1
|
Schreier S, Budchart P, Borwornpinyo S, Adireklarpwong L, Chirappapha P, Triampo W, Lertsithichai P. Rare Cell Population Analysis in Early-Stage Breast Cancer Patients. Breast Cancer (Auckl) 2025; 19:11782234241310596. [PMID: 39803593 PMCID: PMC11724413 DOI: 10.1177/11782234241310596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 12/09/2024] [Indexed: 01/16/2025] Open
Abstract
Background Circulating rare cells participate in breast cancer evolution as systemic components of the disease and thus, are a source of theranostic information. Exploration of cancer-associated rare cells is in its infancy. Objectives We aimed to investigate and classify abnormalities in the circulating rare cell population among early-stage breast cancer patients using fluorescence marker identification and cytomorphology. In addition, we sought to determine the dependency of these markers on the presence of tumors. Design We evaluated the validity of a multi-rare-cell detection platform and demonstrated the utility of a specific rare cell subset as a novel approach to characterize the breast cancer system. Sampling was conducted both before and after tumor resection. Methods Linearity of the Rarmax platform was established using a spike-in approach. The platform includes red blood cell lysis, leukocyte depletion and high-resolution fluorescence image recording. Rare cell analysis was conducted on 28 samples (before and after surgery) from 14 patients with breast cancer, 20 healthy volunteers and 9 noncancer control volunteers. In-depth identification of rare cells, including circulating tumor cells, endothelial-like cells, erythroblasts, and inflammation-associated cells, was performed using a phenotype and morphology-based classification system. Results The platform performed linearly over a range of 5 to 950 spiked cells, with an average recovery of 84.6%. Circulating epithelial and endothelial-like cell subsets have been demonstrated to be associated with or independent of cancer with tumor presence. Furthermore, certain cell profile patterns may be associated with treatment-related adverse effects. The sensitivity in detecting tumor-presence and cancer-associated abnormality before surgery was 43% and 85.7%, respectively, and the specificity was 100% and 96.6%, respectively. Conclusion This study supports the idea of a cancer-associated rare cell abnormality to represent tumor entities as well as systemic cancer. The latter is independent of the apparent clinical cancer.
Collapse
Affiliation(s)
- Stefan Schreier
- School of Bioinnovation and Bio-based Product Intelligence, Faculty of Science, Mahidol University, Bangkok, Thailand
- MUSC Centre of Excellence in STEM Education, School of Bioinnovation and Bio-based Product Intelligence, Faculty of Science, Mahidol University, Bangkok, Thailand
- Premise Biosystems Co., Ltd. Bangkok, Thailand
| | | | - Suparerk Borwornpinyo
- Premise Biosystems Co., Ltd. Bangkok, Thailand
- Excellent Center for Drug Discovery, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Lakkana Adireklarpwong
- Department of Surgery, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Prakasit Chirappapha
- Department of Surgery, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Wannapong Triampo
- MUSC Centre of Excellence in STEM Education, School of Bioinnovation and Bio-based Product Intelligence, Faculty of Science, Mahidol University, Bangkok, Thailand
- Biophysics Lab, Department of Physics, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Panuwat Lertsithichai
- Department of Surgery, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
2
|
Darviot C, Gosselin B, Martin F, Patskovsky S, Jabin I, Bruylants G, Trudel D, Meunier M. Multiplexed immunolabelling of cancer using bioconjugated plasmonic gold-silver alloy nanoparticles. NANOSCALE ADVANCES 2024; 6:4385-4393. [PMID: 39170968 PMCID: PMC11334976 DOI: 10.1039/d4na00052h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 06/25/2024] [Indexed: 08/23/2024]
Abstract
Reliable protein detection methods are vital for advancing biological research and medical diagnostics. While immunohistochemistry and immunofluorescence are commonly employed, their limitations underscore the necessity for alternative approaches. This study introduces immunoplasmonic labelling, utilizing plasmonic nanoparticles (NPs), specifically designed gold and gold-silver alloy NPs (Au:Ag NPs), for multiplexed and quantitative protein detection. These NPs, when coupled with antibodies targeting proteins of interest, enable accurate counting and evaluation of protein expression levels while overcoming issues such as autofluorescence. In this study, we compare two nanoparticle functionalization strategies-one coating based on thiolated PEG and one coating based on calix[4]arenes-on gold and gold-silver alloy nanoparticles of varying sizes. Overall results tend to demonstrate a greater versatility for the calix[4]arene-based coating. With this coating and using the classical EDC/sulfo-NHS cross-linking procedure, we also demonstrate the successful multiplexed immunolabelling of Her2, CD44, and EpCAM in breast cancer cell lines (SK-BR-3 and MDA-MB-231). Furthermore, we introduce a user-friendly software for automatic NP detection and classification by colour, providing a promising proof-of-concept for the practical application of immunoplasmonic techniques in the quantitative analysis of biopsies in the clinical setting.
Collapse
Affiliation(s)
- Cécile Darviot
- Polytechnique Montréal Montréal Canada
- Centre Hospitalier de l'Université de Montréal Montréal Canada
| | - Bryan Gosselin
- Université Libre de Bruxelles, LCO Bruxelles Belgium
- Université Libre de Bruxelles, EMNS Bruxelles Belgium
| | | | | | - Ivan Jabin
- Université Libre de Bruxelles, LCO Bruxelles Belgium
| | | | | | | |
Collapse
|
3
|
Skawina A, Dąbrowska A, Bonk A, Paterczyk B, Nowakowska J. Tracking the micro- and nanoplastics in the terrestrial-freshwater food webs. Bivalves as sentinel species. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170468. [PMID: 38296093 DOI: 10.1016/j.scitotenv.2024.170468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/05/2024]
Abstract
Micro- (MPs) and nanoplastics (NPs) are currently ubiquitous in the ecosystems, and freshwater biota is still insufficiently studied to understand the global fate, transport paths, and consequences of their presence. Thus, in this study, we investigated the role of bivalves and a trophic transfer of MPs and NPs in an experimental food chain. The food chain consisted of terrestrial non-selective detritivore Dendrobaena (Eisenia) sp., freshwater benthic filter feeder Unio tumidus, and freshwater benthic detritivore-collectors Asellus aquaticus or Gammarus sp. Animals were exposed to different fluorescently labeled micro- and nanoplastics (PMMA 20 μm, nanoPS 15-18 nm, and 100 nm, PS 1 μm and 20 μm, PE from cosmetics) as well as to the faeces of animals exposed to plastics to assess their influence on the environmental transportation, availability to biota, and bioaccumulation of supplied particles. Damaged and intact fluorescent particles were observed in the faeces of terrestrial detritivores and in the droppings of aquatic filter feeders, respectively. They were also present in the guts of bivalves and of crustaceans which were fed with bivalve droppings. Bivalves (Unio tumidus, and additionally Unio pictorum, and Sphaerium corneum) produced droppings containing micro- and nanoparticles filtered from suspension and deposited them onto the tank bottom, making them available for broader feeding guilds of animals (e.g. collectors, like crustaceans). Finally, the natural ageing of PS and its morphological changes, leakage of the fluorescent labelling, and agglomeration of particles were demonstrated. That supports our hypothesis of the crucial role of the characterization of physical and chemical materials in adequately understanding the mechanisms of their interaction with biota. Microscopical methods (confocal, fluorescent, scanning electron) and Raman and FT-IR spectroscopy were used to track the particles' passage in a food web and monitor structural changes of the MPs' and NPs' surface.
Collapse
Affiliation(s)
- Aleksandra Skawina
- University of Warsaw, Faculty of Biology, Institute of Evolutionary Biology, Żwirki i Wigury 101 Str., 02-089 Warsaw, Poland; University of Warsaw, Faculty of Biology, Institute of Functional Biology and Ecology, Miecznikowa 1 Str., 02-096 Warsaw, Poland.
| | - Agnieszka Dąbrowska
- University of Warsaw, Faculty of Chemistry, Laboratory of Spectroscopy and Intermolecular Interactions, Pasteura 1 Str., 02-093 Warsaw, Poland.
| | - Agata Bonk
- University of Bremen, Faculty 2 Biology, Chemistry Leobener Str., 28359 Bremen, Germany
| | - Bohdan Paterczyk
- University of Warsaw, Faculty of Biology, Imaging Laboratory, Miecznikowa 1 Str., 02-096 Warsaw, Poland
| | - Julita Nowakowska
- University of Warsaw, Faculty of Biology, Imaging Laboratory, Miecznikowa 1 Str., 02-096 Warsaw, Poland
| |
Collapse
|
4
|
Graziotto ME, Kidman CJ, Adair LD, James SA, Harris HH, New EJ. Towards multimodal cellular imaging: optical and X-ray fluorescence. Chem Soc Rev 2023; 52:8295-8318. [PMID: 37910139 DOI: 10.1039/d3cs00509g] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Imaging techniques permit the study of the molecular interactions that underlie health and disease. Each imaging technique collects unique chemical information about the cellular environment. Multimodal imaging, using a single probe that can be detected by multiple imaging modalities, can maximise the information extracted from a single cellular sample by combining the results of different imaging techniques. Of particular interest in biological imaging is the combination of the specificity and sensitivity of optical fluorescence microscopy (OFM) with the quantitative and element-specific nature of X-ray fluorescence microscopy (XFM). Together, these techniques give a greater understanding of how native elements or therapeutics affect the cellular environment. This review focuses on recent studies where both techniques were used in conjunction to study cellular systems, demonstrating the breadth of biological models to which this combination of techniques can be applied and the potential for these techniques to unlock untapped knowledge of disease states.
Collapse
Affiliation(s)
- Marcus E Graziotto
- School of Chemistry, The University of Sydney, Sydney, NSW, 2006, Australia.
| | - Clinton J Kidman
- Department of Chemistry, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Liam D Adair
- School of Chemistry, The University of Sydney, Sydney, NSW, 2006, Australia.
- Sydney Nano Institute, The University of Sydney, Sydney, NSW, 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Simon A James
- Australian Nuclear Science and Technology Organisation, Clayton, Victoria, 3168, Australia
| | - Hugh H Harris
- Department of Chemistry, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Elizabeth J New
- School of Chemistry, The University of Sydney, Sydney, NSW, 2006, Australia.
- Sydney Nano Institute, The University of Sydney, Sydney, NSW, 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW, 2006, Australia
| |
Collapse
|
5
|
Zhang Z, Fan H, Richardson W, Gao BZ, Ye T. Management of autofluorescence in formaldehyde-fixed myocardium: choosing the right treatment. Eur J Histochem 2023; 67:3812. [PMID: 37781779 PMCID: PMC10614721 DOI: 10.4081/ejh.2023.3812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/28/2023] [Indexed: 10/03/2023] Open
Abstract
Autofluorescence (AF) poses challenges for detecting proteins of interest in situ when employing immunofluorescence (IF) microscopy. This interference is particularly pronounced in strongly autofluorescent tissues such as myocardium, where tissue AF can be comparable to IF. Although various histochemical methods have been developed to achieve effective AF suppression in different types of tissue, their applications on myocardial samples have not been well validated. Due to inconsistency across different autofluorescent structures in sometypes of tissue, it is unclear if these methods can effectively suppress AF across all autofluorescent structures within the myocardium. Here, we quantitatively evaluated the performance of several commonly used quenching treatments on formaldehyde-fixed myocardial samples, including 0.3 M glycine, 0.3% Sudan Black B (SBB), 0.1% and 1% sodium borohydride (NaBH4), TrueVIEW® and TrueBlack®. We further assessed their quenching performance by employing the pre-treatment and post-treatment protocols, designed to cover two common IF staining scenarios where buffers contained detergents or not. The results suggest that SBB and TrueBlack® outperform other reagents in AF suppression on formaldehyde-fixed myocardial samples in both protocols. Furthermore, we inspected the quenching performance of SBB and TrueBlack® on major autofluorescent myocardial structures and evaluated their influence on IF imaging. The results suggest that SBB outperforms TrueBlack® in quenching major autofluorescent structures, while TrueBlack® excels in preserving IF labeling signal. Surprisingly, we found the treatment of NaBH4 increased AF signal and enhanced the AF contrast of major autofluorescent structures. This finding suggests that NaBH4 has the potential to act as an AF enhancer and may facilitate the interpretation of myocardial structures without the need for counterstaining.
Collapse
Affiliation(s)
- Zhao Zhang
- Department of Bioengineering, Clemson University, Clemson, SC.
| | - Hongming Fan
- Department of Bioengineering, Clemson University, Clemson, SC.
| | - William Richardson
- Department of Chemical Engineering, University of Arkansas, Fayetteville, AR.
| | - Bruce Z Gao
- Department of Bioengineering, Clemson University, Clemson, SC.
| | - Tong Ye
- Department of Bioengineering, Clemson University, Clemson, SC; Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC.
| |
Collapse
|
6
|
Miranda Júnior NRD, Santos AGAD, Pereira AV, Mariano IA, Guilherme ALF, Santana PDL, Beletini LDF, Evangelista FF, Nogueira-Melo GDA, Sant'Ana DDMG. Rosuvastatin enhances alterations caused by Toxoplasma gondii in the duodenum of mice. Tissue Cell 2023; 84:102194. [PMID: 37597359 DOI: 10.1016/j.tice.2023.102194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/04/2023] [Accepted: 08/07/2023] [Indexed: 08/21/2023]
Abstract
Infection by Toxoplasma gondii may compromise the intestinal histoarchitecture through the tissue reaction triggered by the parasite. Thus, this study evaluated whether treatment with rosuvastatin modifies duodenal changes caused by the chronic infection induced by cysts of T. gondii. For this, female Swiss mice were distributed into infected and treated group (ITG), infected group (IG), group treated with 40 mg/kg rosuvastatin (TG) and control group (CG). After 72 days of infection, the animals were euthanized, the duodenum was collected and processed for histopathological analysis. We observed an increase in immune cell infiltration in the IG, TG and ITG groups, with injury to the Brunner glands. The infection led to a reduction in collagen fibers and mast cells. Infected and treated animals showed an increase in collagen fibers, acidic mucin-producing goblet cells, intraepithelial lymphocytes and mast cells, in addition to the reduction of muscle, neutral mucin-producing and Paneth cells. While treatment with rosuvastatin alone led to increased muscle layer, proportion of neutral mucin-producing goblet cells, Paneth cells, and reduction of collagen fibers. These findings indicate that the infection and treatment caused changes in the homeostasis of the intestinal wall and treatment with rosuvastatin potentiated most parameters indicative of inflammation.
Collapse
Affiliation(s)
- Nelson Raimundo de Miranda Júnior
- Biosciences and Physiopathology Program, State University of Maringá, Maringá, Brazil; Department of Basic Health Sciences, State University of Maringá, Maringá, Brazil
| | - Amanda Gubert Alves Dos Santos
- Biosciences and Physiopathology Program, State University of Maringá, Maringá, Brazil; Department of Basic Health Sciences, State University of Maringá, Maringá, Brazil
| | - Andréia Vieira Pereira
- Biosciences and Physiopathology Program, State University of Maringá, Maringá, Brazil; Department of Basic Health Sciences, State University of Maringá, Maringá, Brazil
| | - Isabela Alessandra Mariano
- Department of Clinical Analysis and Biomedicine, State University of Maringá, Maringá, Brazil; Department of Basic Health Sciences, State University of Maringá, Maringá, Brazil
| | - Ana Lucia Falavigna Guilherme
- Health Sciences Program, State University of Maringá, Maringá, Brazil; Department of Basic Health Sciences, State University of Maringá, Maringá, Brazil
| | - Priscilla de Laet Santana
- Health Sciences Program, State University of Maringá, Maringá, Brazil; Department of Basic Health Sciences, State University of Maringá, Maringá, Brazil
| | - Lucimara de Fátima Beletini
- Health Sciences Program, State University of Maringá, Maringá, Brazil; Department of Basic Health Sciences, State University of Maringá, Maringá, Brazil
| | - Fernanda Ferreira Evangelista
- Health Sciences Program, State University of Maringá, Maringá, Brazil; Department of Basic Health Sciences, State University of Maringá, Maringá, Brazil
| | - Gessilda de Alcantara Nogueira-Melo
- Biosciences and Physiopathology Program, State University of Maringá, Maringá, Brazil; Department of Basic Health Sciences, State University of Maringá, Maringá, Brazil
| | - Debora de Mello Gonçales Sant'Ana
- Biosciences and Physiopathology Program, State University of Maringá, Maringá, Brazil; Department of Basic Health Sciences, State University of Maringá, Maringá, Brazil.
| |
Collapse
|
7
|
Fedr R, Kahounová Z, Remšík J, Reiterová M, Kalina T, Souček K. Variability of fluorescence intensity distribution measured by flow cytometry is influenced by cell size and cell cycle progression. Sci Rep 2023; 13:4889. [PMID: 36966193 PMCID: PMC10039904 DOI: 10.1038/s41598-023-31990-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 03/21/2023] [Indexed: 03/27/2023] Open
Abstract
The distribution of fluorescence signals measured with flow cytometry can be influenced by several factors, including qualitative and quantitative properties of the used fluorochromes, optical properties of the detection system, as well as the variability within the analyzed cell population itself. Most of the single cell samples prepared from in vitrocultures or clinical specimens contain a variable cell cycle component. Cell cycle, together with changes in the cell size, are two of the factors that alter the functional properties of analyzed cells and thus affect the interpretation of obtained results. Here, we describe the association between cell cycle status and cell size, and the variability in the distribution of fluorescence intensity as determined with flow cytometry, at population scale. We show that variability in the distribution of background and specific fluorescence signals is related to the cell cycle state of the selected population, with the 10% low fluorescence signal fraction enriched mainly in cells in their G0/G1 cell cycle phase, and the 10% high fraction containing cells mostly in the G2/M phase. Therefore we advise using caution and additional experimental validation when comparing populations defined by fractions at both ends of fluorescence signal distribution to avoid biases caused by the effect of cell cycle and cell size.
Collapse
Affiliation(s)
- Radek Fedr
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 00, Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic
| | - Zuzana Kahounová
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 00, Brno, Czech Republic
| | - Ján Remšík
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Michaela Reiterová
- CLIP - Childhood Leukaemia Investigation Prague, Department of Pediatric Haematology and Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Tomáš Kalina
- CLIP - Childhood Leukaemia Investigation Prague, Department of Pediatric Haematology and Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Karel Souček
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 00, Brno, Czech Republic.
- International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic.
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic.
| |
Collapse
|
8
|
Sakr N, Glazova O, Shevkova L, Onyanov N, Kaziakhmedova S, Shilova A, Vorontsova MV, Volchkov P. Characterizing and Quenching Autofluorescence in Fixed Mouse Adrenal Cortex Tissue. Int J Mol Sci 2023; 24:3432. [PMID: 36834842 PMCID: PMC9968082 DOI: 10.3390/ijms24043432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Tissue autofluorescence of fixed tissue sections is a major concern of fluorescence microscopy. The adrenal cortex emits intense intrinsic fluorescence that interferes with signals from fluorescent labels, resulting in poor-quality images and complicating data analysis. We used confocal scanning laser microscopy imaging and lambda scanning to characterize the mouse adrenal cortex autofluorescence. We evaluated the efficacy of tissue treatment methods in reducing the intensity of the observed autofluorescence, such as trypan blue, copper sulfate, ammonia/ethanol, Sudan Black B, TrueVIEWTM Autofluorescence Quenching Kit, MaxBlockTM Autofluorescence Reducing Reagent Kit, and TrueBlackTM Lipofuscin Autofluorescence Quencher. Quantitative analysis demonstrated autofluorescence reduction by 12-95%, depending on the tissue treatment method and excitation wavelength. TrueBlackTM Lipofuscin Autofluorescence Quencher and MaxBlockTM Autofluorescence Reducing Reagent Kit were the most effective treatments, reducing the autofluorescence intensity by 89-93% and 90-95%, respectively. The treatment with TrueBlackTM Lipofuscin Autofluorescence Quencher preserved the specific fluorescence signals and tissue integrity, allowing reliable detection of fluorescent labels in the adrenal cortex tissue. This study demonstrates a feasible, easy-to-perform, and cost-effective method to quench tissue autofluorescence and improve the signal-to-noise ratio in adrenal tissue sections for fluorescence microscopy.
Collapse
Affiliation(s)
- Nawar Sakr
- Endocrinology Research Centre, Moscow 117292, Russia
- Genome Engineering Lab, Moscow Institute of Physics and Technology, Dolgoprudniy 141700, Russia
| | - Olga Glazova
- Endocrinology Research Centre, Moscow 117292, Russia
- Genome Engineering Lab, Moscow Institute of Physics and Technology, Dolgoprudniy 141700, Russia
| | - Liudmila Shevkova
- Endocrinology Research Centre, Moscow 117292, Russia
- Genome Engineering Lab, Moscow Institute of Physics and Technology, Dolgoprudniy 141700, Russia
| | - Nikita Onyanov
- Genome Engineering Lab, Moscow Institute of Physics and Technology, Dolgoprudniy 141700, Russia
| | - Samira Kaziakhmedova
- Genome Engineering Lab, Moscow Institute of Physics and Technology, Dolgoprudniy 141700, Russia
| | - Alena Shilova
- Faculty of Medicine, M.V. Lomonosov Moscow State University, 27-1, Lomonosovsky Prospect, Moscow 117192, Russia
| | - Maria V. Vorontsova
- Endocrinology Research Centre, Moscow 117292, Russia
- Genome Engineering Lab, Moscow Institute of Physics and Technology, Dolgoprudniy 141700, Russia
| | - Pavel Volchkov
- Endocrinology Research Centre, Moscow 117292, Russia
- Genome Engineering Lab, Moscow Institute of Physics and Technology, Dolgoprudniy 141700, Russia
| |
Collapse
|
9
|
Knapp TG, Duan S, Merchant JL, Sawyer TW. Quantitative characterization of duodenal gastrinoma autofluorescence using multiphoton microscopy. Lasers Surg Med 2023; 55:208-225. [PMID: 36515355 PMCID: PMC9957894 DOI: 10.1002/lsm.23619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 10/04/2022] [Accepted: 11/25/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND Duodenal gastrinomas (DGASTs) are neuroendocrine tumors that develop in the submucosa of the duodenum and produce the hormone gastrin. Surgical resection of DGASTs is complicated by the small size of these tumors and the tendency for them to develop diffusely in the duodenum. Endoscopic mucosal resection of DGASTs is an increasingly popular method for treating this disease due to its low complication rate but suffers from poor rates of pathologically negative margins. Multiphoton microscopy can capture high-resolution images of biological tissue with contrast generated from endogenous fluorescence (autofluorescence [AF]) through two-photon excited fluorescence (2PEF). Second harmonic generation is another popular method of generating image contrast with multiphoton microscopy (MPM) and is a light-scattering phenomenon that occurs predominantly from structures such as collagen in biological samples. Some molecules that contribute to AF change in abundance from processes related to the cancer disease process (e.g., metabolic changes, oxidative stress, and angiogenesis). STUDY DESIGN/MATERIALS AND METHODS MPM was used to image 12 separate patient samples of formalin-fixed and paraffin-embedded duodenal gastrinoma slides with a second-harmonic generation (SHG) channel and four 2PEF channels. The excitation and emission profiles of each 2PEF channel were tuned to capture signal dominated by distinct fluorophores with well-characterized fluorescent spectra and known connections to the physiologic changes that arise in cancerous tissue. RESULTS We found that there was a significant difference in the relative abundance of signal generated in the 2PEF channels for regions of DGASTs in comparison to the neighboring tissues of the duodenum. Data generated from texture feature extraction of the MPM images were used in linear discriminant analysis models to create classifiers for tumor versus all other tissue types before and after principal component analysis (PCA). PCA improved the classifier accuracy and reduced the number of features required to achieve maximum accuracy. The linear discriminant classifier after PCA distinguished between tumor and other tissue types with an accuracy of 90.6%-93.8%. CONCLUSIONS These results suggest that multiphoton microscopy 2PEF and SHG imaging is a promising label-free method for discriminating between DGASTs and normal duodenal tissue which has implications for future applications of in vivo assessment of resection margins with endoscopic MPM.
Collapse
Affiliation(s)
- Thomas G. Knapp
- Department of Biomedical Engineering, University of Arizona, Tucson, Arizona, USA
| | - Suzann Duan
- College of Medicine, University of Arizona, Tucson, Arizona, USA
| | | | - Travis W. Sawyer
- Department of Biomedical Engineering, University of Arizona, Tucson, Arizona, USA
- College of Medicine, University of Arizona, Tucson, Arizona, USA
- Wyant College of Optical Sciences, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
10
|
Shchapova E, Titov E, Gurkov A, Nazarova A, Borvinskaya E, Timofeyev M. Durability of Implanted Low-Density Polyacrylamide Hydrogel Used as a Scaffold for Microencapsulated Molecular Probes inside Small Fish. Polymers (Basel) 2022; 14:polym14193956. [PMID: 36235907 PMCID: PMC9573640 DOI: 10.3390/polym14193956] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 01/19/2023] Open
Abstract
Implantable sensors based on shaped biocompatible hydrogels are now being extensively developed for various physiological tasks, but they are usually difficult to implant into small animals. In this study, we tested the long-term in vivo functionality of pH-sensitive implants based on amorphous 2.7% polyacrylamide hydrogel with the microencapsulated fluorescent probe SNARF-1. The sensor was easy to manufacture and introduce into the tissues of a small fish Danio rerio, which is the common model object in biomedical research. Histological examination revealed partial degradation of the gel by the 7th day after injection, but it was not the case on the 1st day. Using the hydrogel sensor, we were able to trace the interstitial pH in the fish muscles under normal and hypercapnic conditions for at least two days after the implantation. Thus, despite later immune response, amorphous polyacrylamide is fully suitable for preparing implantable sensors for various mid-term physiological experiments on small fishes. The proposed approach can be further developed to create implantable sensors for animals with similar anatomy.
Collapse
Affiliation(s)
- Ekaterina Shchapova
- Institute of Biology, Irkutsk State University, 664025 Irkutsk, Russia
- Baikal Research Centre, 664003 Irkutsk, Russia
| | - Evgeniy Titov
- East Siberian Institute of Medical and Ecological Research, 665827 Angarsk, Russia
| | - Anton Gurkov
- Institute of Biology, Irkutsk State University, 664025 Irkutsk, Russia
- Baikal Research Centre, 664003 Irkutsk, Russia
| | - Anna Nazarova
- Institute of Biology, Irkutsk State University, 664025 Irkutsk, Russia
| | | | - Maxim Timofeyev
- Institute of Biology, Irkutsk State University, 664025 Irkutsk, Russia
- Correspondence:
| |
Collapse
|
11
|
Baharlou H, Canete N, Vine EE, Hu K, Yuan D, Sandgren KJ, Bertram KM, Nasr N, Rhodes JW, Gosselink MP, Di Re A, Reza F, Ctercteko G, Pathma-Nathan N, Collins G, Toh J, Patrick E, Haniffa MA, Estes JD, Byrne SN, Cunningham AL, Harman AN. An in situ analysis pipeline for initial host-pathogen interactions reveals signatures of human colorectal HIV transmission. Cell Rep 2022; 40:111385. [PMID: 36130503 DOI: 10.1016/j.celrep.2022.111385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 07/07/2022] [Accepted: 08/29/2022] [Indexed: 12/01/2022] Open
Abstract
The initial immune response to HIV determines transmission. However, due to technical limitations we still do not have a comparative map of early mucosal transmission events. By combining RNAscope, cyclic immunofluorescence, and image analysis tools, we quantify HIV transmission signatures in intact human colorectal explants within 2 h of topical exposure. We map HIV enrichment to mucosal dendritic cells (DCs) and submucosal macrophages, but not CD4+ T cells, the primary targets of downstream infection. HIV+ DCs accumulate near and within lymphoid aggregates, which act as early sanctuaries of high viral titers while facilitating HIV passage to the submucosa. Finally, HIV entry induces recruitment and clustering of target cells, facilitating DC- and macrophage-mediated HIV transfer and enhanced infection of CD4+ T cells. These data demonstrate a rapid response to HIV structured to maximize the likelihood of mucosal infection and provide a framework for in situ studies of host-pathogen interactions and immune-mediated pathologies.
Collapse
Affiliation(s)
- Heeva Baharlou
- Centre for Virus Research, The Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, NSW 2145, Australia; The University of Sydney, School of Medical Sciences, Faculty of Medicine and Health Sydney, Sydney, NSW, Australia.
| | - Nicolas Canete
- Centre for Virus Research, The Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, NSW 2145, Australia; The University of Sydney, School of Medical Sciences, Faculty of Medicine and Health Sydney, Sydney, NSW, Australia
| | - Erica E Vine
- Centre for Virus Research, The Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, NSW 2145, Australia; The University of Sydney, School of Medical Sciences, Faculty of Medicine and Health Sydney, Sydney, NSW, Australia
| | - Kevin Hu
- Centre for Virus Research, The Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, NSW 2145, Australia; The University of Sydney, School of Medical Sciences, Faculty of Medicine and Health Sydney, Sydney, NSW, Australia
| | - Di Yuan
- Centre for Virus Research, The Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, NSW 2145, Australia; The University of Sydney, School of Medical Sciences, Faculty of Medicine and Health Sydney, Sydney, NSW, Australia
| | - Kerrie J Sandgren
- Centre for Virus Research, The Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, NSW 2145, Australia; The University of Sydney, School of Medical Sciences, Faculty of Medicine and Health Sydney, Sydney, NSW, Australia
| | - Kirstie M Bertram
- Centre for Virus Research, The Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, NSW 2145, Australia; The University of Sydney, School of Medical Sciences, Faculty of Medicine and Health Sydney, Sydney, NSW, Australia
| | - Najla Nasr
- Centre for Virus Research, The Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, NSW 2145, Australia; The University of Sydney, School of Medical Sciences, Faculty of Medicine and Health Sydney, Sydney, NSW, Australia
| | - Jake W Rhodes
- Centre for Virus Research, The Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, NSW 2145, Australia; The University of Sydney, School of Medical Sciences, Faculty of Medicine and Health Sydney, Sydney, NSW, Australia
| | - Martijn P Gosselink
- Centre for Virus Research, The Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, NSW 2145, Australia; Department of Colorectal Surgery, Westmead Hospital, Westmead, NSW 2145, Australia
| | - Angelina Di Re
- Centre for Virus Research, The Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, NSW 2145, Australia; Department of Colorectal Surgery, Westmead Hospital, Westmead, NSW 2145, Australia
| | - Faizur Reza
- Centre for Virus Research, The Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, NSW 2145, Australia; Department of Colorectal Surgery, Westmead Hospital, Westmead, NSW 2145, Australia
| | - Grahame Ctercteko
- Centre for Virus Research, The Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, NSW 2145, Australia; Department of Colorectal Surgery, Westmead Hospital, Westmead, NSW 2145, Australia
| | - Nimalan Pathma-Nathan
- Centre for Virus Research, The Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, NSW 2145, Australia; Department of Colorectal Surgery, Westmead Hospital, Westmead, NSW 2145, Australia
| | - Geoff Collins
- Centre for Virus Research, The Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, NSW 2145, Australia; Department of Colorectal Surgery, Westmead Hospital, Westmead, NSW 2145, Australia
| | - James Toh
- Centre for Virus Research, The Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, NSW 2145, Australia; Department of Colorectal Surgery, Westmead Hospital, Westmead, NSW 2145, Australia
| | - Ellis Patrick
- Centre for Virus Research, The Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, NSW 2145, Australia; The University of Sydney, School of Maths and Statistics, Faculty of Science, Sydney, NSW, Australia
| | - Muzlifah A Haniffa
- Biosciences Institute, The University of Newcastle, Newcastle upon Tyne, UK; Wellcome Sanger Institute, Hinxton, UK; Department of Dermatology and NIHR Newcastle Biomedical Research Centre, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Jacob D Estes
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Portland, OR, USA; Division of Pathobiology & Immunology, Oregon National Primate Research Center, Oregon Health & Science University, Portland, OR, USA
| | - Scott N Byrne
- Centre for Virus Research, The Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, NSW 2145, Australia; The University of Sydney, School of Medical Sciences, Faculty of Medicine and Health Sydney, Sydney, NSW, Australia
| | - Anthony L Cunningham
- Centre for Virus Research, The Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, NSW 2145, Australia; The University of Sydney, School of Medical Sciences, Faculty of Medicine and Health Sydney, Sydney, NSW, Australia
| | - Andrew N Harman
- Centre for Virus Research, The Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, NSW 2145, Australia; The University of Sydney, School of Medical Sciences, Faculty of Medicine and Health Sydney, Sydney, NSW, Australia.
| |
Collapse
|
12
|
Tracking Bacterial Nanocellulose in Animal Tissues by Fluorescence Microscopy. NANOMATERIALS 2022; 12:nano12152605. [PMID: 35957036 PMCID: PMC9370207 DOI: 10.3390/nano12152605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/26/2022] [Accepted: 07/26/2022] [Indexed: 02/07/2023]
Abstract
The potential of nanomaterials in food technology is nowadays well-established. However, their commercial use requires a careful risk assessment, in particular concerning the fate of nanomaterials in the human body. Bacterial nanocellulose (BNC), a nanofibrillar polysaccharide, has been used as a food product for many years in Asia. However, given its nano-character, several toxicological studies must be performed, according to the European Food Safety Agency’s guidance. Those should especially answer the question of whether nanoparticulate cellulose is absorbed in the gastrointestinal tract. This raises the need to develop a screening technique capable of detecting isolated nanosized particles in biological tissues. Herein, the potential of a cellulose-binding module fused to a green fluorescent protein (GFP–CBM) to detect single bacterial cellulose nanocrystals (BCNC) obtained by acid hydrolysis was assessed. Adsorption studies were performed to characterize the interaction of GFP–CBM with BNC and BCNC. Correlative electron light microscopy was used to demonstrate that isolated BCNC may be detected by fluorescence microscopy. The uptake of BCNC by macrophages was also assessed. Finally, an exploratory 21-day repeated-dose study was performed, wherein Wistar rats were fed daily with BNC. The presence of BNC or BCNC throughout the GIT was observed only in the intestinal lumen, suggesting that cellulose particles were not absorbed. While a more comprehensive toxicological study is necessary, these results strengthen the idea that BNC can be considered a safe food additive.
Collapse
|
13
|
Rehman AU, Qureshi SA. Quantitative auto-fluorescence quenching of free and bound NADH in HeLa cell line model with Carbonyl cyanide-p-Trifluoromethoxy phenylhydrazone (FCCP) as quenching agent. Photodiagnosis Photodyn Ther 2022; 39:102954. [PMID: 35690321 DOI: 10.1016/j.pdpdt.2022.102954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/26/2022] [Accepted: 06/07/2022] [Indexed: 11/19/2022]
Abstract
The autofluorescence of endogenous biomolecules (Nicotinamide adenine dinucleotide (NAD, its reduced form NADH and the phosphorylated form NAD(P)H take part in cellular metabolic pathways and has vital importance for in vivo and ex vivo photo diagnostic applications of biological tissues. We present a detailed quenching analysis of Carbonyl cyanide-p-Trifluoromethoxy phenylhydrazone (FCCP) 50-1000 µM and analyzed the fluorescence signal from NADH/ NAD(P)H in vitro (in solution) and in vivo (HeLa cell suspension).The in vitro samples of pure NADH/ NAD(P)H were excited at λ=340±1 nm while the fluorescence signal was collected in the range of 400-550 nm. The quenching process was characterized using excitation emission matrix (EEM) fluorescence spectroscopy and Stern- Volmer plots. The experimental results illustrated maximum fluorescence emission for the control NADH samples (i.e., no FCCP), while the fluorescence signal from the solution progressively decreased with the increasing concentration of the FCCP, until it reaches the base line (i.e., no fluorescence signal) at 1000 µM of FCCP. In vitro study shows that the fluorescence quenching of free NADH was found to be lower than the bound NAD(P)H with similar diminishing trend. The quenching of bound NAD(P)H in cells is attenuated compared to solution quenching possibly due to a contribution from the metabolic/antioxidant response in cells and fluorescence exponential decay curve lies between plated and suspended HeLa cells. A two-fold increase in the fluorescence intensity of NAD(P)H was observed after the bond formation with L-Malate Dehydrogenase (L-MDH, Sigma Aldrich #10127248001) protein This work has applications for sharp tumor demarcation during sensitive surgical procedures as well as to enhance fluorescence based diagnosis of biological tissues.
Collapse
Affiliation(s)
- Aziz Ul Rehman
- ARC Centre of Excellence in Nanoscale Biophotonics, Macquarie University, Sydney, New South Wales 2109, Australia; Agri & Biophotonics Division, National Institute of Lasers and Optronics College, Pakistan Institute of Engineering and Applied Sciences (PIEAS), P.O. Nilore, Islamabad 45650, Pakistan.
| | - Shahzad Ahmad Qureshi
- Department of Computer and Information Sciences, Pakistan Institute of Engineering and Applied Sciences, P.O. Nilore, Islamabad 45650, Pakistan
| |
Collapse
|
14
|
Argmann C, Tokuyama M, Ungaro RC, Huang R, Hou R, Gurunathan S, Kosoy R, Di’Narzo A, Wang W, Losic B, Irizar H, Peters L, Stojmirovic A, Wei G, Comella PH, Curran M, Brodmerkel C, Friedman JR, Hao K, Schadt EE, Zhu J, Cho J, Harpaz N, Dubinsky MC, Sands BE, Kasarskis A, Mehandru S, Colombel JF, Suárez-Fariñas M. Molecular Characterization of Limited Ulcerative Colitis Reveals Novel Biology and Predictors of Disease Extension. Gastroenterology 2021; 161:1953-1968.e15. [PMID: 34480882 PMCID: PMC8640960 DOI: 10.1053/j.gastro.2021.08.053] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 08/27/2021] [Accepted: 08/27/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND AND AIMS Disease extent varies in ulcerative colitis (UC) from proctitis to left-sided colitis to pancolitis and is a major prognostic factor. When the extent of UC is limited there is often a sharp demarcation between macroscopically involved and uninvolved areas and what defines this or subsequent extension is unknown. We characterized the demarcation site molecularly and determined genes associated with subsequent disease extension. METHODS We performed RNA sequence analysis of biopsy specimens from UC patients with endoscopically and histologically confirmed limited disease, of which a subset later extended. Biopsy specimens were obtained from the endoscopically inflamed upper (proximal) limit of disease, immediately adjacent to the uninvolved colon, as well as at more proximal, endoscopically uninflamed colonic segments. RESULTS Differentially expressed genes were identified in the endoscopically inflamed biopsy specimens taken at each patient's most proximal diseased site relative to healthy controls. Expression of these genes in the more proximal biopsy specimens transitioned back to control levels abruptly or gradually, the latter pattern supporting the concept that disease exists beyond the endoscopic disease demarcation site. The gradually transitioning genes were associated with inflammation, angiogenesis, glucuronidation, and homeodomain pathways. A subset of these genes in inflamed biopsy specimens was found to predict disease extension better than clinical features and were responsive to biologic therapies. Network analysis revealed critical roles for interferon signaling in UC inflammation and poly(ADP-ribose) polymerase 14 (PARP14) was a predicted key driver gene of extension. Higher PARP14 protein levels were found in inflamed biopsy specimens of patients with limited UC that subsequently extended. CONCLUSION Molecular predictors of disease extension reveal novel strategies for disease prognostication and potential therapeutic targeting.
Collapse
Affiliation(s)
- Carmen Argmann
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York; Icahn Institute for Data Science and Genomic Technology, New York, New York.
| | - Minami Tokuyama
- The Dr. Henry D. Janowitz Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Ryan C. Ungaro
- The Dr. Henry D. Janowitz Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Ruiqi Huang
- Center for Biostatistics, Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Ruixue Hou
- Center for Biostatistics, Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Sakteesh Gurunathan
- The Dr. Henry D. Janowitz Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Roman Kosoy
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York,Icahn Institute for Data Science and Genomic Technology, New York, New York
| | - Antonio Di’Narzo
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York,Icahn Institute for Data Science and Genomic Technology, New York, New York,Sema4, Stamford, Connecticut
| | - Wenhui Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York,Icahn Institute for Data Science and Genomic Technology, New York, New York
| | - Bojan Losic
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York,Icahn Institute for Data Science and Genomic Technology, New York, New York
| | - Haritz Irizar
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Lauren Peters
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York,Icahn Institute for Data Science and Genomic Technology, New York, New York
| | | | - Gabrielle Wei
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York,Icahn Institute for Data Science and Genomic Technology, New York, New York
| | - Phillip H. Comella
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York,Icahn Institute for Data Science and Genomic Technology, New York, New York
| | | | | | | | - Ke Hao
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York,Icahn Institute for Data Science and Genomic Technology, New York, New York,Sema4, Stamford, Connecticut
| | - Eric E. Schadt
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York,Icahn Institute for Data Science and Genomic Technology, New York, New York,Sema4, Stamford, Connecticut
| | - Jun Zhu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York,Icahn Institute for Data Science and Genomic Technology, New York, New York,Sema4, Stamford, Connecticut
| | - Judy Cho
- The Dr. Henry D. Janowitz Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Noam Harpaz
- The Dr. Henry D. Janowitz Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York,Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Marla C. Dubinsky
- The Dr. Henry D. Janowitz Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Bruce E. Sands
- The Dr. Henry D. Janowitz Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Andrew Kasarskis
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York,Icahn Institute for Data Science and Genomic Technology, New York, New York,Sema4, Stamford, Connecticut,Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Saurabh Mehandru
- The Dr. Henry D. Janowitz Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Jean-Frederic Colombel
- The Dr. Henry D. Janowitz Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Mayte Suárez-Fariñas
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York; Center for Biostatistics, Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, New York.
| |
Collapse
|
15
|
Alcántara-Hernández M, Idoyaga J. Mass cytometry profiling of human dendritic cells in blood and tissues. Nat Protoc 2021; 16:4855-4877. [PMID: 34480131 PMCID: PMC10538357 DOI: 10.1038/s41596-021-00599-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 06/29/2021] [Indexed: 12/15/2022]
Abstract
The immune system comprises distinct functionally specialized cell populations, which can be characterized in depth by mass cytometry protein profiling. Unfortunately, the low-throughput nature of mass cytometry has made it challenging to analyze minor cell populations. This is the case for dendritic cells, which represent 0.2-2% of all immune cells in tissues and yet perform the critical task of initiating and modulating immune responses. Here, we provide an optimized step-by-step protocol for the characterization of well-known and emerging human dendritic cell populations in blood and tissues using mass cytometry. We provide detailed instructions for the generation of single-cell suspensions, sample enrichment, staining, acquisition and data analysis. We also include a barcoding option that reduces acquisition variability and allows the analysis of low numbers of dendritic cells, i.e., ~20,000. In contrast to other protocols, we emphasize the use of negative selection approaches to enrich for minor populations of immune cells while avoiding their activation. The entire procedure can be completed in 2-3 d and can be conveniently paused at several stages. The procedure described in this robust and reliable protocol allows the analysis of human dendritic cells in health and disease and during vaccination.
Collapse
Affiliation(s)
- Marcela Alcántara-Hernández
- Microbiology & Immunology Department and Immunology Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Juliana Idoyaga
- Microbiology & Immunology Department and Immunology Program, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
16
|
Bazin T, Krebs A, Jobart-Malfait A, Camilo V, Michel V, Benezeth Y, Marzani F, Touati E, Lamarque D. Multimodal imaging as optical biopsy system for gastritis diagnosis in humans, and input of the mouse model. EBioMedicine 2021; 69:103462. [PMID: 34229278 PMCID: PMC8264104 DOI: 10.1016/j.ebiom.2021.103462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 06/10/2021] [Accepted: 06/10/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Gastric inflammation is a major risk factor for gastric cancer. Current endoscopic methods are not able to efficiently detect and characterize gastric inflammation, leading to a sub-optimal patients' care. New non-invasive methods are needed. Reflectance mucosal light analysis is of particular interest in this context. The aim of our study was to analyze reflectance light and specific autofluorescence signals, both in humans and in a mouse model of gastritis. METHODS We recruited patients undergoing gastroendoscopic procedure during which reflectance was analysed with a multispectral camera. In parallel, the gastritis mouse model of Helicobacter pylori infection was used to investigate reflectance from ex vivo gastric samples using a spectrometer. In both cases, autofluorescence signals were measured using a confocal microscope. FINDINGS In gastritis patients, reflectance modifications were significant in near-infrared spectrum, with a decrease between 610 and 725 nm and an increase between 750 and 840 nm. Autofluorescence was also modified, showing variations around 550 nm of emission. In H. pylori infected mice developing gastric inflammatory lesions, we observed significant reflectance modifications 18 months after infection, with increased intensity between 617 and 672 nm. Autofluorescence was significantly modified after 1, 3 and 6 months around 550 and 630 nm. Both in human and in mouse, these reflectance data can be considered as biomarkers and accurately predicted inflammatory state. INTERPRETATION In this pilot study, using a practical measuring device, we identified in humans, modification of reflectance spectra in the visible spectrum and for the first time in near-infrared, associated with inflammatory gastric states. Furthermore, both in the mouse model and humans, we also observed modifications of autofluorescence associated with gastric inflammation. These innovative data pave the way to deeper validation studies on larger cohorts, for further development of an optical biopsy system to detect gastritis and finally to better surveil this important gastric cancer risk factor. FUNDING The project was funded by the ANR EMMIE (ANR-15-CE17-0015) and the French Gastroenterology Society (SNFGE).
Collapse
Affiliation(s)
- Thomas Bazin
- Université Paris Saclay/UVSQ, INSERM, Infection and Inflammation, UMR 1173, AP-HP, Hôpital Ambroise Paré, Department of Gastroenterology, F92100, Boulogne-Billancourt, France.
| | - Alexandre Krebs
- ImViA EA7535, Université Bourgogne Franche-Comté, Dijon, France
| | - Aude Jobart-Malfait
- Université Paris-Saclay, UVSQ, Inserm U1173, Infection et inflammation, Laboratory of Excellence INFLAMEX, 78180, Montigny-Le-Bretonneux, France
| | - Vania Camilo
- Université Paris-Saclay, UVSQ, Inserm U1173, Infection et inflammation, Laboratory of Excellence INFLAMEX, 78180, Montigny-Le-Bretonneux, France
| | - Valérie Michel
- Unit of Helicobacter Pathogenesis, Department of Microbiology, CNRS UMR 2001, Institut Pasteur, F75724 Paris cedex 15, France
| | | | - Franck Marzani
- ImViA EA7535, Université Bourgogne Franche-Comté, Dijon, France
| | - Eliette Touati
- Unit of Helicobacter Pathogenesis, Department of Microbiology, CNRS UMR 2001, Institut Pasteur, F75724 Paris cedex 15, France
| | - Dominique Lamarque
- Université Paris Saclay/UVSQ, INSERM, Infection and Inflammation, UMR 1173, AP-HP, Hôpital Ambroise Paré, Department of Gastroenterology, F92100, Boulogne-Billancourt, France
| |
Collapse
|
17
|
Baharlou H, Canete NP, Bertram KM, Sandgren KJ, Cunningham AL, Harman AN, Patrick E. AFid: a tool for automated identification and exclusion of autofluorescent objects from microscopy images. Bioinformatics 2021; 37:559-567. [PMID: 32931552 DOI: 10.1093/bioinformatics/btaa780] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 06/12/2020] [Accepted: 09/03/2020] [Indexed: 01/28/2023] Open
Abstract
MOTIVATION Autofluorescence is a long-standing problem that has hindered the analysis of images of tissues acquired by fluorescence microscopy. Current approaches to mitigate autofluorescence in tissue are lab-based and involve either chemical treatment of sections or specialized instrumentation and software to 'unmix' autofluorescent signals. Importantly, these approaches are pre-emptive and there are currently no methods to deal with autofluorescence in acquired fluorescence microscopy images. RESULTS To address this, we developed Autofluorescence Identifier (AFid). AFid identifies autofluorescent pixels as discrete objects in multi-channel images post-acquisition. These objects can then be tagged for exclusion from downstream analysis. We validated AFid using images of FFPE human colorectal tissue stained for common immune markers. Further, we demonstrate its utility for image analysis where its implementation allows the accurate measurement of HIV-Dendritic cell interactions in a colorectal explant model of HIV transmission. Therefore, AFid represents a major leap forward in the extraction of useful data from images plagued by autofluorescence by offering an approach that is easily incorporated into existing workflows and that can be used with various samples, staining panels and image acquisition methods. We have implemented AFid in ImageJ, Matlab and R to accommodate the diverse image analysis community. AVAILABILITY AND IMPLEMENTATION AFid software is available at https://ellispatrick.github.io/AFid. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Heeva Baharlou
- School of Medicine, The Westmead Institute for Medical Research, University of Sydney, Westmead, NSW, Australia.,School of Medical Sciences in the Faculty of Medicine and Health, Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia
| | - Nicolas P Canete
- School of Medicine, The Westmead Institute for Medical Research, University of Sydney, Westmead, NSW, Australia.,School of Medical Sciences in the Faculty of Medicine and Health, Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia
| | - Kirstie M Bertram
- School of Medicine, The Westmead Institute for Medical Research, University of Sydney, Westmead, NSW, Australia.,School of Medical Sciences in the Faculty of Medicine and Health, Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia
| | - Kerrie J Sandgren
- School of Medicine, The Westmead Institute for Medical Research, University of Sydney, Westmead, NSW, Australia.,School of Medical Sciences in the Faculty of Medicine and Health, Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia
| | - Anthony L Cunningham
- School of Medicine, The Westmead Institute for Medical Research, University of Sydney, Westmead, NSW, Australia.,School of Medical Sciences in the Faculty of Medicine and Health, Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia
| | - Andrew N Harman
- School of Medicine, The Westmead Institute for Medical Research, University of Sydney, Westmead, NSW, Australia.,School of Medical Sciences in the Faculty of Medicine and Health, Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia
| | - Ellis Patrick
- School of Medicine, The Westmead Institute for Medical Research, University of Sydney, Westmead, NSW, Australia.,Department of Mathematics and Statistics in the Faculty of Science, The University of Sydney, 2006 Sydney, NSW, Australia 4Centre for Virus Research, The Westmead Institute for Medical Research, 2145 Sydney NSW Australia
| |
Collapse
|
18
|
MacGregor M, Safizadeh Shirazi H, Chan KM, Ostrikov K, McNicholas K, Jay A, Chong M, Staudacher AH, Michl TD, Zhalgasbaikyzy A, Brown MP, Kashani MN, Di Fiore A, Grochowski A, Robb S, Belcher S, Li J, Gleadle JM, Vasilev K. Cancer cell detection device for the diagnosis of bladder cancer from urine. Biosens Bioelectron 2020; 171:112699. [PMID: 33068879 DOI: 10.1016/j.bios.2020.112699] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 10/05/2020] [Indexed: 02/07/2023]
Abstract
Bladder cancer is common and has one of the highest recurrence rates. Cystoscopy, the current gold standard diagnosis approach, has recently benefited from the introduction of blue light assisted photodynamic diagnostic (PDD). While blue light cystoscopy improves diagnostic sensitivity, it remains a costly and invasive approach. Here, we present a microfluidic-based platform for non-invasive diagnosis which combines the principle of PDD with whole cell immunocapture technology to detect bladder cancer cells shed in patient urine ex vivo. Initially, we demonstrate with model cell lines that our non-invasive approach achieves highly specific capture rates of bladder cancer cells based on their Epithelial Cell Adhesion Molecule expression (>90%) and detection by the intensity levels of Hexaminolevulinic Acid-induced Protoporphyrin IX fluorescence. Then, we show in a pilot study that the biosensor platform successfully discriminates histopathologically diagnosed cancer patients (n = 10) from non-cancer controls (n = 25). Our platform can support the development of a novel non-invasive diagnostic device for post treatment surveillance in patients with bladder cancer and cancer detection in patients with suspected bladder cancer.
Collapse
Affiliation(s)
- Melanie MacGregor
- Future Industry Institute, University of South Australia, Mawson Lakes, SA, 5095, Australia.
| | - Hanieh Safizadeh Shirazi
- Future Industry Institute, University of South Australia, Mawson Lakes, SA, 5095, Australia; School of Engineering, University of South Australia, Mawson Lakes, SA, 5095, Australia
| | - Kit Man Chan
- School of Engineering, University of South Australia, Mawson Lakes, SA, 5095, Australia
| | - Kola Ostrikov
- Future Industry Institute, University of South Australia, Mawson Lakes, SA, 5095, Australia; School of Engineering, University of South Australia, Mawson Lakes, SA, 5095, Australia
| | - Kym McNicholas
- Department of Renal Medicine, Flinders Medical Centre, Bedford Park, SA, 5042, Australia; College of Medicine and Public Health, Flinders University, Bedford Park, SA, 5042, Australia
| | - Alex Jay
- College of Medicine and Public Health, Flinders University, Bedford Park, SA, 5042, Australia; Department of Urology, Flinders Medical Centre, Bedford Park, SA, 5042, Australia
| | - Michael Chong
- College of Medicine and Public Health, Flinders University, Bedford Park, SA, 5042, Australia; Department of Urology, Flinders Medical Centre, Bedford Park, SA, 5042, Australia
| | - Alexander H Staudacher
- Translational Oncology Laboratory, Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, 5000, Australia; School of Medicine, University of Adelaide, SA, Adelaide, 5000, Australia
| | - Thomas D Michl
- School of Engineering, University of South Australia, Mawson Lakes, SA, 5095, Australia
| | | | - Michael P Brown
- Translational Oncology Laboratory, Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, 5000, Australia; School of Medicine, University of Adelaide, SA, Adelaide, 5000, Australia; Cancer Clinical Trials Unit, Royal Adelaide Hospital, SA, Adelaide, 5000, Australia
| | - Moein Navvab Kashani
- Future Industry Institute, University of South Australia, Mawson Lakes, SA, 5095, Australia; South Australian Node of the Australian National Fabrication Facility, University of South Australia, Mawson Lakes, SA, 5095, Australia
| | - Adam Di Fiore
- Motherson Innovations Australia, Lonsdale, SA, 5160, Australia
| | - Alex Grochowski
- Motherson Innovations Australia, Lonsdale, SA, 5160, Australia
| | - Stephen Robb
- Motherson Innovations Australia, Lonsdale, SA, 5160, Australia
| | - Simon Belcher
- Motherson Innovations Australia, Lonsdale, SA, 5160, Australia
| | - Jordan Li
- Department of Renal Medicine, Flinders Medical Centre, Bedford Park, SA, 5042, Australia; College of Medicine and Public Health, Flinders University, Bedford Park, SA, 5042, Australia
| | - Jonathan M Gleadle
- Department of Renal Medicine, Flinders Medical Centre, Bedford Park, SA, 5042, Australia; College of Medicine and Public Health, Flinders University, Bedford Park, SA, 5042, Australia
| | - Krasimir Vasilev
- Future Industry Institute, University of South Australia, Mawson Lakes, SA, 5095, Australia; School of Engineering, University of South Australia, Mawson Lakes, SA, 5095, Australia
| |
Collapse
|
19
|
Deciphering the Immune Microenvironment on A Single Archival Formalin-Fixed Paraffin-Embedded Tissue Section by An Immediately Implementable Multiplex Fluorescence Immunostaining Protocol. Cancers (Basel) 2020; 12:cancers12092449. [PMID: 32872334 PMCID: PMC7565194 DOI: 10.3390/cancers12092449] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/21/2020] [Accepted: 08/25/2020] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Technological breakthroughs have fundamentally changed our understanding on the complexity of tissue organization, both in healthy and diseased conditions. Characterizing the immune cell composition in relation to spatial distribution and histological changes may provide important diagnostic and therapeutic information. Immunohistochemistry remains a method of choice for these purposes, with crucial implications in clinics or in medical research. Nowadays, the widespread use of fluorophore-conjugated antibodies enables simultaneous visualization of an increasing number of proteins on a single tissue slice, with unprecedented resolution. However, advanced methods usually require modern and specific equipment, a significant amount of time for assay optimization, and highly specialized skills. This work reports on the use of a multiplex immunostaining method based on sequential immunostaining and antibody stripping, combined with digital image processing and analysis. Our aim is to provide the medical and research communities with a simple, cost-effective workflow to encompass some current limitations of multiplex immunohistochemistry. Abstract Technological breakthroughs have fundamentally changed our understanding on the complexity of the tumor microenvironment at the single-cell level. Characterizing the immune cell composition in relation to spatial distribution and histological changes may provide important diagnostic and therapeutic information. Immunostaining on formalin-fixed paraffin-embedded (FFPE) tissue samples represents a widespread and simple procedure, allowing the visualization of cellular distribution and processes, on preserved tissue structure. Recent advances in microscopy and molecular biology have made multiplexing accessible, yet technically challenging. We herein describe a novel, simple and cost-effective method for a reproducible and highly flexible multiplex immunostaining on archived FFPE tissue samples, which we optimized for solid organs (e.g., liver, intestine, lung, kidney) from mice and humans. Our protocol requires limited specific equipment and reagents, making multiplexing (>12 antibodies) immediately implementable to any histology laboratory routinely performing immunostaining. Using this method on single sections and combining it with automated whole-slide image analysis, we characterize the hepatic immune microenvironment in preclinical mouse models of liver fibrosis, steatohepatitis and hepatocellular carcinoma (HCC) and on human-patient samples with chronic liver diseases. The data provide useful insights into tissue organization and immune–parenchymal cell-to-cell interactions. It also highlights the profound macrophage heterogeneity in liver across premalignant conditions and HCC.
Collapse
|
20
|
Recent Advances and the Potential for Clinical Use of Autofluorescence Detection of Extra-Ophthalmic Tissues. Molecules 2020; 25:molecules25092095. [PMID: 32365790 PMCID: PMC7248908 DOI: 10.3390/molecules25092095] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/26/2020] [Accepted: 04/28/2020] [Indexed: 02/07/2023] Open
Abstract
The autofluorescence (AF) characteristics of endogenous fluorophores allow the label-free assessment and visualization of cells and tissues of the human body. While AF imaging (AFI) is well-established in ophthalmology, its clinical applications are steadily expanding to other disciplines. This review summarizes clinical advances of AF techniques published during the past decade. A systematic search of the MEDLINE database and Cochrane Library databases was performed to identify clinical AF studies in extra-ophthalmic tissues. In total, 1097 articles were identified, of which 113 from internal medicine, surgery, oral medicine, and dermatology were reviewed. While comparable technological standards exist in diabetology and cardiology, in all other disciplines, comparability between studies is limited due to the number of differing AF techniques and non-standardized imaging and data analysis. Clear evidence was found for skin AF as a surrogate for blood glucose homeostasis or cardiovascular risk grading. In thyroid surgery, foremost, less experienced surgeons may benefit from the AF-guided intraoperative separation of parathyroid from thyroid tissue. There is a growing interest in AF techniques in clinical disciplines, and promising advances have been made during the past decade. However, further research and development are mandatory to overcome the existing limitations and to maximize the clinical benefits.
Collapse
|
21
|
Yaghoobi V, Martinez-Morilla S, Liu Y, Charette L, Rimm DL, Harigopal M. Advances in quantitative immunohistochemistry and their contribution to breast cancer. Expert Rev Mol Diagn 2020; 20:509-522. [PMID: 32178550 DOI: 10.1080/14737159.2020.1743178] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Introduction: Automated image analysis provides an objective, quantitative, and reproducible method of measurement of biomarkers. Image quantification is particularly well suited for the analysis of tissue microarrays which has played a major pivotal role in the rapid assessment of molecular biomarkers. Data acquired from grinding up bulk tissue samples miss spatial information regarding cellular localization; therefore, methods that allow for spatial cell phenotyping at high resolution have proven to be valuable in many biomarker discovery assays. Here, we focus our attention on breast cancer as an example of a tumor type that has benefited from quantitative biomarker studies using tissue microarray format.Areas covered: The history of immunofluorescence and immunohistochemistry and the current status of these techniques, including multiplexing technologies (spectral and non-spectral) and image analysis software will be addressed. Finally, we will turn our attention to studies that have provided proof-of-principle evidence that have been impacted from the use of these techniques.Expert opinion: Assessment of prognostic and predictive biomarkers on tissue sections and TMA using Quantitative immunohistochemistry is an important advancement in the investigation of biologic markers. The challenges in standardization of quantitative technologies for accurate assessment are required for adoption into routine clinical practice.
Collapse
Affiliation(s)
- Vesal Yaghoobi
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | | | - Yuting Liu
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - Lori Charette
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - David L Rimm
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - Malini Harigopal
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
22
|
Pereira AV, Gois MB, Silva MS, Miranda Junior NRD, Campos CBHF, Schneider LCL, Barbosa CP, Nogueira-Melo GDA, Sant'Ana DDMG. Toxoplasma gondii causes lipofuscinosis, collagenopathy and spleen and white pulp atrophy during the acute phase of infection. Pathog Dis 2020; 77:5739919. [PMID: 32068829 DOI: 10.1093/femspd/ftaa008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 02/14/2020] [Indexed: 12/21/2022] Open
Abstract
In this study, we evaluated homeostatic and functional disorders of the spleen in mice inoculated with Toxoplasma gondii. The kinetics of megakaryocyte and leukocyte production, body and spleen mass and certain histopathological aspects were analyzed. There was increased (P < 0.05) the accumulation of lipofuscin in the red pulp of the spleen, in the periods of 30 and 60 dpi of the infection, that is, in the chronification stage of the disease and decrease of the white pulp area. In addition, we observed (from 7dpi) a quantitative and qualitative increase (P < 0.05) in the deposition of collagen fibers in the spleen of all infected mice. Since resolution of the inflammatory process resulted in pathophysiological changes, we can suggest that the T. gondii invaded and multiplied in the cells of the white and red pulps of the spleen. Although we did not find the parasite in the spleen, this hypothesis is supported by the presence of diffuse inflammatory infiltrate, which extended through the spleen parenchyma of all inoculated mice. Taken together, our results suggest that T. gondii causes severe homeostatic disorders that have altered spleen physiology, including diffuse parenchymal inflammation, lipofuscinosis in histiocytes, early aging, collagenopathy, systemic sclerosis and spleen and white pulp atrophy.
Collapse
Affiliation(s)
- Andréia Vieira Pereira
- State University of Maringá, Department of Clinical Analysis and Biomedicine, Avenue Colombo, 5790, CEP: 87020-900, Maringá, Brazil
| | - Marcelo Biondaro Gois
- Federal University of "Recôncavo'' of Bahia, Avenue Carlos Amaral, Santo Antônio de Jesus, CEP 44.430-622, Brazil; Institute of Health Sciences, Federal University of Bahia; and Postgraduate Program in Regional Development and Environment, Maria Milza College
| | - Mariana Sacchi Silva
- State University of Maringá, Department of Clinical Analysis and Biomedicine, Avenue Colombo, 5790, CEP: 87020-900, Maringá, Brazil
| | | | - Carla Betânia Huf Ferraz Campos
- State University of Maringá, Department of Clinical Analysis and Biomedicine, Avenue Colombo, 5790, CEP: 87020-900, Maringá, Brazil
| | - Larissa Carla Lauer Schneider
- State University of Maringá, Department of Morphological Sciences, Avenue Colombo, 5790, CEP: 87020-900, Maringá, Brazil
| | - Carmem Patrícia Barbosa
- State University of Maringá, Department of Morphological Sciences, Avenue Colombo, 5790, CEP: 87020-900, Maringá, Brazil
| | | | - Débora de Mello Gonçales Sant'Ana
- State University of Maringá, Department of Clinical Analysis and Biomedicine, Avenue Colombo, 5790, CEP: 87020-900, Maringá, Brazil.,State University of Maringá, Department of Morphological Sciences, Avenue Colombo, 5790, CEP: 87020-900, Maringá, Brazil
| |
Collapse
|
23
|
Sarkar S, Le P, Geng J, Liu Y, Han Z, Zahid MU, Nall D, Youn Y, Selvin PR, Smith AM. Short-Wave Infrared Quantum Dots with Compact Sizes as Molecular Probes for Fluorescence Microscopy. J Am Chem Soc 2020; 142:3449-3462. [PMID: 31964143 PMCID: PMC7335634 DOI: 10.1021/jacs.9b11567] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Materials with short-wave infrared (SWIR) emission are promising contrast agents for in vivo animal imaging, providing high-contrast and high-resolution images of blood vessels in deep tissues. However, SWIR emitters have not been developed as molecular labels for microscopy applications in the life sciences, which require optimized probes that are bright, stable, and small. Here, we design and synthesize semiconductor quantum dots (QDs) with SWIR emission based on HgxCd1-xSe alloy cores red shifted to the SWIR by epitaxial deposition of thin HgxCd1-xS shells with a small band gap. By tuning alloy composition alone, the emission can be shifted across the visible-to-SWIR (VIR) spectra while maintaining a small and equal size, allowing direct comparisons of molecular labeling performance across a broad range of wavelength. After coating with click-functional multidentate polymers, the VIR-QD spectral series has high quantum yield in the SWIR (14-33%), compact size (13 nm hydrodynamic diameter), and long-term stability in aqueous media during continuous excitation. We show that these properties enable diverse applications of SWIR molecular probes for fluorescence microscopy using conjugates of antibodies, growth factors, and nucleic acids. A broadly useful outcome is a 10-55-fold enhancement of the signal-to-background ratio at both the single-molecule level and the ensemble level in the SWIR relative to visible wavelengths, primarily due to drastically reduced autofluorescence. We anticipate that VIR-QDs with SWIR emission will enable ultrasensitive molecular imaging of low-copy number analytes in biospecimens with high autofluorescence.
Collapse
Affiliation(s)
- Suresh Sarkar
- Department of Bioengineering , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
- Micro and Nanotechnology Laboratory , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Phuong Le
- Department of Bioengineering , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
- Micro and Nanotechnology Laboratory , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Junlong Geng
- Micro and Nanotechnology Laboratory , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
- Beckman Institute for Advanced Science and Technology , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Yang Liu
- Department of Bioengineering , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
- Micro and Nanotechnology Laboratory , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Zhiyuan Han
- Micro and Nanotechnology Laboratory , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
- Department of Materials Science and Engineering , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Mohammad U Zahid
- Department of Bioengineering , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
- Micro and Nanotechnology Laboratory , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Duncan Nall
- Department of Physics , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
- Center for the Physics of Living Cells , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Yeoan Youn
- Center for the Physics of Living Cells , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
- Center for Biophysics and Quantitative Biology , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Paul R Selvin
- Department of Physics , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
- Center for the Physics of Living Cells , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
- Center for Biophysics and Quantitative Biology , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Andrew M Smith
- Department of Bioengineering , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
- Micro and Nanotechnology Laboratory , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
- Department of Materials Science and Engineering , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
- Carl R. Woese Institute for Genomic Biology , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
- Carle Illinois College of Medicine , Urbana , Illinois 61801 , United States
| |
Collapse
|
24
|
Wuensch T, Heucke N, Wizenty J, Quint J, Sinn B, Arsenic R, Jara M, Kaffarnik M, Pratschke J, Stockmann M. Hepatic CYP1A2 activity in liver tumors and the implications for preoperative volume-function analysis. Am J Physiol Gastrointest Liver Physiol 2019; 316:G608-G614. [PMID: 30869529 DOI: 10.1152/ajpgi.00335.2018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Dynamic liver function assessment by the [13C]methacetin maximal liver function capacity (LiMAx) test reflects the overall hepatic cytochrome P-450 (CYP) 1A2 activity. One proven strategy for preoperative risk assessment in liver surgery includes the combined assessment of the dynamic liver function by the LiMAx test, the volumetric analysis of the liver, and calculation of future liver remnant function. This so-called volume-function analysis assumes that the remaining CYP1A2 activity in any tumor lesion is zero. The here presented study aims to assess the remaining CYP1A2 activities in different hepatic tumor lesions and its consequences for the preoperative volume-function analysis in patients undergoing liver surgery. The CYP1A2 activity analysis of neoplastic lesions and adjacent nontumor liver tissue from resected tumor specimens revealed a significantly higher CYP1A2 activity (median, interquartile range) in nontumor tissues (35.5, 15.9-54.4 µU/mg) compared with hepatocellular adenomas (7.35, 1.2-32.5 µU/mg), hepatocellular carcinomas (0.18, 0.0-2.0 µU/mg), or colorectal liver metastasis (0.17, 0.0-2.1 µU/mg). In nontumor liver tissue, a gradual decline in CYP1A2 activity with exacerbating fibrosis was observed. The CYP1A2 activity differences were also reflected in CYP1A2 protein signals in the assessed hepatic tissues. Volume-function analysis showed a minimal deviation compared with the current standard calculation for hepatocellular carcinomas or colorectal liver metastasis (<1% difference), whereas a difference of 11.9% was observed for hepatocellular adenomas. These findings are important for a refined preoperative volume-function analysis and improved surgical risk assessment in hepatocellular adenoma cases with low LiMAx values. NEW & NOTEWORTHY The cytochrome P-450 (CYP) 1A2-dependent maximal liver function capacity test reflects the overall functional capacity of the liver. To which extent hepatocellular tumors harbor CYP1A2 activity and thus contribute to the maximal liver function capacity test outcome is unknown. We here show that hepatocellular adenomas but not hepatocellular carcinomas or colorectal liver metastasis contain significant residual CYP1A2 activity. These findings are important for an improved preoperative volume-function analysis and an accurate surgical risk assessment in hepatocellular adenoma cases.
Collapse
Affiliation(s)
- Tilo Wuensch
- Department of Surgery, Campus Charité Mitte and Campus Virchow-Klinikum, Charité- Universitätsmedizin Berlin, Berlin , Germany
| | - Niklas Heucke
- Department of Surgery, Campus Charité Mitte and Campus Virchow-Klinikum, Charité- Universitätsmedizin Berlin, Berlin , Germany
| | - Jonas Wizenty
- Department of Surgery, Campus Charité Mitte and Campus Virchow-Klinikum, Charité- Universitätsmedizin Berlin, Berlin , Germany
| | - Janina Quint
- Department of Surgery, Campus Charité Mitte and Campus Virchow-Klinikum, Charité- Universitätsmedizin Berlin, Berlin , Germany
| | - Bruno Sinn
- Institute of Pathology, Charité-Universitätsmedizin Berlin, Berlin , Germany
| | - Ruza Arsenic
- Institute of Pathology, Charité-Universitätsmedizin Berlin, Berlin , Germany
| | - Maximilian Jara
- Department of Surgery, Campus Charité Mitte and Campus Virchow-Klinikum, Charité- Universitätsmedizin Berlin, Berlin , Germany
| | - Magnus Kaffarnik
- Department of Surgery, Campus Charité Mitte and Campus Virchow-Klinikum, Charité- Universitätsmedizin Berlin, Berlin , Germany
| | - Johann Pratschke
- Department of Surgery, Campus Charité Mitte and Campus Virchow-Klinikum, Charité- Universitätsmedizin Berlin, Berlin , Germany
| | - Martin Stockmann
- Department of Surgery, Campus Charité Mitte and Campus Virchow-Klinikum, Charité- Universitätsmedizin Berlin, Berlin , Germany
| |
Collapse
|
25
|
Expression Analysis of Fibronectin Type III Domain-Containing (FNDC) Genes in Inflammatory Bowel Disease and Colorectal Cancer. Gastroenterol Res Pract 2019; 2019:3784172. [PMID: 31093274 PMCID: PMC6481110 DOI: 10.1155/2019/3784172] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/21/2019] [Accepted: 02/05/2019] [Indexed: 12/25/2022] Open
Abstract
Background Fibronectin type III domain-containing (FNDC) proteins fulfill manifold functions in tissue development and regulation of cellular metabolism. FNDC4 was described as anti-inflammatory factor, upregulated in inflammatory bowel disease (IBD). FNDC signaling includes direct cell-cell interaction as well as release of bioactive peptides, like shown for FNDC4 or FNDC5. The G-protein-coupled receptor 116 (GPR116) was found as a putative FNDC4 receptor. We here aim to comprehensively analyze the mRNA expression of FNDC1, FNDC3A, FNDC3B, FNDC4, FNDC5, and GPR116 in nonaffected and affected mucosal samples of patients with IBD or colorectal cancer (CRC). Methods Mucosa samples were obtained from 30 patients undergoing diagnostic colonoscopy or from surgical resection of IBD or CRC. Gene expression was determined by quantitative real-time PCR. In addition, FNDC expression data from publicly available Gene Expression Omnibus (GEO) data sets (GDS4296, GDS4515, and GDS5232) were analyzed. Results Basal mucosal expression revealed higher expression of FNDC3A and FNDC5 in the ileum compared to colonic segments. FNDC1 and FNDC4 were significantly upregulated in IBD. None of the investigated FNDCs was differentially expressed in CRC, just FNDC3A trended to be upregulated. The GEO data set analysis revealed significantly downregulated FNDC4 and upregulated GPR116 in microsatellite unstable (MSI) CRCs. The expression of FNDCs and GPR116 was independent of age and sex. Conclusions FNDC1 and FNDC4 may play a relevant role in the pathobiology of IBD, but none of the investigated FNDCs is regulated in CRC. GPR116 may be upregulated in advanced or MSI CRC. Further studies should validate the altered FNDC expression results on protein levels and examine the corresponding functional consequences.
Collapse
|