1
|
Ooi VY, Yeh TY. Recent Advances and Mechanisms of Phage-Based Therapies in Cancer Treatment. Int J Mol Sci 2024; 25:9938. [PMID: 39337427 PMCID: PMC11432602 DOI: 10.3390/ijms25189938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/07/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
The increasing interest in bacteriophage technology has prompted its novel applications to treat different medical conditions, most interestingly cancer. Due to their high specificity, manipulability, nontoxicity, and nanosize nature, phages are promising carriers in targeted therapy and cancer immunotherapy. This approach is particularly timely, as current challenges in cancer research include damage to healthy cells, inefficiency in targeting, obstruction by biological barriers, and drug resistance. Some cancers are being kept at the forefront of phage research, such as colorectal cancer and HCC, while others like lymphoma, cervical cancer, and myeloma have not been retouched in a decade. Common mechanisms are immunogenic antigen display on phage coats and the use of phage as transporters to carry drugs, genes, and other molecules. To date, popular phage treatments being tested are gene therapy and phage-based vaccines using M13 and λ phage, with some vaccines having advanced to human clinical trials. The results from most of these studies have been promising, but limitations in phage-based therapies such as reticuloendothelial system clearance or diffusion inefficiency must be addressed. Before phage-based therapies for cancer can be successfully used in oncology practice, more in-depth research and support from local governments are required.
Collapse
Affiliation(s)
| | - Ting-Yu Yeh
- Agricultural Biotechnology Laboratory, Auxergen Inc., Riti Rossi Colwell Center, 701 E Pratt Street, Baltimore, MD 21202, USA
| |
Collapse
|
2
|
Cui L, Watanabe S, Miyanaga K, Kiga K, Sasahara T, Aiba Y, Tan XE, Veeranarayanan S, Thitiananpakorn K, Nguyen HM, Wannigama DL. A Comprehensive Review on Phage Therapy and Phage-Based Drug Development. Antibiotics (Basel) 2024; 13:870. [PMID: 39335043 PMCID: PMC11428490 DOI: 10.3390/antibiotics13090870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/06/2024] [Accepted: 09/08/2024] [Indexed: 09/30/2024] Open
Abstract
Phage therapy, the use of bacteriophages (phages) to treat bacterial infections, is regaining momentum as a promising weapon against the rising threat of multidrug-resistant (MDR) bacteria. This comprehensive review explores the historical context, the modern resurgence of phage therapy, and phage-facilitated advancements in medical and technological fields. It details the mechanisms of action and applications of phages in treating MDR bacterial infections, particularly those associated with biofilms and intracellular pathogens. The review further highlights innovative uses of phages in vaccine development, cancer therapy, and as gene delivery vectors. Despite its targeted and efficient approach, phage therapy faces challenges related to phage stability, immune response, and regulatory approval. By examining these areas in detail, this review underscores the immense potential and remaining hurdles in integrating phage-based therapies into modern medical practices.
Collapse
Affiliation(s)
- Longzhu Cui
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke City 329-0498, Japan
| | - Shinya Watanabe
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke City 329-0498, Japan
| | - Kazuhiko Miyanaga
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke City 329-0498, Japan
| | - Kotaro Kiga
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke City 329-0498, Japan
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Teppei Sasahara
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke City 329-0498, Japan
| | - Yoshifumi Aiba
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke City 329-0498, Japan
| | - Xin-Ee Tan
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke City 329-0498, Japan
| | - Srivani Veeranarayanan
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke City 329-0498, Japan
| | - Kanate Thitiananpakorn
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke City 329-0498, Japan
| | - Huong Minh Nguyen
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke City 329-0498, Japan
| | - Dhammika Leshan Wannigama
- Department of Infectious Diseases and Infection Control, Yamagata Prefectural Central Hospital, Yamagata 990-2292, Japan
| |
Collapse
|
3
|
Jahanafrooz Z, Oroojalian F, Mokhtarzadeh A, Rahdar A, Díez-Pascual AM. Nanovaccines: Immunogenic tumor antigens, targeted delivery, and combination therapy to enhance cancer immunotherapy. Drug Dev Res 2024; 85:e22244. [PMID: 39138855 DOI: 10.1002/ddr.22244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/16/2024] [Accepted: 07/29/2024] [Indexed: 08/15/2024]
Abstract
Nanovaccines have been designed to overcome the limitations associated with conventional vaccines. Effective delivery methods such as engineered carriers or smart nanoparticles (NPs) are critical requisites for inducing self-tolerance and optimizing vaccine immunogenicity with minimum side effects. NPs can be used as adjuvants, immunogens, or nanocarriers to develop nanovaccines for efficient antigen delivery. Multiloaded nanovaccines carrying multiple tumor antigens along with immunostimulants can effectively increase immunity against tumor cells. They can be biologically engineered to boost interactions with dendritic cells and to allow a gradual and constant antigen release. Modifying NPs surface properties, using high-density lipoprotein-mimicking nanodiscs, and developing nano-based artificial antigen-presenting cells such as dendritic cell-derived-exosomes are amongst the new developed technologies to enhance antigen-presentation and immune reactions against tumor cells. The present review provides an overview on the different perspectives, improvements, and barriers of successful clinical application of current cancer therapeutic and vaccination options. The immunomodulatory effects of different types of nanovaccines and the nanoparticles incorporated into their structure are described. The advantages of using nanovaccines to prevent and treat common illnesses such as AIDS, malaria, cancer and tuberculosis are discussed. Further, potential paths to develop optimal cancer vaccines are described. Given the immunosuppressive characteristics of both cancer cells and the tumor microenvironment, applying immunomodulators and immune checkpoint inhibitors in combination with other conventional anticancer therapies are necessary to boost the effectiveness of the immune response.
Collapse
Affiliation(s)
- Zohreh Jahanafrooz
- Department of Biology, Faculty of Sciences, University of Maragheh, Maragheh, Iran
| | - Fatemeh Oroojalian
- Natural Products & Medicinal Plants Research Center, North Khorasan University of Medical Sciences Bojnurd, Bojnurd, Iran
- Department of Medical Nanotechnology, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abbas Rahdar
- Department of Physics, Faculty of Sciences, University of Zabol, Zabol, Iran
| | - Ana M Díez-Pascual
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Química Analítica, Química Física e Ingenieria Química, Alcalá de Henares, Spain
| |
Collapse
|
4
|
Brišar N, Šuster K, Brezar SK, Vidmar R, Fonović M, Cör A. An Engineered M13 Filamentous Nanoparticle as an Antigen Carrier for a Malignant Melanoma Immunotherapeutic Strategy. Viruses 2024; 16:232. [PMID: 38400008 PMCID: PMC10893169 DOI: 10.3390/v16020232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
Bacteriophages, prokaryotic viruses, hold great potential in genetic engineering to open up new avenues for vaccine development. Our study aimed to establish engineered M13 bacteriophages expressing MAGE-A1 tumor peptides as a vaccine for melanoma treatment. Through in vivo experiments, we sought to assess their ability to induce robust immune responses. Using phage display technology, we engineered two M13 bacteriophages expressing MAGE-A1 peptides as fusion proteins with either pVIII or pIIII coat proteins. Mice were intraperitoneally vaccinated three times, two weeks apart, using two different engineered bacteriophages; control groups received a wild-type bacteriophage. Serum samples taken seven days after each vaccination were analyzed by ELISA assay, while splenocytes harvested seven days following the second boost were evaluated by ex vivo cytotoxicity assay. Fusion proteins were confirmed by Western blot and nano-LC-MS/MS. The application of bacteriophages was safe, with no adverse effects on mice. Engineered bacteriophages effectively triggered immune responses, leading to increased levels of anti-MAGE-A1 antibodies in proportion to the administered bacteriophage dosage. Anti-MAGE-A1 antibodies also exhibited a binding capability to B16F10 tumor cells in vitro, as opposed to control samples. Splenocytes demonstrated enhanced CTL cytotoxicity against B16F10 cells. We have demonstrated the immunogenic capabilities of engineered M13 bacteriophages, emphasizing their potential for melanoma immunotherapy.
Collapse
Affiliation(s)
- Nuša Brišar
- Faculty of Health Sciences, University of Primorska, 6310 Izola, Slovenia;
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Katja Šuster
- Valdoltra Orthopaedic Hospital, 6280 Ankaran, Slovenia;
| | - Simona Kranjc Brezar
- Department of Experimental Oncology, Institute of Oncology Ljubljana, 1000 Ljubljana, Slovenia;
| | - Robert Vidmar
- Department of Biochemistry, Molecular and Structural Biology, Jozef Stefan Institute, 1000 Ljubljana, Slovenia; (R.V.); (M.F.)
| | - Marko Fonović
- Department of Biochemistry, Molecular and Structural Biology, Jozef Stefan Institute, 1000 Ljubljana, Slovenia; (R.V.); (M.F.)
| | - Andrej Cör
- Valdoltra Orthopaedic Hospital, 6280 Ankaran, Slovenia;
- Faculty of Education, University of Primorska, 6310 Izola, Slovenia
| |
Collapse
|
5
|
Tian J, Ma J. The Value of Microbes in Cancer Neoantigen Immunotherapy. Pharmaceutics 2023; 15:2138. [PMID: 37631352 PMCID: PMC10459105 DOI: 10.3390/pharmaceutics15082138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/06/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
Tumor neoantigens are widely used in cancer immunotherapy, and a growing body of research suggests that microbes play an important role in these neoantigen-based immunotherapeutic processes. The human body and its surrounding environment are filled with a large number of microbes that are in long-term interaction with the organism. The microbiota can modulate our immune system, help activate neoantigen-reactive T cells, and play a great role in the process of targeting tumor neoantigens for therapy. Recent studies have revealed the interconnection between microbes and neoantigens, which can cross-react with each other through molecular mimicry, providing theoretical guidance for more relevant studies. The current applications of microbes in immunotherapy against tumor neoantigens are mainly focused on cancer vaccine development and immunotherapy with immune checkpoint inhibitors. This article summarizes the related fields and suggests the importance of microbes in immunotherapy against neoantigens.
Collapse
Affiliation(s)
- Junrui Tian
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, China;
- Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha 410078, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha 410078, China
| | - Jian Ma
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, China;
- Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha 410078, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha 410078, China
| |
Collapse
|
6
|
Palma M. Aspects of Phage-Based Vaccines for Protein and Epitope Immunization. Vaccines (Basel) 2023; 11:vaccines11020436. [PMID: 36851313 PMCID: PMC9967953 DOI: 10.3390/vaccines11020436] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
Because vaccine development is a difficult process, this study reviews aspects of phages as vaccine delivery vehicles through a literature search. The results demonstrated that because phages have adjuvant properties and are safe for humans and animals, they are an excellent vaccine tool for protein and epitope immunization. The phage genome can easily be manipulated to display antigens or create DNA vaccines. Additionally, they are easy to produce on a large scale, which lowers their manufacturing costs. They are stable under various conditions, which can facilitate their transport and storage. However, no medicine regulatory agency has yet authorized phage-based vaccines despite the considerable preclinical data confirming their benefits. The skeptical perspective of phages should be overcome because humans encounter bacteriophages in their environment all the time without suffering adverse effects. The lack of clinical trials, endotoxin contamination, phage composition, and long-term negative effects are some obstacles preventing the development of phage vaccines. However, their prospects should be promising because phages are safe in clinical trials; they have been authorized as a food additive to avoid food contamination and approved for emergency use in phage therapy against difficult-to-treat antibiotic-resistant bacteria. Therefore, this encourages the use of phages in vaccines.
Collapse
Affiliation(s)
- Marco Palma
- Institute for Globally Distributed Open Research and Education (IGDORE), 03181 Torrevieja, Spain;
- Creative Biolabs Inc., Shirley, NY 11967, USA
| |
Collapse
|
7
|
Yu T, Sun Z, Cao X, Pang Q, Deng H. Recent trends in T7 phage application in diagnosis and treatment of various diseases. Int Immunopharmacol 2022; 110:109071. [DOI: 10.1016/j.intimp.2022.109071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/25/2022] [Accepted: 07/14/2022] [Indexed: 11/05/2022]
|
8
|
Li Q, Shi Z, Zhang F, Zeng W, Zhu D, Mei L. Symphony of nanomaterials and immunotherapy based on the cancer-immunity cycle. Acta Pharm Sin B 2022; 12:107-134. [PMID: 35127375 PMCID: PMC8799879 DOI: 10.1016/j.apsb.2021.05.031] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/21/2021] [Accepted: 04/25/2021] [Indexed: 02/07/2023] Open
Abstract
The immune system is involved in the initiation and progression of cancer. Research on cancer and immunity has contributed to the development of several clinically successful immunotherapies. These immunotherapies often act on a single step of the cancer–immunity cycle. In recent years, the discovery of new nanomaterials has dramatically expanded the functions and potential applications of nanomaterials. In addition to acting as drug-delivery platforms, some nanomaterials can induce the immunogenic cell death (ICD) of cancer cells or regulate the profile and strength of the immune response as immunomodulators. Based on their versatility, nanomaterials may serve as an integrated platform for multiple drugs or therapeutic strategies, simultaneously targeting several steps of the cancer–immunity cycle to enhance the outcome of anticancer immune response. To illustrate the critical roles of nanomaterials in cancer immunotherapies based on cancer–immunity cycle, this review will comprehensively describe the crosstalk between the immune system and cancer, and the current applications of nanomaterials, including drug carriers, ICD inducers, and immunomodulators. Moreover, this review will provide a detailed discussion of the knowledge regarding developing combinational cancer immunotherapies based on the cancer–immunity cycle, hoping to maximize the efficacy of these treatments assisted by nanomaterials.
Collapse
Affiliation(s)
- Qianqian Li
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Zhaoqing Shi
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Fan Zhang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Weiwei Zeng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Dunwan Zhu
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
- Corresponding authors. Tel./fax: +86 20 84723750
| | - Lin Mei
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
- Corresponding authors. Tel./fax: +86 20 84723750
| |
Collapse
|
9
|
Zhang YN, Paynter J, Sou C, Fourfouris T, Wang Y, Abraham C, Ngo T, Zhang Y, He L, Zhu J. Mechanism of a COVID-19 nanoparticle vaccine candidate that elicits a broadly neutralizing antibody response to SARS-CoV-2 variants. SCIENCE ADVANCES 2021; 7:eabj3107. [PMID: 34669468 PMCID: PMC8528426 DOI: 10.1126/sciadv.abj3107] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 08/27/2021] [Indexed: 05/12/2023]
Abstract
Vaccines that induce potent neutralizing antibody (NAb) responses against emerging variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are essential for combating the coronavirus disease 2019 (COVID-19) pandemic. We demonstrated that mouse plasma induced by self-assembling protein nanoparticles (SApNPs) that present 20 rationally designed S2GΔHR2 spikes of the ancestral Wuhan-Hu-1 strain can neutralize the B.1.1.7, B.1.351, P.1, and B.1.617 variants with comparable potency. The adjuvant effect on vaccine-induced immunity was investigated by testing 16 formulations for the multilayered I3-01v9 SApNP. Using single-cell sorting, monoclonal antibodies (mAbs) with diverse neutralization breadth and potency were isolated from mice immunized with the receptor binding domain (RBD), S2GΔHR2 spike, and SApNP vaccines. The mechanism of vaccine-induced immunity was examined in the mouse model. Compared with the soluble spike, the I3-01v9 SApNP showed sixfold longer retention, fourfold greater presentation on follicular dendritic cell dendrites, and fivefold stronger germinal center reactions in lymph node follicles.
Collapse
Affiliation(s)
- Yi-Nan Zhang
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jennifer Paynter
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Cindy Sou
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Tatiana Fourfouris
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ying Wang
- Fels Institute for Cancer Research and Molecular Biology, Temple University, Philadelphia, PA 19140, USA
- Department of Microbiology and Immunology, Temple University, Philadelphia, PA 19140, USA
| | - Ciril Abraham
- Fels Institute for Cancer Research and Molecular Biology, Temple University, Philadelphia, PA 19140, USA
| | - Timothy Ngo
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Yi Zhang
- Fels Institute for Cancer Research and Molecular Biology, Temple University, Philadelphia, PA 19140, USA
- Department of Microbiology and Immunology, Temple University, Philadelphia, PA 19140, USA
| | - Linling He
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jiang Zhu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
10
|
Zhang YN, Paynter J, Sou C, Fourfouris T, Wang Y, Abraham C, Ngo T, Zhang Y, He L, Zhu J. Mechanism of a COVID-19 nanoparticle vaccine candidate that elicits a broadly neutralizing antibody response to SARS-CoV-2 variants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.03.26.437274. [PMID: 33791704 PMCID: PMC8010731 DOI: 10.1101/2021.03.26.437274] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Vaccines that induce potent neutralizing antibody (NAb) responses against emerging variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are essential for combating the coronavirus disease 2019 (COVID-19) pandemic. We demonstrated that mouse plasma induced by self-assembling protein nanoparticles (SApNPs) that present 20 rationally designed S2GΔHR2 spikes of the ancestral Wuhan-Hu-1 strain can neutralize the B.1.1.7, B.1.351, P.1, and B.1.617 variants with the same potency. The adjuvant effect on vaccine-induced immunity was investigated by testing 16 formulations for the multilayered I3-01v9 SApNP. Using single-cell sorting, monoclonal antibodies (mAbs) with diverse neutralization breadth and potency were isolated from mice immunized with the receptor binding domain (RBD), S2GΔHR2 spike, and SApNP vaccines. The mechanism of vaccine-induced immunity was examined in mice. Compared with the soluble spike, the I3-01v9 SApNP showed 6-fold longer retention, 4-fold greater presentation on follicular dendritic cell dendrites, and 5-fold stronger germinal center reactions in lymph node follicles.
Collapse
Affiliation(s)
- Yi-Nan Zhang
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Jennifer Paynter
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Cindy Sou
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Tatiana Fourfouris
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Ying Wang
- Fels Institute for Cancer Research and Molecular Biology, Temple University, Philadelphia, Pennsylvania 19140, USA
- Department of Microbiology and Immunology, Temple University, Philadelphia, Pennsylvania 19140, USA
| | - Ciril Abraham
- Fels Institute for Cancer Research and Molecular Biology, Temple University, Philadelphia, Pennsylvania 19140, USA
| | - Timothy Ngo
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Yi Zhang
- Fels Institute for Cancer Research and Molecular Biology, Temple University, Philadelphia, Pennsylvania 19140, USA
- Department of Microbiology and Immunology, Temple University, Philadelphia, Pennsylvania 19140, USA
| | - Linling He
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Jiang Zhu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, USA
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California 92037, USA
| |
Collapse
|
11
|
Bacteriophage Technology and Modern Medicine. Antibiotics (Basel) 2021; 10:antibiotics10080999. [PMID: 34439049 PMCID: PMC8388951 DOI: 10.3390/antibiotics10080999] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/15/2021] [Accepted: 08/16/2021] [Indexed: 12/26/2022] Open
Abstract
The bacteriophage (or phage for short) has been used as an antibacterial agent for over a century but was abandoned in most countries after the discovery and broad use of antibiotics. The worldwide emergence and high prevalence of antimicrobial-resistant (AMR) bacteria have led to a revival of interest in the long-forgotten antibacterial therapy with phages (phage therapy) as an alternative approach to combatting AMR bacteria. The rapid progress recently made in molecular biology and genetic engineering has accelerated the generation of phage-related products with superior therapeutic potentials against bacterial infection. Nowadays, phage-based technology has been developed for many purposes, including those beyond the framework of antibacterial treatment, such as to suppress viruses by phages, gene therapy, vaccine development, etc. Here, we highlighted the current progress in phage engineering technology and its application in modern medicine.
Collapse
|
12
|
Barber-Axthelm IM, Kelly HG, Esterbauer R, Wragg KM, Gibbon AM, Lee WS, Wheatley AK, Kent SJ, Tan HX, Juno JA. Coformulation with Tattoo Ink for Immunological Assessment of Vaccine Immunogenicity in the Draining Lymph Node. THE JOURNAL OF IMMUNOLOGY 2021; 207:735-744. [PMID: 34244296 DOI: 10.4049/jimmunol.2001299] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 05/17/2021] [Indexed: 11/19/2022]
Abstract
Characterization of germinal center B and T cell responses yields critical insights into vaccine immunogenicity. Nonhuman primates are a key preclinical animal model for human vaccine development, allowing both lymph node (LN) and circulating immune responses to be longitudinally sampled for correlates of vaccine efficacy. However, patterns of vaccine Ag drainage via the lymphatics after i.m. immunization can be stochastic, driving uneven deposition between lymphoid sites and between individual LN within larger clusters. To improve the accurate isolation of Ag-exposed LN during biopsies and necropsies, we developed and validated a method for coformulating candidate vaccines with tattoo ink in both mice and pigtail macaques. This method allowed for direct visual identification of vaccine-draining LN and evaluation of relevant Ag-specific B and T cell responses by flow cytometry. This approach is a significant advancement in improving the assessment of vaccine-induced immunity in highly relevant nonhuman primate models.
Collapse
Affiliation(s)
- Isaac M Barber-Axthelm
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne Victoria, Australia
| | - Hannah G Kelly
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne Victoria, Australia.,Australian Research Council Centre for Excellence in Convergent Bio-Nano Science and Technology, University of Melbourne, Melbourne, Victoria, Australia
| | - Robyn Esterbauer
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne Victoria, Australia
| | - Kathleen M Wragg
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne Victoria, Australia
| | - Anne M Gibbon
- Monash Animal Research Platform, Monash University, Clayton, Victoria, Australia; and
| | - Wen Shi Lee
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne Victoria, Australia
| | - Adam K Wheatley
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne Victoria, Australia
| | - Stephen J Kent
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne Victoria, Australia.,Australian Research Council Centre for Excellence in Convergent Bio-Nano Science and Technology, University of Melbourne, Melbourne, Victoria, Australia.,Melbourne Sexual Health Centre and Department of Infectious Diseases, Alfred Hospital and Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Hyon-Xhi Tan
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne Victoria, Australia
| | - Jennifer A Juno
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne Victoria, Australia;
| |
Collapse
|
13
|
Bacteriophages as Therapeutic and Diagnostic Vehicles in Cancer. Pharmaceuticals (Basel) 2021; 14:ph14020161. [PMID: 33671476 PMCID: PMC7923149 DOI: 10.3390/ph14020161] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 12/11/2022] Open
Abstract
Evolution of nanomedicine is the re-design of synthetic and biological carriers to implement novel theranostic platforms. In recent years, bacteriophage research favors this process, which has opened up new roads in drug and gene delivery studies. By displaying antibodies, peptides, or proteins on the surface of different bacteriophages through the phage display technique, it is now possible to unravel specific molecular determinants of both cancer cells and tumor-associated microenvironmental molecules. Downstream applications are manifold, with peptides being employed most of the times to functionalize drug carriers and improve their therapeutic index. Bacteriophages themselves were proven, in this scenario, to be good carriers for imaging molecules and therapeutics as well. Moreover, manipulation of their genetic material to stably vehiculate suicide genes within cancer cells substantially changed perspectives in gene therapy. In this review, we provide examples of how amenable phages can be used as anticancer agents, especially because their systemic administration is possible. We also provide some insights into how their immunogenic profile can be modulated and exploited in immuno-oncology for vaccine production.
Collapse
|
14
|
Abstract
The diversity of advanced genetic engineering techniques that have become available in recent years has enabled a more precise manipulation of genes and genomes. Among these, bacteriophage genomes stand out as an interesting target due to their dependence on a host for replication, which previously complicated their manipulation, and due as well to the many possible fields in which they can be used. In this review, we highlight recent applications for which genetically modified bacteriophages are being employed: as phage therapy in medicine, animal industries and agricultural settings; as a source of new antimicrobials; as biosensors for research, health and environmental purposes; and as genetic engineering tools themselves.
Collapse
Affiliation(s)
| | - Hiroki Ando
- Department of Microbiology, Graduate School of Medicine, Gifu University
| |
Collapse
|
15
|
Lee KL, Schlom J, Hamilton DH. Combination therapies utilizing neoepitope-targeted vaccines. Cancer Immunol Immunother 2020; 70:875-885. [PMID: 33033852 PMCID: PMC7979579 DOI: 10.1007/s00262-020-02729-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 09/15/2020] [Indexed: 02/07/2023]
Abstract
Clinical successes have been achieved with checkpoint blockade therapy, which facilitates the function of T cells recognizing tumor-specific mutations known as neoepitopes. It is a reasonable hypothesis that therapeutic cancer vaccines targeting neoepitopes uniquely expressed by a patient’s tumor would prove to be an effective therapeutic strategy. With the advent of high-throughput next generation sequencing, it is now possible to rapidly identify these tumor-specific mutations and produce therapeutic vaccines targeting these patient-specific neoepitopes. However, initial reports suggest that when used as a monotherapy, neoepitope-targeted vaccines are not always sufficient to induce clinical responses in some patients. Therefore, research has now turned to investigating neoepitope vaccines in combination with other cancer therapies, both immune and non-immune, to improve their clinical efficacies.
Collapse
Affiliation(s)
- Karin L Lee
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jeffrey Schlom
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Duane H Hamilton
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
16
|
Habibi N, Christau S, Ochyl LJ, Fan Z, Hassani Najafabadi A, Kuehnhammer M, Zhang M, Helgeson M, Klitzing R, Moon JJ, Lahann J. Engineered Ovalbumin Nanoparticles for Cancer Immunotherapy. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.202000100] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Nahal Habibi
- Department of Chemical Engineering University of Michigan Ann Arbor MI 48109 USA
- Biointerfaces Institute University of Michigan Ann Arbor MI 48109 USA
| | - Stephanie Christau
- Department of Chemical Engineering University of Michigan Ann Arbor MI 48109 USA
- Biointerfaces Institute University of Michigan Ann Arbor MI 48109 USA
| | - Lukasz J. Ochyl
- Biointerfaces Institute University of Michigan Ann Arbor MI 48109 USA
- Department of Pharmaceutical Sciences University of Michigan Ann Arbor MI 48109 USA
| | - Zixing Fan
- Department of Chemical Engineering University of Michigan Ann Arbor MI 48109 USA
| | - Alireza Hassani Najafabadi
- Biointerfaces Institute University of Michigan Ann Arbor MI 48109 USA
- Department of Pharmaceutical Sciences University of Michigan Ann Arbor MI 48109 USA
| | | | - Mengwen Zhang
- Department of Chemical Engineering University of California Santa Barbara Santa Barbara CA 93106 USA
| | - Matthew Helgeson
- Department of Chemical Engineering University of California Santa Barbara Santa Barbara CA 93106 USA
| | - Regine Klitzing
- Department of Physics Technische Universitaet Darmstadt Darmstadt 64289 Germany
| | - James J. Moon
- Biointerfaces Institute University of Michigan Ann Arbor MI 48109 USA
- Department of Pharmaceutical Sciences University of Michigan Ann Arbor MI 48109 USA
| | - Joerg Lahann
- Department of Chemical Engineering University of Michigan Ann Arbor MI 48109 USA
- Biointerfaces Institute University of Michigan Ann Arbor MI 48109 USA
| |
Collapse
|
17
|
Bhardwaj P, Bhatia E, Sharma S, Ahamad N, Banerjee R. Advancements in prophylactic and therapeutic nanovaccines. Acta Biomater 2020; 108:1-21. [PMID: 32268235 PMCID: PMC7163188 DOI: 10.1016/j.actbio.2020.03.020] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 03/13/2020] [Accepted: 03/17/2020] [Indexed: 02/07/2023]
Abstract
Vaccines activate suitable immune responses to fight against diseases but can possess limitations such as compromised efficacy and immunogenic responses, poor stability, and requirement of adherence to multiple doses. ‘Nanovaccines’ have been explored to elicit a strong immune response with the advantages of nano-sized range, high antigen loading, enhanced immunogenicity, controlled antigen presentation, more retention in lymph nodes and promote patient compliance by a lower frequency of dosing. Various types of nanoparticles with diverse pathogenic or foreign antigens can help to overcome immunotolerance and alleviate the need of booster doses as required with conventional vaccines. Nanovaccines have the potential to induce both cell-mediated and antibody-mediated immunity and can render long-lasting immunogenic memory. With such properties, nanovaccines have shown high potential for the prevention of infectious diseases such as acquired immunodeficiency syndrome (AIDS), malaria, tuberculosis, influenza, and cancer. Their therapeutic potential has also been explored in the treatment of cancer. The various kinds of nanomaterials used for vaccine development and their effects on immune system activation have been discussed with special relevance to their implications in various pathological conditions. Statement of Significance Interaction of nanoparticles with the immune system has opened multiple avenues to combat a variety of infectious and non-infectious pathological conditions. Limitations of conventional vaccines have paved the path for nanomedicine associated benefits with a hope of producing effective nanovaccines. This review highlights the role of different types of nanovaccines and the role of nanoparticles in modulating the immune response of vaccines. The applications of nanovaccines in infectious and non-infectious diseases like malaria, tuberculosis, AIDS, influenza, and cancers have been discussed. It will help the readers develop an understanding of mechanisms of immune activation by nanovaccines and design appropriate strategies for novel nanovaccines.
Collapse
|
18
|
Irvine DJ, Read BJ. Shaping humoral immunity to vaccines through antigen-displaying nanoparticles. Curr Opin Immunol 2020; 65:1-6. [PMID: 32200132 DOI: 10.1016/j.coi.2020.01.007] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 01/31/2020] [Indexed: 12/15/2022]
Abstract
Strategies to qualitatively and quantitatively enhance the humoral response to immunizations with protein and polysaccharide antigens are of broad interest for development of new and more effective vaccines. A strategy of increasing importance is the formulation of antigens into a particulate format, mimicking the physical form of viruses. The potential benefits of enhanced B cell receptor engagement by nanoparticles have been long been appreciated, but recent studies are defining additional important factors governing how nanoparticle immunogens interact with the immune system in the context of lymphoid organs. This review will discuss findings about how nanoparticles enhance humoral immunity in vivo and factors governing the fate of nanoparticle immunogens in lymph nodes.
Collapse
Affiliation(s)
- Darrell J Irvine
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037, USA; Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.
| | - Benjamin J Read
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; HST, Harvard University and Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
19
|
Tsoras AN, Champion JA. Protein and Peptide Biomaterials for Engineered Subunit Vaccines and Immunotherapeutic Applications. Annu Rev Chem Biomol Eng 2020; 10:337-359. [PMID: 31173518 DOI: 10.1146/annurev-chembioeng-060718-030347] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Although vaccines have been the primary defense against widespread infectious disease for decades, there is a critical need for improvement to combat complex and variable diseases. More control and specificity over the immune response can be achieved by using only subunit components in vaccines. However, these often lack sufficient immunogenicity to fully protect, and conjugation or carrier materials are required. A variety of protein and peptide biomaterials have improved effectiveness and delivery of subunit vaccines for infectious, cancer, and autoimmune diseases. They are biodegradable and have control over both material structure and immune function. Many of these materials are built from naturally occurring self-assembling proteins, which have been engineered for incorporation of vaccine components. In contrast, others are de novo designs of structures with immune function. In this review, protein biomaterial design, engineering, and immune functionality as vaccines or immunotherapies are discussed.
Collapse
Affiliation(s)
- Alexandra N Tsoras
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-2000, USA;
| | - Julie A Champion
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-2000, USA;
| |
Collapse
|
20
|
Shukla GS, Sun YJ, Pero SC, Krag DN. A cocktail of polyclonal affinity enriched antibodies against melanoma mutations increases binding and inhibits tumor growth. J Immunol Methods 2019; 478:112720. [PMID: 31812660 DOI: 10.1016/j.jim.2019.112720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/02/2019] [Accepted: 12/04/2019] [Indexed: 12/25/2022]
Abstract
BACKGROUND Antibodies that target a single tumor antigen fail to cure stage IV cancer patients due to tumor heterogeneity and variable expression of antigen. Tumor cells with insufficient binding of antibody will not undergo antibody induced cytotoxicity. We describe targeting multiple tumor-specific antigens that resulted in homogeneous dense binding to mouse melanoma cells and significant tumor growth inhibition. METHODS Surface-related tumor-specific mutations on B16-F10 cells were identified. Peptides containing the single amino acid mutation were synthesized for 9 different neoantigens. Rabbits were vaccinated with each of these peptides and high affinity polyclonal antibodies to each peptide were obtained. The 9 antibodies were combined as a cocktail and mice with implanted B16-F10 cells were treated with and without PD1 inhibitor. RESULTS Even a single dose of the antibody cocktail inhibited tumor growth and prolonged survival. PD1 inhibitor alone had little effect on tumor growth. The antibody cocktail plus PD1 inhibition increased tumor response and 4 doses of the cocktail completely prevented tumor growth in 50% of the mice. Complete responses were durable. The complete responders were highly resistant to tumor re-challenge at 6 months. No adverse events were identified in the antibody treated mice. CONCLUSIONS Multiple tumor-specific cell surface-related neoantigens were abundant in B16-F10 cells. Antibodies to 9 of these neoantigens had variable binding but when combined had dense homogeneous binding. Even one dose of this cocktail of 9 antibodies improved survival and when multiple doses were combined with PD1 inhibition 50% of the mice were rendered permanently tumor free.
Collapse
Affiliation(s)
- Girja S Shukla
- Department of Surgery, University of Vermont Cancer Center, University of Vermont Larner College of Medicine, Burlington, VT, USA.
| | - Yu-Jing Sun
- Department of Surgery, University of Vermont Cancer Center, University of Vermont Larner College of Medicine, Burlington, VT, USA.
| | - Stephanie C Pero
- Department of Surgery, University of Vermont Cancer Center, University of Vermont Larner College of Medicine, Burlington, VT, USA.
| | - David N Krag
- Department of Surgery, University of Vermont Cancer Center, University of Vermont Larner College of Medicine, Burlington, VT, USA.
| |
Collapse
|
21
|
Shukla GS, Pero SC, Sun YJ, Mei L, Zhang F, Sholler G, Krag DN. Multiple antibodies targeting tumor-specific mutations redirect immune cells to inhibit tumor growth and increase survival in experimental animal models. Clin Transl Oncol 2019; 22:1094-1104. [PMID: 31732916 DOI: 10.1007/s12094-019-02235-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 10/18/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND T cell therapy for cancer involves genetic introduction of a target-binding feature into autologous T cells, ex vivo expansion and single large bolus administration back to the patient. These reprogrammed T cells can be highly effective in killing cells, but tumor heterogeneity results in regrowth of cells that do not sufficiently express the single antigen being targeted. We describe a cell-based therapy that simultaneously targets multiple tumor-specific antigens. METHODS High-affinity polyclonal rabbit antibodies were generated against nine different surface-related tumor-specific mutations on B16F10 cells. Unsorted splenic effector cells from syngeneic mice were incubated with a cocktail of the nine anti-B16F10 antibodies. These 'armed' effector cells were used to treat mice previously inoculated with B16F10 melanoma cells. RESULTS The cocktail of nine antibodies resulted in dense homogeneous binding to histological sections of B16F10 cells. Five treatments with the armed effector cells and PD1 inhibition inhibited tumor growth and improved survival. Shortening the interval of the five treatments from every three days to every day increased survival. Arming effector cells with the four antibodies showing best binding to B16F10 cells even further increased survival. CONCLUSIONS This study demonstrates that ex vivo arming a mixed population of immune effector cells with antibodies targeting multiple tumor-specific mutated proteins in conjunction with PD1 inhibition delayed tumor growth and prolonged survival in mice inoculated with an aggressive melanoma. A remarkably low total antibody dose of less than 5 µg was sufficient to accomplish tumor inhibition. Scaling up to clinical level may be feasible.
Collapse
Affiliation(s)
- G S Shukla
- Department of Surgery and University of Vermont Cancer Center, University of Vermont Larner College of Medicine, Burlington, VT, USA
| | - S C Pero
- Department of Surgery and University of Vermont Cancer Center, University of Vermont Larner College of Medicine, Burlington, VT, USA
| | - Y -J Sun
- Department of Surgery and University of Vermont Cancer Center, University of Vermont Larner College of Medicine, Burlington, VT, USA
| | - L Mei
- Department of Surgery and University of Vermont Cancer Center, University of Vermont Larner College of Medicine, Burlington, VT, USA
| | - F Zhang
- Vermont Genetics Network, University of Vermont, Burlington, VT, USA.,Department of Biology, University of Vermont, Burlington, VT, USA
| | - G Sholler
- Pediatric Oncology Research, Helen DeVos Children's Hospital, Grand Rapids, MI, USA
| | - D N Krag
- Department of Surgery and University of Vermont Cancer Center, University of Vermont Larner College of Medicine, Burlington, VT, USA.
| |
Collapse
|
22
|
Zhang Y, Lin Z, Wan Y, Cai H, Deng L, Li R. The Immunogenicity and Anti-tumor Efficacy of a Rationally Designed Neoantigen Vaccine for B16F10 Mouse Melanoma. Front Immunol 2019; 10:2472. [PMID: 31749795 PMCID: PMC6848027 DOI: 10.3389/fimmu.2019.02472] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 10/03/2019] [Indexed: 12/30/2022] Open
Abstract
Tumor neoantigens are ideal targets for cancer immunotherapy as they are recognized by host immune system as foreigners and can elicit tumor-specific immune responses. However, existing strategies utilizing RNA or long peptides for the neoantigen vaccines render limited immune responses since only 20–30% of neoantigens predicted in silico to bind MHC I molecules are capable of eliciting immune responses with the majority of responding T cells are CD4+. Therefore, it warrants further exploration to enhance neoantigen-specific CD8+ T cells responses. Since neoantigens are naturally weak antigens, we asked whether foreign T help epitopes could enhance their immunogenicity. In present study, we chose 4 weak B16F10 neoantigens as vaccine targets, and fused them to the transmembrane domain of diphtheria toxin, namely DTT-neoAg. Strikingly, the vaccine elicited anti-tumor CD8+ T cells responses and enhanced tumor infiltration of both T cells and NK cells. Impressively, DTT-neoAg vaccine significantly deterred tumor growth with the inhibition rate reached 88% in the preventive model and 100% in the therapeutic model at low dose of tumor challenge. Furthermore, after second challenge with higher dose of tumor cells, 33.3% of the immunized mice remained tumor-free for 6 months in the therapeutic model. Because DTT is a non-toxic domain of diphtheria toxin, it may be not of great concern in terms of safety as a Th epitope provider. Thus, the fusion strategy employed by this study may become a feasible and powerful approach for development of personalized cancer vaccines.
Collapse
Affiliation(s)
- Yan Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Zhibing Lin
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yuhua Wan
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Huaman Cai
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Li Deng
- Shanghai HyCharm Inc., Shanghai, China
| | - Rongxiu Li
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.,Shanghai HyCharm Inc., Shanghai, China.,Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, Shanghai, China
| |
Collapse
|