1
|
Chen Y, He Q, Shen S, Wang Z, Xing H, Feng R, Wu Y, Zhang J, Wang B, Li QX. Nanobody Mediated Atrazine Resistance in Plants. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:16368-16377. [PMID: 38979948 DOI: 10.1021/acs.jafc.4c00717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
In planta expression of recombinant antibodies has been proposed as a strategy for herbicide resistance but is not well advanced yet. Here, an atrazine nanobody gene fused with a green fluorescent protein tag was transformed to Arabidopsis thaliana, which was confirmed with PCR, ELISA, and immunoblotting. High levels of nanobody accumulation were observed in the nucleus, cytoderm, and cytosol. The nanobody expressed in the plant had similar affinity, sensitivity, and selectivity as that expressed in Escherichia coli. The T3 homozygous line showed resistance in a dose-dependent manner up to 380 g ai/ha of atrazine, which is approximately one-third of the recommended field application rate. This is the first report of utilizing a nanobody in plants against herbicides. The results suggest that utilizing a high-affinity herbicide nanobody gene rather than increasing the expression of nanobodies in plants may be a technically viable approach to acquire commercial herbicide-resistant crops and could be a useful tool to study plant physiology.
Collapse
Affiliation(s)
- Yujie Chen
- College of Agriculture and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Qingqing He
- College of Agriculture and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Simin Shen
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Zhaoxiang Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- College of Life Sciences, Capital Normal University, Beijing 100089, China
| | - Haiyan Xing
- College of Agriculture and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Rui Feng
- College of Agriculture and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Yixuan Wu
- College of Agriculture and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Jiaqi Zhang
- College of Agriculture and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Baomin Wang
- College of Agriculture and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Qing X Li
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
| |
Collapse
|
2
|
Madsen AV, Pedersen LE, Kristensen P, Goletz S. Design and engineering of bispecific antibodies: insights and practical considerations. Front Bioeng Biotechnol 2024; 12:1352014. [PMID: 38333084 PMCID: PMC10850309 DOI: 10.3389/fbioe.2024.1352014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 01/15/2024] [Indexed: 02/10/2024] Open
Abstract
Bispecific antibodies (bsAbs) have attracted significant attention due to their dual binding activity, which permits simultaneous targeting of antigens and synergistic binding effects beyond what can be obtained even with combinations of conventional monospecific antibodies. Despite the tremendous therapeutic potential, the design and construction of bsAbs are often hampered by practical issues arising from the increased structural complexity as compared to conventional monospecific antibodies. The issues are diverse in nature, spanning from decreased biophysical stability from fusion of exogenous antigen-binding domains to antibody chain mispairing leading to formation of antibody-related impurities that are very difficult to remove. The added complexity requires judicious design considerations as well as extensive molecular engineering to ensure formation of high quality bsAbs with the intended mode of action and favorable drug-like qualities. In this review, we highlight and summarize some of the key considerations in design of bsAbs as well as state-of-the-art engineering principles that can be applied in efficient construction of bsAbs with diverse molecular formats.
Collapse
Affiliation(s)
- Andreas V. Madsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Lasse E. Pedersen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Peter Kristensen
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Steffen Goletz
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
3
|
Ziegengeist T, Orth J, Kroll K, Schneider M, Spindler N, Dimova D, Handschuh S, Brandenburg A, Ossola R, Furtmann N, Birkenfeld J, Beil C, Hoffmann D, Schmidt T, Sendak R, Fischer M, Hölper S, Kühn J. High-Throughput and Format-Agnostic Mispairing Assay for Multispecific Antibodies Using Intact Mass Spectrometry. Anal Chem 2023. [PMID: 37369001 DOI: 10.1021/acs.analchem.3c00742] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Multispecific antibodies have gained significant importance in a broad indication space due to their ability to engage multiple epitopes simultaneously and to thereby overcome therapeutic barriers. With growing therapeutic potential, however, the molecular complexity increases, thus intensifying the demand for innovative protein engineering and analytical strategies. A major challenge for multispecific antibodies is the correct assembly of light and heavy chains. Engineering strategies exist to stabilize the correct pairing, but typically individual engineering campaigns are required to arrive at the anticipated format. Mass spectrometry has proven to be a versatile tool to identify mispaired species. However, due to manual data analysis procedures, mass spectrometry is limited to lower throughputs. To keep pace with increasing sample numbers, we developed a high-throughput-capable mispairing workflow based on intact mass spectrometry with automated data analysis, peak detection, and relative quantification using Genedata Expressionist. This workflow is capable of detecting mispaired species of ∼1000 multispecific antibodies in three weeks and thus is applicable to complex screening campaigns. As a proof of concept, the assay was applied to engineering a trispecific antibody. Strikingly, the new setup has not only proved successful in mispairing analysis but has also revealed its potential to automatically annotate other product-related impurities. Furthermore, we could confirm the assay to be format-agnostic, as shown by analyzing several different multispecific formats in one run. With these comprehensive capabilities, the new automated intact mass workflow can be applied as a universal tool to detect and annotate peaks in a format-agnostic approach and in high-throughput, thus enabling complex discovery campaigns.
Collapse
Affiliation(s)
- Tanja Ziegengeist
- Large Molecules Research Platform, Sanofi-Aventis Deutschland GmbH, Frankfurt 65926, Germany
| | - Jennifer Orth
- Large Molecules Research Platform, Sanofi-Aventis Deutschland GmbH, Frankfurt 65926, Germany
| | - Katja Kroll
- Large Molecules Research Platform, Sanofi-Aventis Deutschland GmbH, Frankfurt 65926, Germany
| | - Marion Schneider
- Large Molecules Research Platform, Sanofi-Aventis Deutschland GmbH, Frankfurt 65926, Germany
| | - Nadja Spindler
- Large Molecules Research Platform, Sanofi-Aventis Deutschland GmbH, Frankfurt 65926, Germany
| | - Dilyana Dimova
- Large Molecules Research Platform, Sanofi-Aventis Deutschland GmbH, Frankfurt 65926, Germany
| | - Severin Handschuh
- Large Molecules Research Platform, Sanofi-Aventis Deutschland GmbH, Frankfurt 65926, Germany
| | | | | | - Norbert Furtmann
- Large Molecules Research Platform, Sanofi-Aventis Deutschland GmbH, Frankfurt 65926, Germany
| | - Joerg Birkenfeld
- Large Molecules Research Platform, Sanofi-Aventis Deutschland GmbH, Frankfurt 65926, Germany
- Perspix Biotech GmbH FiZ Frankfurt Innovation Center Biotechnology, Frankfurt 60438, Germany
| | - Christian Beil
- Large Molecules Research Platform, Sanofi-Aventis Deutschland GmbH, Frankfurt 65926, Germany
| | - Dietmar Hoffmann
- Large Molecules Research Platform, Sanofi, Cambridge, Massachusetts 02141, United States
| | - Thorsten Schmidt
- Large Molecules Research Platform, Sanofi-Aventis Deutschland GmbH, Frankfurt 65926, Germany
| | - Rebecca Sendak
- Large Molecules Research Platform, Sanofi, Cambridge, Massachusetts 02141, United States
| | - Melanie Fischer
- Large Molecules Research Platform, Sanofi-Aventis Deutschland GmbH, Frankfurt 65926, Germany
| | - Soraya Hölper
- Large Molecules Research Platform, Sanofi-Aventis Deutschland GmbH, Frankfurt 65926, Germany
| | - Jennifer Kühn
- Large Molecules Research Platform, Sanofi-Aventis Deutschland GmbH, Frankfurt 65926, Germany
| |
Collapse
|
4
|
Huang S, Segués A, Waterfall M, Wright D, Vayssiere C, van Duijnhoven SMJ, van Elsas A, Sijts AJAM, Zaiss DM. Shortened Hinge Design of Fab x sdAb-Fc Bispecific Antibodies Enhances Redirected T-Cell Killing of Tumor Cells. Biomolecules 2022; 12:1331. [PMID: 36291540 PMCID: PMC9599842 DOI: 10.3390/biom12101331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 05/26/2024] Open
Abstract
T cell engager (TCE) antibodies have emerged as promising cancer therapeutics that link cytotoxic T-cells to tumor cells by simultaneously binding to CD3E on T-cells and to a tumor-associated antigen (TAA) expressed by tumor cells. We previously reported a novel bispecific format, the IgG-like Fab x sdAb-Fc (also known as half-IG_VH-h-CH2-CH3), combining a conventional antigen-binding fragment (Fab) with a single domain antibody (sdAb). Here, we evaluated this Fab x sdAb-Fc format as a T-cell redirecting bispecific antibody (TbsAbs) by targeting mEGFR on tumor cells and mCD3E on T cells. We focused our attention specifically on the hinge design of the sdAb arm of the bispecific antibody. Our data show that a TbsAb with a shorter hinge of 23 amino acids (TbsAb.short) showed a significantly better T cell redirected tumor cell elimination than the TbsAb with a longer, classical antibody hinge of 39 amino acids (TbsAb.long). Moreover, the TbsAb.short form mediated better T cell-tumor cell aggregation and increased CD69 and CD25 expression levels on T cells more than the TbsAb.long form. Taken together, our results indicate that already minor changes in the hinge design of TbsAbs can have significant impact on the anti-tumor activity of TbsAbs and may provide a new means to improve their potency.
Collapse
Affiliation(s)
- Shuyu Huang
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
- Faculty of Veterinary Medicine, Department of Infectious Diseases and Immunology, Utrecht University, 3584 CS Utrecht, The Netherlands
| | - Aina Segués
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
- Faculty of Veterinary Medicine, Department of Infectious Diseases and Immunology, Utrecht University, 3584 CS Utrecht, The Netherlands
| | - Martin Waterfall
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - David Wright
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Charlotte Vayssiere
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | | | | | - Alice J. A. M. Sijts
- Faculty of Veterinary Medicine, Department of Infectious Diseases and Immunology, Utrecht University, 3584 CS Utrecht, The Netherlands
| | - Dietmar M. Zaiss
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
- Department of Immune Medicine, University Regensburg, 93053 Regensburg, Germany
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, 93053 Regensburg, Germany
- Institute of Pathology, University Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
5
|
Vukovic N, Halabi S, Russo-Cabrera JS, Blokhuis B, Berraondo P, Redegeld FAM, Zaiss DMW. A human IgE bispecific antibody shows potent cytotoxic capacity mediated by monocytes. J Biol Chem 2022; 298:102153. [PMID: 35718062 PMCID: PMC9293656 DOI: 10.1016/j.jbc.2022.102153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/11/2022] [Accepted: 06/13/2022] [Indexed: 11/25/2022] Open
Abstract
The generation of bispecific antibodies (bsAbs) targeting two different antigens opens a new level of specificity and, compared to mAbs, improved clinical efficacy in cancer therapy. Currently, the different strategies for development of bsAbs primarily focus on IgG isotypes. Nevertheless, in comparison to IgG isotypes, IgE has been shown to offer superior tumor control in preclinical models. Therefore, in order to combine the promising potential of IgE molecules with increased target selectivity of bsAbs, we developed dual tumor-associated antigen-targeting bispecific human IgE antibodies. As proof of principle, we used two different pairing approaches - knobs-into-holes and leucine zipper-mediated pairing. Our data show that both strategies were highly efficient in driving bispecific IgE formation, with no undesired pairings observed. Bispecific IgE antibodies also showed a dose-dependent binding to their target antigens, and cell bridging experiments demonstrated simultaneous binding of two different antigens. As antibodies mediate a major part of their effector functions through interaction with Fc receptors (FcRs) expressed on immune cells, we confirmed FcεR binding by inducing in vitro mast cell degranulation and demonstrating in vitro and in vivo monocyte-mediated cytotoxicity against target antigen-expressing Chinese hamster ovary cells. Moreover, we demonstrated that the IgE bsAb construct was significantly more efficient in mediating antibody-dependent cell toxicity than its IgG1 counterpart. In conclusion, we describe the successful development of first bispecific IgE antibodies with superior antibody-dependent cell toxicity-mediated cell killing in comparison to IgG bispecific antibodies. These findings highlight the relevance of IgE-based bispecific antibodies for clinical application.
Collapse
Affiliation(s)
- Natasa Vukovic
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, UK
| | - Samer Halabi
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, UK
| | - Joan Salvador Russo-Cabrera
- Program of Immunology and Immunotherapy, CIMA, Universidad de Navarra, Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Bart Blokhuis
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Pedro Berraondo
- Program of Immunology and Immunotherapy, CIMA, Universidad de Navarra, Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain; Spanish Center for Biomedical Research Network in Oncology (CIBERONC), Madrid, Spain
| | - Frank A M Redegeld
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands.
| | - Dietmar M W Zaiss
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, UK; Department of Immune Medicine, University Regensburg, Regensburg, Germany; Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Regensburg, Germany; Institute of Pathology, University Regensburg, Regensburg, Germany.
| |
Collapse
|
6
|
Segués A, Huang S, Sijts A, Berraondo P, Zaiss DM. Opportunities and challenges of bi-specific antibodies. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2022; 369:45-70. [PMID: 35777864 DOI: 10.1016/bs.ircmb.2022.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The recent clinical approval of different Bi-specific antibodies (BsAbs) has revealed the great therapeutic potential of this novel class of biologicals. For example, the bispecific T-cell engager (BiTE), Blinatumomab, demonstrated the unique capacity of BsAbs to link T-cells with tumor cells, inducing targeted tumor cell removal. Additionally, Amivantamab, recognizing the EGFR and cMet in cis, revealed a substantial improvement of therapeutic efficacy by concomitantly targeting two tumor antigens. Cis-targeting BsAbs furthermore allow discerning cell populations which concurrently express two antigens, for which each antigen expression pattern in itself might not be selective. In this way, BsAbs harbor the great prospect of being more specific and showing fewer side effects than monoclonal antibodies. Nevertheless, BsAbs have also faced major obstacles, for instance, in ensuring reliable assembly and clinical-grade purification. In this review, we summarize the different available antibody platforms currently used for the generation of IgG-like and non-IgG-like BsAbs and explain which approaches have been used to assemble those BsAbs which are currently approved for clinical application. By focusing on the example of regulatory T-cells (Tregs) and the different, ongoing approaches to develop BsAbs specifically targeting Tregs within the tumor microenvironment, our review highlights the huge potential as well as the pitfalls BsAb face in order to emerge as one of the most effective therapeutic biologicals targeting desired cell populations in a highly selective way. Such BsAb may improve treatment efficacy and reduce side effects, thereby opening novel treatment opportunities for a range of different diseases, such as cancer or autoimmune diseases.
Collapse
Affiliation(s)
- Aina Segués
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom; Faculty of Veterinary Medicine, Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, The Netherlands
| | - Shuyu Huang
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom; Faculty of Veterinary Medicine, Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, The Netherlands
| | - Alice Sijts
- Faculty of Veterinary Medicine, Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, The Netherlands
| | - Pedro Berraondo
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Dietmar M Zaiss
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom; Department of Immune Medicine, University Regensburg, Regensburg, Germany; Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Regensburg, Germany; Institute of Pathology, University Regensburg, Regensburg, Germany.
| |
Collapse
|
7
|
Xu T, Zhang J, Wang T, Wang X. Recombinant antibodies aggregation and overcoming strategies in CHO cells. Appl Microbiol Biotechnol 2022; 106:3913-3922. [PMID: 35608667 DOI: 10.1007/s00253-022-11977-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 11/27/2022]
Abstract
Mammalian cell lines are frequently used as the preferred host cells for producing recombinant therapeutic proteins (RTPs) having post-translational modified modifications similar to those observed in proteins produced by human cells. Nowadays, most RTPs approved for marketing are produced in Chinese hamster ovary (CHO) cells. Recombinant therapeutic antibodies (RTAs) are among the most important and promising RTPs for biomedical applications. A major limitation associated with the use of RTAs is their aggregation, which can be caused by a variety of factors; this results in a reduction of quality. RTA aggregations are especially concerning as they can trigger human immune responses in humans and may be fatal. Therefore, the mechanisms underlying RTA aggregation and measures for avoiding aggregation are interesting topics in RTAs research. In this review, we discuss recent progress in the field of RTAs aggregation, with a focus on factors that cause aggregation during RTA production and the development of strategies for overcoming RTA aggregation. KEY POINTS: • The recombinant antibody aggregation in mammalian cell systems is reviewed. • Intracellular environment and extracellular parameters influence recombinant antibody aggregation. • Reducing the aggregations can improve the quality of recombinant antibodies.
Collapse
Affiliation(s)
- Tingting Xu
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, 453003, Henan, China.,The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453002, Henan, China
| | - Jihong Zhang
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, 453003, Henan, China.,School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Tianyun Wang
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, 453003, Henan, China. .,School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, Henan, China.
| | - Xiaoyin Wang
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, 453003, Henan, China. .,School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, Henan, China.
| |
Collapse
|
8
|
Yanakieva D, Pekar L, Evers A, Fleischer M, Keller S, Mueller-Pompalla D, Toleikis L, Kolmar H, Zielonka S, Krah S. Beyond bispecificity: Controlled Fab arm exchange for the generation of antibodies with multiple specificities. MAbs 2022; 14:2018960. [PMID: 35014603 PMCID: PMC8757479 DOI: 10.1080/19420862.2021.2018960] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/13/2021] [Indexed: 01/07/2023] Open
Abstract
Controlled Fab arm exchange (cFAE) has proven to be a generic and versatile technology for the efficient generation of IgG-like bispecific antibodies (DuoBodies or DBs), with several in clinical development and one product, amivantamab, approved by the Food and Drug Administration. In this study, we expand the cFAE-toolbox by incorporating VHH-modules at the C-termini of DB-IgGs, termed DB-VHHs. This approach enables the combinatorial generation of tri- and tetraspecific molecules with flexible valencies in a straightforward fashion. Using cFAE, a variety of multispecific molecules was produced and assessed for manufacturability and physicochemical characteristics. In addition, we were able to generate DB-VHHs that efficiently triggered natural killer cell mediated lysis of tumor cells, demonstrating the utility of this format for potential therapeutic applications.
Collapse
Affiliation(s)
- Desislava Yanakieva
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Darmstadt, Germany
- Protein Engineering and Antibody Technologies, Protein Engineering and Antibody Technologies, Merck Healthcare KGaA, Darmstadt, Germany
| | - Lukas Pekar
- Protein Engineering and Antibody Technologies, Protein Engineering and Antibody Technologies, Merck Healthcare KGaA, Darmstadt, Germany
| | - Andreas Evers
- Protein Engineering and Antibody Technologies, Protein Engineering and Antibody Technologies, Merck Healthcare KGaA, Darmstadt, Germany
| | - Markus Fleischer
- Protein and Cell Sciences, Merck Healthcare KGaA, Darmstadt, Germany
| | - Stephan Keller
- Protein and Cell Sciences, Merck Healthcare KGaA, Darmstadt, Germany
| | | | - Lars Toleikis
- Protein Engineering and Antibody Technologies, Protein Engineering and Antibody Technologies, Merck Healthcare KGaA, Darmstadt, Germany
| | - Harald Kolmar
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Darmstadt, Germany
| | - Stefan Zielonka
- Protein Engineering and Antibody Technologies, Protein Engineering and Antibody Technologies, Merck Healthcare KGaA, Darmstadt, Germany
| | - Simon Krah
- Protein Engineering and Antibody Technologies, Protein Engineering and Antibody Technologies, Merck Healthcare KGaA, Darmstadt, Germany
| |
Collapse
|
9
|
Capillary electrophoresis and the biopharmaceutical industry: Therapeutic protein analysis and characterization. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116407] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
10
|
Li Y. IgG-like bispecific antibody platforms with built-in purification-facilitating elements. Protein Expr Purif 2021; 188:105955. [PMID: 34416361 DOI: 10.1016/j.pep.2021.105955] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 08/16/2021] [Indexed: 01/07/2023]
Abstract
Assembly of IgG-like asymmetric bispecific antibodies (bsAbs) requires heavy chain heterodimerization and cognate heavy-light chain pairings. Multiple strategies have been developed to solve these chain association issues. While these strategies greatly promote correct chain pairing, they normally cannot prevent low amount of chain mispaired byproducts from being generated. Besides, byproducts can also be generated as a result of discordant chain expression. The existence of various byproducts poses considerable challenges to downstream processing during the production of recombinant IgG-like bsAbs. In many cases, yield is greatly compromised for purity improvement. This mini review introduces eight IgG-like bsAb platforms, which share a common feature: they all contain built-in purification-facilitating elements in addition to chain pairing control designs. These platforms, by simultaneously providing solutions to the two issues associated with bsAb production (i.e., correct chain pairing and efficient purification), improve both efficiency and robustness of bsAb production.
Collapse
MESH Headings
- Antibodies, Bispecific/chemistry
- Antibodies, Bispecific/genetics
- Antibodies, Bispecific/immunology
- Antibodies, Bispecific/isolation & purification
- Chromatography, Gel/methods
- Chromatography, Ion Exchange/methods
- Humans
- Immunoglobulin G/chemistry
- Immunoglobulin G/genetics
- Immunoglobulin G/immunology
- Immunoglobulin G/isolation & purification
- Immunoglobulin Heavy Chains/chemistry
- Immunoglobulin Heavy Chains/genetics
- Immunoglobulin Heavy Chains/immunology
- Immunoglobulin Light Chains/chemistry
- Immunoglobulin Light Chains/genetics
- Immunoglobulin Light Chains/immunology
- Isoelectric Point
- Protein Binding
- Protein Engineering/methods
- Protein Multimerization
- Receptors, Antigen, T-Cell/chemistry
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Staphylococcal Protein A/chemistry
- Staphylococcal Protein A/metabolism
Collapse
Affiliation(s)
- Yifeng Li
- Technology and Process Development (TPD), WuXi Biologics, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai, 200131, China.
| |
Collapse
|
11
|
Bioassay Development for Bispecific Antibodies-Challenges and Opportunities. Int J Mol Sci 2021; 22:ijms22105350. [PMID: 34069573 PMCID: PMC8160952 DOI: 10.3390/ijms22105350] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/14/2021] [Accepted: 05/15/2021] [Indexed: 12/25/2022] Open
Abstract
Antibody therapeutics are expanding with promising clinical outcomes, and diverse formats of antibodies are further developed and available for patients of the most challenging disease areas. Bispecific antibodies (BsAbs) have several significant advantages over monospecific antibodies by engaging two antigen targets. Due to the complicated mechanism of action, diverse structural variations, and dual-target binding, developing bioassays and other types of assays to characterize BsAbs is challenging. Developing bioassays for BsAbs requires a good understanding of the mechanism of action of the molecule, principles and applications of different bioanalytical methods, and phase-appropriate considerations per regulatory guidelines. Here, we review recent advances and case studies to provide strategies and insights for bioassay development for different types of bispecific molecules.
Collapse
|