1
|
Cao J, Roth S, Zhang S, Kopczak A, Mami S, Asare Y, Georgakis MK, Messerer D, Horn A, Shemer R, Jacqmarcq C, Picot A, Green JP, Schlegl C, Li X, Tomas L, Dutsch A, Liman TG, Endres M, Wernsdorf SR, Fürle C, Carofiglio O, Zhu J, Brough D, Hornung V, Dichgans M, Vivien D, Schulz C, Dor Y, Tiedt S, Sager HB, Grosse GM, Liesz A. DNA-sensing inflammasomes cause recurrent atherosclerotic stroke. Nature 2024; 633:433-441. [PMID: 39112714 PMCID: PMC11390481 DOI: 10.1038/s41586-024-07803-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 07/09/2024] [Indexed: 08/17/2024]
Abstract
The risk of early recurrent events after stroke remains high despite currently established secondary prevention strategies1. Risk is particularly high in patients with atherosclerosis, with more than 10% of patients experiencing early recurrent events1,2. However, despite the enormous medical burden of this clinical phenomenon, the underlying mechanisms leading to increased vascular risk and recurrent stroke are largely unknown. Here, using a novel mouse model of stroke-induced recurrent ischaemia, we show that stroke leads to activation of the AIM2 inflammasome in vulnerable atherosclerotic plaques via an increase of circulating cell-free DNA. Enhanced plaque inflammation post-stroke results in plaque destabilization and atherothrombosis, finally leading to arterioarterial embolism and recurrent stroke within days after the index stroke. We confirm key steps of plaque destabilization also after experimental myocardial infarction and in carotid artery plaque samples from patients with acute stroke. Rapid neutrophil NETosis was identified as the main source of cell-free DNA after stroke and NET-DNA as the causative agent leading to AIM2 inflammasome activation. Neutralization of cell-free DNA by DNase treatment or inhibition of inflammasome activation reduced the rate of stroke recurrence after experimental stroke. Our findings present an explanation for the high recurrence rate after incident ischaemic events in patients with atherosclerosis. The detailed mechanisms uncovered here provide clinically uncharted therapeutic targets for which we show high efficacy to prevent recurrent events. Targeting DNA-mediated inflammasome activation after remote tissue injury represents a promising avenue for further clinical development in the prevention of early recurrent events.
Collapse
Affiliation(s)
- Jiayu Cao
- Institute for Stroke and Dementia Research (ISD), LMU University Hospital, LMU Munich, Munich, Germany
| | - Stefan Roth
- Institute for Stroke and Dementia Research (ISD), LMU University Hospital, LMU Munich, Munich, Germany.
| | - Sijia Zhang
- Institute for Stroke and Dementia Research (ISD), LMU University Hospital, LMU Munich, Munich, Germany
| | - Anna Kopczak
- Institute for Stroke and Dementia Research (ISD), LMU University Hospital, LMU Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Samira Mami
- Institute for Stroke and Dementia Research (ISD), LMU University Hospital, LMU Munich, Munich, Germany
| | - Yaw Asare
- Institute for Stroke and Dementia Research (ISD), LMU University Hospital, LMU Munich, Munich, Germany
| | - Marios K Georgakis
- Institute for Stroke and Dementia Research (ISD), LMU University Hospital, LMU Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Programme in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Denise Messerer
- Medizinische Klinik und Poliklinik I, LMU University Hospital, LMU Munich, Munich, Germany
| | - Amit Horn
- Department of Developmental Biology and Cancer Research, Hebrew University of Jerusalem, Faculty of Medicine, Jerusalem, Israel
| | - Ruth Shemer
- Department of Developmental Biology and Cancer Research, Hebrew University of Jerusalem, Faculty of Medicine, Jerusalem, Israel
| | - Charlene Jacqmarcq
- Normandie University, UNICAEN, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), GIP Cyceron, Institute Blood and Brain @ Caen-Normandie (BB@C), Caen, France
| | - Audrey Picot
- Normandie University, UNICAEN, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), GIP Cyceron, Institute Blood and Brain @ Caen-Normandie (BB@C), Caen, France
| | - Jack P Green
- Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance NHS Group, University of Manchester, Manchester, UK
| | - Christina Schlegl
- Institute for Stroke and Dementia Research (ISD), LMU University Hospital, LMU Munich, Munich, Germany
| | - Xinghai Li
- Department of Cardiology, German Heart Centre Munich, Technical University of Munich, Munich, Germany
| | - Lukas Tomas
- Medizinische Klinik und Poliklinik I, LMU University Hospital, LMU Munich, Munich, Germany
| | - Alexander Dutsch
- Department of Cardiology, German Heart Centre Munich, Technical University of Munich, Munich, Germany
| | - Thomas G Liman
- Center for Stroke Research Berlin (CSB), Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Matthias Endres
- Center for Stroke Research Berlin (CSB), Charité-Universitätsmedizin Berlin, Berlin, Germany
- Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| | - Saskia R Wernsdorf
- Institute for Stroke and Dementia Research (ISD), LMU University Hospital, LMU Munich, Munich, Germany
| | - Christina Fürle
- Institute for Stroke and Dementia Research (ISD), LMU University Hospital, LMU Munich, Munich, Germany
| | - Olga Carofiglio
- Institute for Stroke and Dementia Research (ISD), LMU University Hospital, LMU Munich, Munich, Germany
| | - Jie Zhu
- Institute for Stroke and Dementia Research (ISD), LMU University Hospital, LMU Munich, Munich, Germany
| | - David Brough
- Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance NHS Group, University of Manchester, Manchester, UK
| | - Veit Hornung
- Gene Center and Department of Biochemistry, LMU Munich, Munich, Germany
| | - Martin Dichgans
- Institute for Stroke and Dementia Research (ISD), LMU University Hospital, LMU Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Denis Vivien
- Normandie University, UNICAEN, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), GIP Cyceron, Institute Blood and Brain @ Caen-Normandie (BB@C), Caen, France
- Research Clinical Department, Caen Normandie University Hospital, Caen, France
| | - Christian Schulz
- Medizinische Klinik und Poliklinik I, LMU University Hospital, LMU Munich, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
- Department of Immunopharmacology, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Yuval Dor
- Department of Developmental Biology and Cancer Research, Hebrew University of Jerusalem, Faculty of Medicine, Jerusalem, Israel
| | - Steffen Tiedt
- Institute for Stroke and Dementia Research (ISD), LMU University Hospital, LMU Munich, Munich, Germany
| | - Hendrik B Sager
- Department of Cardiology, German Heart Centre Munich, Technical University of Munich, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Gerrit M Grosse
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Arthur Liesz
- Institute for Stroke and Dementia Research (ISD), LMU University Hospital, LMU Munich, Munich, Germany.
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| |
Collapse
|
2
|
Weinberger T, Denise M, Joppich M, Fischer M, Garcia Rodriguez C, Kumaraswami K, Wimmler V, Ablinger S, Räuber S, Fang J, Liu L, Liu WH, Winterhalter J, Lichti J, Thomas L, Esfandyari D, Percin G, Matin S, Hidalgo A, Waskow C, Engelhardt S, Todica A, Zimmer R, Pridans C, Gomez Perdiguero E, Schulz C. Resident and recruited macrophages differentially contribute to cardiac healing after myocardial ischemia. eLife 2024; 12:RP89377. [PMID: 38775664 PMCID: PMC11111219 DOI: 10.7554/elife.89377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2024] Open
Abstract
Cardiac macrophages are heterogenous in phenotype and functions, which has been associated with differences in their ontogeny. Despite extensive research, our understanding of the precise role of different subsets of macrophages in ischemia/reperfusion (I/R) injury remains incomplete. We here investigated macrophage lineages and ablated tissue macrophages in homeostasis and after I/R injury in a CSF1R-dependent manner. Genomic deletion of a fms-intronic regulatory element (FIRE) in the Csf1r locus resulted in specific absence of resident homeostatic and antigen-presenting macrophages, without affecting the recruitment of monocyte-derived macrophages to the infarcted heart. Specific absence of homeostatic, monocyte-independent macrophages altered the immune cell crosstalk in response to injury and induced proinflammatory neutrophil polarization, resulting in impaired cardiac remodeling without influencing infarct size. In contrast, continuous CSF1R inhibition led to depletion of both resident and recruited macrophage populations. This augmented adverse remodeling after I/R and led to an increased infarct size and deterioration of cardiac function. In summary, resident macrophages orchestrate inflammatory responses improving cardiac remodeling, while recruited macrophages determine infarct size after I/R injury. These findings attribute distinct beneficial effects to different macrophage populations in the context of myocardial infarction.
Collapse
Affiliation(s)
- Tobias Weinberger
- Medical Clinic I., Department of Cardiology, University Hospital, Ludwig Maximilian UniversityMunichGermany
- Institute of Surgical Research at the Walter-Brendel-Centre of Experimental Medicine UniversityMunichGermany
- DZHK (German Centre for Cardiovascular Research), Partner site Munich Heart AllianceMunichGermany
- Institut Pasteur, Unité Macrophages et Développement de l'Immunité, Département de Biologie du Développement et Cellules SouchesParisFrance
| | - Messerer Denise
- Medical Clinic I., Department of Cardiology, University Hospital, Ludwig Maximilian UniversityMunichGermany
- Institute of Surgical Research at the Walter-Brendel-Centre of Experimental Medicine UniversityMunichGermany
| | - Markus Joppich
- LFE Bioinformatik, Department of Informatics, Ludwig Maximilian UniversityMunichGermany
| | - Maximilian Fischer
- Medical Clinic I., Department of Cardiology, University Hospital, Ludwig Maximilian UniversityMunichGermany
- Institute of Surgical Research at the Walter-Brendel-Centre of Experimental Medicine UniversityMunichGermany
- DZHK (German Centre for Cardiovascular Research), Partner site Munich Heart AllianceMunichGermany
| | - Clarisabel Garcia Rodriguez
- Institut Pasteur, Unité Macrophages et Développement de l'Immunité, Département de Biologie du Développement et Cellules SouchesParisFrance
| | - Konda Kumaraswami
- Medical Clinic I., Department of Cardiology, University Hospital, Ludwig Maximilian UniversityMunichGermany
- Institute of Surgical Research at the Walter-Brendel-Centre of Experimental Medicine UniversityMunichGermany
| | - Vanessa Wimmler
- Medical Clinic I., Department of Cardiology, University Hospital, Ludwig Maximilian UniversityMunichGermany
- Institute of Surgical Research at the Walter-Brendel-Centre of Experimental Medicine UniversityMunichGermany
| | - Sonja Ablinger
- Medical Clinic I., Department of Cardiology, University Hospital, Ludwig Maximilian UniversityMunichGermany
- Institute of Surgical Research at the Walter-Brendel-Centre of Experimental Medicine UniversityMunichGermany
| | - Saskia Räuber
- Medical Clinic I., Department of Cardiology, University Hospital, Ludwig Maximilian UniversityMunichGermany
- Institute of Surgical Research at the Walter-Brendel-Centre of Experimental Medicine UniversityMunichGermany
- Department of Neurology, Medical Faculty, Heinrich Heine University of DüsseldorfDüsseldorfGermany
| | - Jiahui Fang
- Medical Clinic I., Department of Cardiology, University Hospital, Ludwig Maximilian UniversityMunichGermany
- Institute of Surgical Research at the Walter-Brendel-Centre of Experimental Medicine UniversityMunichGermany
| | - Lulu Liu
- Medical Clinic I., Department of Cardiology, University Hospital, Ludwig Maximilian UniversityMunichGermany
- Institute of Surgical Research at the Walter-Brendel-Centre of Experimental Medicine UniversityMunichGermany
| | - Wing Han Liu
- Medical Clinic I., Department of Cardiology, University Hospital, Ludwig Maximilian UniversityMunichGermany
| | - Julia Winterhalter
- Medical Clinic I., Department of Cardiology, University Hospital, Ludwig Maximilian UniversityMunichGermany
- Institute of Surgical Research at the Walter-Brendel-Centre of Experimental Medicine UniversityMunichGermany
| | - Johannes Lichti
- Medical Clinic I., Department of Cardiology, University Hospital, Ludwig Maximilian UniversityMunichGermany
| | - Lukas Thomas
- Medical Clinic I., Department of Cardiology, University Hospital, Ludwig Maximilian UniversityMunichGermany
- Institute of Surgical Research at the Walter-Brendel-Centre of Experimental Medicine UniversityMunichGermany
- DZHK (German Centre for Cardiovascular Research), Partner site Munich Heart AllianceMunichGermany
| | - Dena Esfandyari
- DZHK (German Centre for Cardiovascular Research), Partner site Munich Heart AllianceMunichGermany
- Institute of Pharmacology and Toxicology, Technical University MunichMunichGermany
| | - Guelce Percin
- Immunology of Aging, Leibniz-Institute on Aging - Fritz-Lipmann-Institute (FLI)JenaGermany
| | - Sandra Matin
- Area of Cell & Developmental Biology, Centro Nacional de Investigaciones Cardiovasculares Carlos IIIMadridSpain
| | - Andrés Hidalgo
- Area of Cell & Developmental Biology, Centro Nacional de Investigaciones Cardiovasculares Carlos IIIMadridSpain
- Vascular Biology and Therapeutics Program and Department of Immunobiology, Yale University School of MedicineNew HavenUnited States
| | - Claudia Waskow
- Immunology of Aging, Leibniz-Institute on Aging - Fritz-Lipmann-Institute (FLI)JenaGermany
- Faculty of Biological Sciences, Friedrich-Schiller-UniversityJenaGermany
| | - Stefan Engelhardt
- DZHK (German Centre for Cardiovascular Research), Partner site Munich Heart AllianceMunichGermany
- Institute of Pharmacology and Toxicology, Technical University MunichMunichGermany
| | - Andrei Todica
- Department of Nuclear Medicine, Ludwig Maximilian UniversityMunichGermany
| | - Ralf Zimmer
- LFE Bioinformatik, Department of Informatics, Ludwig Maximilian UniversityMunichGermany
| | - Clare Pridans
- Simons Initiative for the Developing Brain, Centre for Discovery Brain Sciences, University of EdinburghEdinburghUnited Kingdom
- University of Edinburgh Centre for Inflammation Research, The Queen's Medical Research InstituteEdinburghUnited Kingdom
| | - Elisa Gomez Perdiguero
- Institut Pasteur, Unité Macrophages et Développement de l'Immunité, Département de Biologie du Développement et Cellules SouchesParisFrance
| | - Christian Schulz
- Medical Clinic I., Department of Cardiology, University Hospital, Ludwig Maximilian UniversityMunichGermany
- Institute of Surgical Research at the Walter-Brendel-Centre of Experimental Medicine UniversityMunichGermany
- DZHK (German Centre for Cardiovascular Research), Partner site Munich Heart AllianceMunichGermany
- Department of Immunopharmacology, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg UniversityMannheimGermany
| |
Collapse
|
3
|
Two populations of self-maintaining monocyte-independent macrophages exist in adult epididymis and testis. Proc Natl Acad Sci U S A 2021; 118:2013686117. [PMID: 33372158 DOI: 10.1073/pnas.2013686117] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Macrophages are the principal immune cells of the epididymis and testis, but their origins, heterogeneity, development, and maintenance are not well understood. Here, we describe distinct populations of epididymal and testicular macrophages that display an organ-specific cellular identity. Combining in vivo fate-mapping, chimeric and parabiotic mouse models with in-depth cellular analyses, we found that CD64hiMHCIIlo and CD64loMHCIIhi macrophage populations of epididymis and testis arise sequentially from yolk sac erythro-myeloid progenitors, embryonic hematopoiesis, and nascent neonatal monocytes. While monocytes were the major developmental source of both epididymal and testicular macrophages, both populations self-maintain in the steady-state independent of bone marrow hematopoietic precursors. However, after radiation-induced macrophage ablation or during infection, bone marrow-derived circulating monocytes are recruited to the epididymis and testis, giving rise to inflammatory macrophages that promote tissue damage. These results define the layered ontogeny, maintenance and inflammatory response of macrophage populations in the male reproductive organs.
Collapse
|
4
|
Weinberger T, Esfandyari D, Messerer D, Percin G, Schleifer C, Thaler R, Liu L, Stremmel C, Schneider V, Vagnozzi RJ, Schwanenkamp J, Fischer M, Busch K, Klapproth K, Ishikawa-Ankerhold H, Klösges L, Titova A, Molkentin JD, Kobayashi Y, Engelhardt S, Massberg S, Waskow C, Perdiguero EG, Schulz C. Ontogeny of arterial macrophages defines their functions in homeostasis and inflammation. Nat Commun 2020; 11:4549. [PMID: 32917889 PMCID: PMC7486394 DOI: 10.1038/s41467-020-18287-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 08/12/2020] [Indexed: 12/22/2022] Open
Abstract
Arterial macrophages have different developmental origins, but the association of macrophage ontogeny with their phenotypes and functions in adulthood is still unclear. Here, we combine macrophage fate-mapping analysis with single-cell RNA sequencing to establish their cellular identity during homeostasis, and in response to angiotensin-II (AngII)-induced arterial inflammation. Yolk sac erythro-myeloid progenitors (EMP) contribute substantially to adventitial macrophages and give rise to a defined cluster of resident immune cells with homeostatic functions that is stable in adult mice, but declines in numbers during ageing and is not replenished by bone marrow (BM)-derived macrophages. In response to AngII inflammation, increase in adventitial macrophages is driven by recruitment of BM monocytes, while EMP-derived macrophages proliferate locally and provide a distinct transcriptional response that is linked to tissue regeneration. Our findings thus contribute to the understanding of macrophage heterogeneity, and associate macrophage ontogeny with distinct functions in health and disease. Arterial macrophages develop from either yolk sac or bone marrow progenitors. Here, the author show that ageing-induced reduction of arterial macrophages is not replenished by bone marrow-derived cells, but under inflammatory conditions circulating monocytes are recruited to maintain homeostasis, while arterial macrophages of yolk sac origin carry out tissue repair.
Collapse
Affiliation(s)
- Tobias Weinberger
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Ludwig-Maximilians-Universität, Marchioninistrasse 15, 81377, Munich, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, 80802, Munich, Germany
| | - Dena Esfandyari
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, 80802, Munich, Germany.,Institute of Pharmacology and Toxicology, Technische Universität München, Biedersteiner Strasse 29, 80802, Munich, Germany
| | - Denise Messerer
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Ludwig-Maximilians-Universität, Marchioninistrasse 15, 81377, Munich, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, 80802, Munich, Germany
| | - Gulce Percin
- Regeneration in Hematopoiesis, Leibniz-Institute on Aging - Fritz-Lipmann-Institute (FLI), Beutenbergstrasse 11, 07745, Jena, Germany
| | - Christian Schleifer
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Ludwig-Maximilians-Universität, Marchioninistrasse 15, 81377, Munich, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, 80802, Munich, Germany
| | - Raffael Thaler
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Ludwig-Maximilians-Universität, Marchioninistrasse 15, 81377, Munich, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, 80802, Munich, Germany
| | - Lulu Liu
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Ludwig-Maximilians-Universität, Marchioninistrasse 15, 81377, Munich, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, 80802, Munich, Germany
| | - Christopher Stremmel
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Ludwig-Maximilians-Universität, Marchioninistrasse 15, 81377, Munich, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, 80802, Munich, Germany
| | - Vanessa Schneider
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Ludwig-Maximilians-Universität, Marchioninistrasse 15, 81377, Munich, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, 80802, Munich, Germany
| | - Ronald J Vagnozzi
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Jennifer Schwanenkamp
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Maximilian Fischer
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Ludwig-Maximilians-Universität, Marchioninistrasse 15, 81377, Munich, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, 80802, Munich, Germany
| | - Katrin Busch
- Division of Cellular Immunology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Kay Klapproth
- Division of Cellular Immunology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Hellen Ishikawa-Ankerhold
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Ludwig-Maximilians-Universität, Marchioninistrasse 15, 81377, Munich, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, 80802, Munich, Germany
| | - Lukas Klösges
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Ludwig-Maximilians-Universität, Marchioninistrasse 15, 81377, Munich, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, 80802, Munich, Germany
| | - Anna Titova
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Ludwig-Maximilians-Universität, Marchioninistrasse 15, 81377, Munich, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, 80802, Munich, Germany
| | - Jeffery D Molkentin
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.,Howard Hughes Medical Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Yasuhiro Kobayashi
- Institute for Oral Science, Matsumoto Dental University, 1780 Hiro-Oka Gobara Shiojiri, Nagano, 390-0781, Japan
| | - Stefan Engelhardt
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, 80802, Munich, Germany.,Institute of Pharmacology and Toxicology, Technische Universität München, Biedersteiner Strasse 29, 80802, Munich, Germany
| | - Steffen Massberg
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Ludwig-Maximilians-Universität, Marchioninistrasse 15, 81377, Munich, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, 80802, Munich, Germany
| | - Claudia Waskow
- Regeneration in Hematopoiesis, Leibniz-Institute on Aging - Fritz-Lipmann-Institute (FLI), Beutenbergstrasse 11, 07745, Jena, Germany.,Faculty of Biological Sciences, Friedrich-Schiller-University Jena, 07737 Jena, 07745, Jena, Germany
| | - Elisa Gomez Perdiguero
- Institut Pasteur, Macrophages and Endothelial cells, Département de Biologie du Développement et Cellules Souches, UMR3738 CNRS, Paris, 75015, France
| | - Christian Schulz
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Ludwig-Maximilians-Universität, Marchioninistrasse 15, 81377, Munich, Germany. .,DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, 80802, Munich, Germany. .,Walter-Brendel-Center for Experimental Medicine, Ludwig Maximilian University, Marchioninistrasse 27, 81377, Munich, Germany.
| |
Collapse
|
5
|
Salei N, Rambichler S, Salvermoser J, Papaioannou NE, Schuchert R, Pakalniškytė D, Li N, Marschner JA, Lichtnekert J, Stremmel C, Cernilogar FM, Salvermoser M, Walzog B, Straub T, Schotta G, Anders HJ, Schulz C, Schraml BU. The Kidney Contains Ontogenetically Distinct Dendritic Cell and Macrophage Subtypes throughout Development That Differ in Their Inflammatory Properties. J Am Soc Nephrol 2020; 31:257-278. [PMID: 31932472 DOI: 10.1681/asn.2019040419] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 10/20/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Mononuclear phagocytes (MPs), including macrophages, monocytes, and dendritic cells (DCs), are phagocytic cells with important roles in immunity. The developmental origin of kidney DCs has been highly debated because of the large phenotypic overlap between macrophages and DCs in this tissue. METHODS We used fate mapping, RNA sequencing, flow cytometry, confocal microscopy, and histo-cytometry to assess the origin and phenotypic and functional properties of renal DCs in healthy kidney and of DCs after cisplatin and ischemia reperfusion-induced kidney injury. RESULTS Adult kidney contains at least four subsets of MPs with prominent Clec9a-expression history indicating a DC origin. We demonstrate that these populations are phenotypically, functionally, and transcriptionally distinct from each other. We also show these kidney MPs exhibit unique age-dependent developmental heterogeneity. Kidneys from newborn mice contain a prominent population of embryonic-derived MHCIInegF4/80hiCD11blow macrophages that express T cell Ig and mucin domain containing 4 (TIM-4) and MER receptor tyrosine kinase (MERTK). These macrophages are replaced within a few weeks after birth by phenotypically similar cells that express MHCII but lack TIM-4 and MERTK. MHCII+F4/80hi cells exhibit prominent Clec9a-expression history in adulthood but not early life, indicating additional age-dependent developmental heterogeneity. In AKI, MHCIInegF4/80hi cells reappear in adult kidneys as a result of MHCII downregulation by resident MHCII+F4/80hi cells, possibly in response to prostaglandin E2 (PGE2). RNA sequencing further suggests MHCII+F4/80hi cells help coordinate the recruitment of inflammatory cells during renal injury. CONCLUSIONS Distinct developmental programs contribute to renal DC and macrophage populations throughout life, which could have important implications for therapies targeting these cells.
Collapse
Affiliation(s)
- Natallia Salei
- Walter Brendel Centre of Experimental Medicine, University Hospital Munich.,Institute for Cardiovascular Physiology and Pathophysiology
| | - Stephan Rambichler
- Walter Brendel Centre of Experimental Medicine, University Hospital Munich.,Institute for Cardiovascular Physiology and Pathophysiology
| | - Johanna Salvermoser
- Walter Brendel Centre of Experimental Medicine, University Hospital Munich.,Institute for Cardiovascular Physiology and Pathophysiology
| | - Nikos E Papaioannou
- Walter Brendel Centre of Experimental Medicine, University Hospital Munich.,Institute for Cardiovascular Physiology and Pathophysiology
| | - Ronja Schuchert
- Medical Clinic and Polyclinic I and.,DZHK (Deutsches Zentrum für Herz-Kreislaufforschung [German Center for Cardiovascular Research]), Partner Site Munich Heart Alliance, Munich, Germany; and
| | - Dalia Pakalniškytė
- Walter Brendel Centre of Experimental Medicine, University Hospital Munich.,Institute for Cardiovascular Physiology and Pathophysiology
| | - Na Li
- Division of Nephrology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shen Zhen, China.,Division of Nephrology, Medical Clinic and Polyclinic IV, University Hospital Munich, Ludwig Maximilian University of Munich, Munich, Germany
| | - Julian A Marschner
- Division of Nephrology, Medical Clinic and Polyclinic IV, University Hospital Munich, Ludwig Maximilian University of Munich, Munich, Germany
| | - Julia Lichtnekert
- Division of Nephrology, Medical Clinic and Polyclinic IV, University Hospital Munich, Ludwig Maximilian University of Munich, Munich, Germany
| | - Christopher Stremmel
- Medical Clinic and Polyclinic I and.,DZHK (Deutsches Zentrum für Herz-Kreislaufforschung [German Center for Cardiovascular Research]), Partner Site Munich Heart Alliance, Munich, Germany; and
| | | | - Melanie Salvermoser
- Walter Brendel Centre of Experimental Medicine, University Hospital Munich.,Institute for Cardiovascular Physiology and Pathophysiology
| | - Barbara Walzog
- Walter Brendel Centre of Experimental Medicine, University Hospital Munich.,Institute for Cardiovascular Physiology and Pathophysiology
| | | | - Gunnar Schotta
- Division of Molecular Biology.,Center for Integrated Protein Science Munich, Biomedical Center, Faculty of Medicine, Ludwig Maximilian University of Munich, Martinsried, Germany
| | - Hans-Joachim Anders
- Division of Nephrology, Medical Clinic and Polyclinic IV, University Hospital Munich, Ludwig Maximilian University of Munich, Munich, Germany
| | - Christian Schulz
- Medical Clinic and Polyclinic I and.,DZHK (Deutsches Zentrum für Herz-Kreislaufforschung [German Center for Cardiovascular Research]), Partner Site Munich Heart Alliance, Munich, Germany; and
| | - Barbara U Schraml
- Walter Brendel Centre of Experimental Medicine, University Hospital Munich, .,Institute for Cardiovascular Physiology and Pathophysiology
| |
Collapse
|