presence of sepsis-relevant bacterial pathogen surfaces.
Collapse
Affiliation(s)
- Azzah Alharbi
- Department of Infection, Immunity and Inflammation, College of Life Sciences, University of Leicester, Leicester, LE1 9HN, UK
- King Abdulaziz University, Jeddah, Saudi Arabia
| | - Jonathan P Thompson
- Department of Cardiovascular Sciences, Division of Anaesthesia, Critical Care and Pain Management, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester, LE2 7LX, UK
| | - Nicholas P Brindle
- Department of Cardiovascular Sciences, College of Life Sciences, University of Leicester, Leicester, LE1 9HN, UK
- Department of Molecular & Cell Biology, College of Life Sciences, University of Leicester, Leicester, LE1 9HN, UK
| | - Cordula M Stover
- Department of Infection, Immunity and Inflammation, College of Life Sciences, University of Leicester, Leicester, LE1 9HN, UK.
| |
Collapse
|
2
|
Oda T, Yamaguchi A, Ishida R, Nikai T, Shimizu K, Matsumoto KI. Plasma proteomic changes during therapeutic hypothermia in resuscitated patients after cardiac arrest. Exp Ther Med 2019; 18:1069-1080. [PMID: 31316602 PMCID: PMC6601400 DOI: 10.3892/etm.2019.7649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 05/02/2019] [Indexed: 12/29/2022] Open
Abstract
Hypothermia is used for several h during cardiac and aortic surgery to protect ischemic organs. Therapeutic hypothermia (TH) is used for ≤24 h as a treatment for comatose patients after the return of spontaneous circulation (ROSC) following cardiac arrest. The proteomic approach may provide unbiased data on alterations in the abundance of proteins during TH. The objective of this study was to assess the effects of cooling/rewarming on the plasma proteome during TH after ROSC and to identify the mechanism underlying its therapeutic effects. A total of nine comatose adult patients, resuscitated shortly after cardiac arrest, were cooled to 34°C for 24 h and slowly rewarmed to 36°C. A quantitative gel-free proteomic analysis was performed using the isobaric tag for relative and absolute quantification labeling tandem mass spectrometry. Plasma samples were obtained prior to cooling and rewarming, and immediately after rewarming, from all patients during TH after ROSC. A total of 92 high-confidence proteins were identified. Statistically significant alterations were observed (>1.2-fold increase or <0.833-fold decrease) in the levels of 15 of those proteins (P=0.003–0.047), mainly proteins belonging to the acute-phase response or platelet degranulation. Unexpectedly, the levels of free hemoglobin (hemoglobin subunits α and β) were significantly downregulated during TH (P<0.05). The level of the terminal complement complex (SC5b-9) showed significant reduction after cooling (P=0.023). Although the acute-phase response proteins were upregulated, the abundance of complement proteins did not change, and the levels of SC5b-9 and free hemoglobin decreased during TH in patients after ROSC.
Collapse
Affiliation(s)
- Teiji Oda
- Division of Thoracic and Cardiovascular Surgery, Department of Surgery, Shimane University Faculty of Medicine, Izumo, Shimane 693-8501, Japan
| | - Akane Yamaguchi
- Division of Thoracic and Cardiovascular Surgery, Department of Surgery, Shimane University Faculty of Medicine, Izumo, Shimane 693-8501, Japan
| | - Ryosuke Ishida
- Department of Emergency and Critical Care Medicine, Shimane Prefectural Central Hospital, Izumo, Shimane 693-8555, Japan
| | - Tetsuro Nikai
- Department of Anesthesiology, Shimane University Faculty of Medicine, Izumo, Shimane 693-8501, Japan
| | - Koji Shimizu
- Division of Thoracic and Cardiovascular Surgery, Department of Surgery, Shimane University Faculty of Medicine, Izumo, Shimane 693-8501, Japan
| | - Ken-Ichi Matsumoto
- Department of Biosignaling and Radioisotope Experiment, Interdisciplinary Center for Science Research, Organization for Research, Shimane University, Izumo, Shimane 693-8501, Japan
| |
Collapse
|
3
|
Abstract
BACKGROUND Kidneys derived from brain-dead (BD) donors have lower graft survival rates compared with kidneys from living donors. Complement activation plays an important role in brain death. The aim of our study was therefore to investigate the effect of C1-inhibitor (C1-INH) on BD-induced renal injury. METHODS Brain death was induced in rats by inflating a subdurally placed balloon catheter. Thirty minutes after BD, rats were treated with saline, low-dose or high-dose C1-INH. Sham-operated rats served as controls. After 4 hours of brain death, renal function, injury, inflammation, and complement activation were assessed. RESULTS High-dose C1-INH treatment of BD donors resulted in significantly lower renal gene expression and serum levels of IL-6. Treatment with C1-INH also improved renal function and reduced renal injury, reflected by the significantly lower kidney injury marker 1 gene expression and lower serum levels of lactate dehydrogenase and creatinine. Furthermore, C1-INH effectively reduced complement activation by brain death and significantly increased functional levels. However, C1-INH treatment did not prevent renal cellular influx. CONCLUSIONS Targeting complement activation after the induction of brain death reduced renal inflammation and improved renal function before transplantation. Therefore, strategies targeting complement activation in human BD donors might clinically improve donor organ viability and renal allograft survival.
Collapse
|
4
|
Lin Z, Lin H, Li W, Huang Y, Dai H. Complement Component C3 Promotes Cerebral Ischemia/Reperfusion Injury Mediated by TLR2/NFκB Activation in Diabetic Mice. Neurochem Res 2018; 43:1599-1607. [PMID: 29948726 DOI: 10.1007/s11064-018-2574-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Revised: 05/16/2018] [Accepted: 06/11/2018] [Indexed: 12/20/2022]
Abstract
Complement component C3 (C3), a key factor in the complement system, is heavily involved in various inflammation-associated diseases. However, it remains obscure for its role in the pathogenesis of cerebral ischemia/reperfusion (I/R) injury in diabetes. A transient middle cerebral artery occlusion (tMCAO) model was used for cerebral I/R injury in streptozotocin-induced diabetic mice. Cerebral infarct volume and neurological function were measured at different times of reperfusion. Complement C3 was measured by ELISA and western blotting. It was observed that complement C3 expression was increased in cerebral I/R injury of diabetic mice, whereas complement C3 deficiency abrogated the activation and injury. Furthermore, activating complement C3 promotes TLR2/NFκB activation after I/R injury in diabetic mice, which is inhibited by of the silencing of TLR2. Taken together, our data demonstrate that complement C3 promotes cerebral I/R injury via the TLR2/NFκB pathway in diabetic mice, and regulating the complement C3/TLR2/NFκB pathway may be a novel target for therapeutic intervention in diabetic stroke.
Collapse
Affiliation(s)
- Zheng Lin
- Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Haoran Lin
- Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Wenlu Li
- Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Yuwen Huang
- Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Haibin Dai
- Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China.
| |
Collapse
|
5
|
Effects of C1 inhibitor on endothelial cell activation in a rat hind limb ischemia-reperfusion injury model. J Vasc Surg 2018; 68:209S-221S.e2. [PMID: 29395422 DOI: 10.1016/j.jvs.2017.10.072] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 10/11/2017] [Indexed: 01/18/2023]
Abstract
OBJECTIVE Ischemia-reperfusion (I/R) injury is a major clinical problem linked to vascular surgery. Currently, no drugs to prevent or to treat I/R injury are approved for clinical use. C1 inhibitor (C1 INH) is known to reduce activation of the plasma cascade systems that are involved in the pathophysiologic process of I/R injury. The aim of this study was therefore to investigate the effect of C1 INH on complement deposition and endothelial cell activation in a rat model of hind limb I/R injury. METHODS Male Wistar rats (wild type, bred at the central animal facility, University of Bern), weighing 250 to 320 g, were used. The rats underwent 2-hour ischemia and 24-hour reperfusion by unilateral clamping of the femoral artery and additional use of a tourniquet. Five groups were divided according to intravenous treatment 5 minutes before ischemia: 50 IU/kg C1 INH (n = 5); 100 IU/kg C1 INH (n = 7); vehicle control (n = 5); nontreated control (n = 7); and normal, healthy control without intervention (n = 4). At the end, muscle edema, tissue viability, and histologic features were assessed. Deposition of immunoglobulin M, C1r, C4d, and fibrin and expression of plasminogen activator inhibitor 1, heparan sulfate (HS), E-selectin, and vascular cell adhesion molecule 1 were evaluated by fluorescence staining. In addition, high-mobility group box 1 protein was measured in plasma. RESULTS Edema formation was reduced by C1 INH at two dosages, mirrored by improved histologic injury scores and preserved muscle viability. Deposition of immunoglobulin M, C4d, and fibrin was significantly decreased by 100 IU/kg C1 INH compared with nontreated controls. Pretreatment with 100 IU/kg C1 INH also significantly reduced HS shedding and expression of plasminogen activator inhibitor 1 as well as plasma levels of high-mobility group box 1 protein. CONCLUSIONS Pretreatment with both 50 and 100 IU/kg C1 INH attenuated reperfusion injury of rat hind limbs. Pretreatment with 100 IU/kg also preserved the endothelial HS layer as well as the natural, profibrinolytic phenotype of the endothelium. Prevention of endothelial cell activation by C1 INH may therefore be a promising strategy to prevent I/R injury in the clinical setting of peripheral vascular diseases and elective surgery on extremities.
Collapse
|
6
|
Regal JF, Strehlke ME, Peterson JM, Wing CR, Parker JE, Nieto NF, Bemis LT, Gilbert JS, Fleming SD. Role of IgM and angiotensin II Type I receptor autoantibodies in local complement activation in placental ischemia-induced hypertension in the rat. Mol Immunol 2016; 78:38-47. [PMID: 27588825 DOI: 10.1016/j.molimm.2016.08.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 08/17/2016] [Accepted: 08/23/2016] [Indexed: 01/27/2023]
Abstract
Preeclampsia is characterized by development of hypertension during pregnancy and reduced placental perfusion. Previous studies in a rat model of placental ischemia-induced hypertension demonstrated that inhibiting complement activation attenuated increased maternal blood pressure with C3a and C5a identified as the important products of complement activation. Given that in other forms of ischemia both natural IgM and antigen antibody complexes initiate complement activation, we hypothesized that placental ischemia exposes neoepitopes recognized by IgM to cause local complement activation and hypertension. Alternatively, we postulated that autoantibody to angiotensin II Type 1 receptor (AT1-AA) interacts with AT1 receptors to cause complement activation. Since complement activation occurs in kidney and placenta in preeclampsia, we used immunohistochemistry to determine IgM deposition and local complement activation in each organ (C3 deposition), and quantitative real-time polymerase chain reaction (qRT-PCR) to quantitate mRNA for endogenous regulators of complement activation CD55, CD59 and Complement receptor 1-related gene/protein y (Crry). On gestation day (GD)14.5, timed pregnant Sprague Dawley rats underwent Sham surgery or placement of clips on inferior abdominal aorta and ovarian arteries to create placental ischemia using the reduced utero-placental perfusion pressure (RUPP) model. As previously reported, RUPP surgery increased mean arterial pressure and circulating C3a on GD19.5. In placenta, IgM and C3 deposition increased, whereas mRNA for complement regulators Crry and CD59 decreased along with Crry protein in RUPP compared to Sham treated animals. In kidney, IgM deposition increased in animals subjected to RUPP vs Sham surgery without a significant change in C3 deposition and coincident with an increase in mRNA for CD55 and CD59. The AT1 receptor antagonist losartan prevents placental ischemia-induced hypertension as well as AT1-AA interaction with AT1 receptors. However, losartan did not attenuate complement activation as measured by circulating C3a or placental C3 deposition. Importantly, our studies indicate that following placental ischemia, complement activation is not due to AT1-AA but is associated with IgM deposition. These studies suggest a role for natural antibodies interacting with placental ischemia-induced neoepitopes to activate complement and contribute to hypertension.
Collapse
Affiliation(s)
- Jean F Regal
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth campus, Duluth, MN, United States.
| | - Megan E Strehlke
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth campus, Duluth, MN, United States.
| | - Jenna M Peterson
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth campus, Duluth, MN, United States.
| | - Cameron R Wing
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth campus, Duluth, MN, United States.
| | - Jordan E Parker
- Division of Biology, Kansas State University, Manhattan, KS, United States.
| | | | - Lynne T Bemis
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth campus, Duluth, MN, United States.
| | - Jeffrey S Gilbert
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth campus, Duluth, MN, United States.
| | - Sherry D Fleming
- Division of Biology, Kansas State University, Manhattan, KS, United States.
| |
Collapse
|
7
|
Kotimaa J, Klar-Mohammad N, Gueler F, Schilders G, Jansen A, Rutjes H, Daha MR, van Kooten C. Sex matters: Systemic complement activity of female C57BL/6J and BALB/cJ mice is limited by serum terminal pathway components. Mol Immunol 2016; 76:13-21. [PMID: 27337595 DOI: 10.1016/j.molimm.2016.06.004] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 06/03/2016] [Accepted: 06/07/2016] [Indexed: 01/03/2023]
Abstract
Experimental mouse models have been extensively used to elucidate the role of the complement system in different diseases and injuries. Contribution of gender has revealed an intriguing gender specific difference; female mice often show protection against most complement driven injuries such as ischemia/reperfusion injury, graft rejection and sepsis. Interestingly, early studies to the mouse complement system revealed that female mice have very low total complement activity (CH50), which is related to androgen regulation of hepatic complement synthesis. Here, our aim was to understand at which level the female specific differences in mouse complement resides. We have used recently developed complement assays to study the functional activities of female and male mice at the level of C3 and C9 activation, and furthermore assayed key complement factor levels in serum of age-matched female and male C57BL/6 mice. Our results show that the female mice have normal complement cascade functionality at the level of C3 activation, which was supported by determinations of early complement factors. However, all pathways are strongly reduced at the level of C9 activation, suggesting a terminal pathway specific difference. This was in line with C6 and C9 measurements, showing strongly decreased levels in females. Furthermore, similar gender differences were also found in BALB/cJ mice, but not in CD-1 mice. Our results clearly demonstrate that the complement system in females of frequently used mouse strains is restricted by the terminal pathway components and that the perceived female specific protection against experimental disease and injury might be in part explained by the inability promote inflammation through C5b-9.
Collapse
Affiliation(s)
- Juha Kotimaa
- Leiden University Medical Center (LUMC), Department of Nephrology, Leiden, The Netherlands
| | - Ngaisah Klar-Mohammad
- Leiden University Medical Center (LUMC), Department of Nephrology, Leiden, The Netherlands
| | - Faikah Gueler
- Department of Nephrology, Hannover Medical School, Hannover, Germany
| | | | | | | | - Mohamed R Daha
- Leiden University Medical Center (LUMC), Department of Nephrology, Leiden, The Netherlands
| | - Cees van Kooten
- Leiden University Medical Center (LUMC), Department of Nephrology, Leiden, The Netherlands.
| |
Collapse
|
8
|
Functional assessment of mouse complement pathway activities and quantification of C3b/C3c/iC3b in an experimental model of mouse renal ischaemia/reperfusion injury. J Immunol Methods 2015; 419:25-34. [DOI: 10.1016/j.jim.2015.02.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 02/17/2015] [Accepted: 02/20/2015] [Indexed: 01/19/2023]
|