1
|
Mbisa JL, Lapp Z, Bibby DF, Phillips LT, Manso CF, Packer S, Simmons R, Harris K, Mohan J, Chinnappan L, Leitner T, Bradshaw D. Identification of 2 Novel Subtypes of Hepatitis C Virus Genotype 8 and a Potential New Genotype Successfully Treated With Direct Acting Antivirals. J Infect Dis 2024; 230:e1254-e1262. [PMID: 38717937 PMCID: PMC11646602 DOI: 10.1093/infdis/jiae253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/24/2024] [Accepted: 05/06/2024] [Indexed: 07/10/2024] Open
Abstract
BACKGROUND Hepatitis C virus (HCV) has high genetic diversity and is classified into 8 genotypes and >90 subtypes, with some endemic to specific world regions. This could compromise direct-acting antiviral efficacy and global HCV elimination. METHODS We characterized HCV subtypes "rare" in the United Kingdom (non-1a/1b/2b/3a/4d) by means of whole-genome sequencing via a national surveillance program. Genetic analyses to determine the genotype of samples with unresolved genotypes were undertaken by comparison with International Committee on Taxonomy of Viruses HCV reference sequences. RESULTS Two HCV variants were characterized as being closely related to the recently identified genotype (GT) 8, with >85% pairwise genetic distance similarity to GT8 sequences and within the typical intersubtype genetic distance range. The individuals infected by the variants were UK residents originally from Pakistan and India. In contrast, a third variant was only confidently identified to be more similar to GT6 compared with other genotypes across 6% of the genome and was isolated from a UK resident originally from Guyana. All 3 were cured with pangenotypic direct-acting antivirals (sofosbuvir-velpatasvir or glecaprevir-pibrentasvir) despite the presence of resistance polymorphisms in NS3 (80K/168E), NS5A (28V/30S/62L/92S/93S) and NS5B (159F). CONCLUSIONS This study expands our knowledge of HCV diversity by identifying 2 new GT8 subtypes and potentially a new genotype.
Collapse
Affiliation(s)
- Jean L Mbisa
- Virus Reference Department, UK Health Security Agency, London, United Kingdom
- National Institute for Health and Care Research Health Protection Research Unit (NIHR HPRU) in Bloodborne and Sexually Transmitted Infections, London, United Kingdom
| | - Zena Lapp
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| | - David F Bibby
- Virus Reference Department, UK Health Security Agency, London, United Kingdom
| | - Laura T Phillips
- Virus Reference Department, UK Health Security Agency, London, United Kingdom
- National Institute for Health and Care Research Health Protection Research Unit (NIHR HPRU) in Bloodborne and Sexually Transmitted Infections, London, United Kingdom
| | - Carmen F Manso
- Virus Reference Department, UK Health Security Agency, London, United Kingdom
| | - Simon Packer
- Virus Reference Department, UK Health Security Agency, London, United Kingdom
| | - Ruth Simmons
- Virus Reference Department, UK Health Security Agency, London, United Kingdom
- National Institute for Health and Care Research Health Protection Research Unit (NIHR HPRU) in Bloodborne and Sexually Transmitted Infections, London, United Kingdom
| | - Kathryn Harris
- Royal London Hospital, Barts Health NHS Trust, London, United Kingdom
| | - Jaiganesh Mohan
- Warrington and Halton Teaching Hospitals NHS Foundation Trust, Warrington, United Kingdom
| | - Lalitha Chinnappan
- Warrington and Halton Teaching Hospitals NHS Foundation Trust, Warrington, United Kingdom
| | - Thomas Leitner
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| | - Daniel Bradshaw
- Virus Reference Department, UK Health Security Agency, London, United Kingdom
- National Institute for Health and Care Research Health Protection Research Unit (NIHR HPRU) in Bloodborne and Sexually Transmitted Infections, London, United Kingdom
| |
Collapse
|
2
|
Flower B, Hung LM, Mccabe L, Ansari MA, Le Ngoc C, Vo Thi T, Vu Thi Kim H, Nguyen Thi Ngoc P, Phuong LT, Quang VM, Dang Trong T, Le Thi T, Nguyen Bao T, Kingsley C, Smith D, Hoglund RM, Tarning J, Kestelyn E, Pett SL, van Doorn R, Van Nuil JI, Turner H, Thwaites GE, Barnes E, Rahman M, Walker AS, Day JN, Chau NVV, Cooke GS. Efficacy of ultra-short, response-guided sofosbuvir and daclatasvir therapy for hepatitis C in a single-arm mechanistic pilot study. eLife 2023; 12:e81801. [PMID: 36622106 PMCID: PMC9870305 DOI: 10.7554/elife.81801] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 12/23/2022] [Indexed: 01/10/2023] Open
Abstract
Background World Health Organization has called for research into predictive factors for selecting persons who could be successfully treated with shorter durations of direct-acting antiviral (DAA) therapy for hepatitis C. We evaluated early virological response as a means of shortening treatment and explored host, viral and pharmacokinetic contributors to treatment outcome. Methods Duration of sofosbuvir and daclatasvir (SOF/DCV) was determined according to day 2 (D2) virologic response for HCV genotype (gt) 1- or 6-infected adults in Vietnam with mild liver disease. Participants received 4- or 8-week treatment according to whether D2 HCV RNA was above or below 500 IU/ml (standard duration is 12 weeks). Primary endpoint was sustained virological response (SVR12). Those failing therapy were retreated with 12 weeks SOF/DCV. Host IFNL4 genotype and viral sequencing was performed at baseline, with repeat viral sequencing if virological rebound was observed. Levels of SOF, its inactive metabolite GS-331007 and DCV were measured on days 0 and 28. Results Of 52 adults enrolled, 34 received 4 weeks SOF/DCV, 17 got 8 weeks and 1 withdrew. SVR12 was achieved in 21/34 (62%) treated for 4 weeks, and 17/17 (100%) treated for 8 weeks. Overall, 38/51 (75%) were cured with first-line treatment (mean duration 37 days). Despite a high prevalence of putative NS5A-inhibitor resistance-associated substitutions (RASs), all first-line treatment failures cured after retreatment (13/13). We found no evidence treatment failure was associated with host IFNL4 genotype, viral subtype, baseline RAS, SOF or DCV levels. Conclusions Shortened SOF/DCV therapy, with retreatment if needed, reduces DAA use in patients with mild liver disease, while maintaining high cure rates. D2 virologic response alone does not adequately predict SVR12 with 4-week treatment. Funding Funded by the Medical Research Council (Grant MR/P025064/1) and The Global Challenges Research 70 Fund (Wellcome Trust Grant 206/296/Z/17/Z).
Collapse
Affiliation(s)
- Barnaby Flower
- Oxford University Clinical Research UnitHo Chi Minh CityVietnam
- Department of Infectious Disease, Imperial College LondonLondonUnited Kingdom
| | - Le Manh Hung
- Hospital for Tropical DiseasesHo Chi Minh CityVietnam
| | - Leanne Mccabe
- MRC Clinical Trials Unit at UCL, University College LondonLondonUnited Kingdom
| | - M Azim Ansari
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of OxfordOxfordUnited Kingdom
| | - Chau Le Ngoc
- Oxford University Clinical Research UnitHo Chi Minh CityVietnam
| | - Thu Vo Thi
- Oxford University Clinical Research UnitHo Chi Minh CityVietnam
| | - Hang Vu Thi Kim
- Oxford University Clinical Research UnitHo Chi Minh CityVietnam
| | | | | | - Vo Minh Quang
- Hospital for Tropical DiseasesHo Chi Minh CityVietnam
| | | | - Thao Le Thi
- Oxford University Clinical Research UnitHo Chi Minh CityVietnam
| | - Tran Nguyen Bao
- Oxford University Clinical Research UnitHo Chi Minh CityVietnam
| | - Cherry Kingsley
- Department of Infectious Disease, Imperial College LondonLondonUnited Kingdom
| | - David Smith
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of OxfordOxfordUnited Kingdom
| | - Richard M Hoglund
- Mahidol Oxford Tropical Medicine Research Unit, Mahidol University, Faculty of Tropical MedicineBangkokThailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, Oxford UniversityOxfordUnited Kingdom
| | - Joel Tarning
- Mahidol Oxford Tropical Medicine Research Unit, Mahidol University, Faculty of Tropical MedicineBangkokThailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, Oxford UniversityOxfordUnited Kingdom
| | - Evelyne Kestelyn
- Oxford University Clinical Research UnitHo Chi Minh CityVietnam
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, Oxford UniversityOxfordUnited Kingdom
| | - Sarah L Pett
- MRC Clinical Trials Unit at UCL, University College LondonLondonUnited Kingdom
| | - Rogier van Doorn
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, Oxford UniversityOxfordUnited Kingdom
- Oxford University Clinical Research UnitHanoiVietnam
| | - Jennifer Ilo Van Nuil
- Oxford University Clinical Research UnitHo Chi Minh CityVietnam
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, Oxford UniversityOxfordUnited Kingdom
| | - Hugo Turner
- MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College LondonLondonUnited Kingdom
| | - Guy E Thwaites
- Oxford University Clinical Research UnitHo Chi Minh CityVietnam
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, Oxford UniversityOxfordUnited Kingdom
| | - Eleanor Barnes
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of OxfordOxfordUnited Kingdom
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, Oxford UniversityOxfordUnited Kingdom
| | - Motiur Rahman
- Oxford University Clinical Research UnitHo Chi Minh CityVietnam
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, Oxford UniversityOxfordUnited Kingdom
| | - Ann Sarah Walker
- MRC Clinical Trials Unit at UCL, University College LondonLondonUnited Kingdom
- Nuffield Department of Medicine, University of OxfordOxfordUnited Kingdom
- The National Institute for Health Research, Oxford Biomedical Research Centre, University of OxfordOxfordUnited Kingdom
| | - Jeremy N Day
- Oxford University Clinical Research UnitHo Chi Minh CityVietnam
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, Oxford UniversityOxfordUnited Kingdom
| | | | - Graham S Cooke
- Department of Infectious Disease, Imperial College LondonLondonUnited Kingdom
| |
Collapse
|
3
|
Malandris K, Kalopitas G, Theocharidou E, Germanidis G. The Role of RASs /RVs in the Current Management of HCV. Viruses 2021; 13:2096. [PMID: 34696525 PMCID: PMC8539246 DOI: 10.3390/v13102096] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 12/17/2022] Open
Abstract
The approval of combination therapies with direct-acting antiviral (DAA) regimens has led to significant progress in the field of hepatitis C virus (HCV) treatment. Although most patients treated with these agents achieve a virological cure, resistance to DAAs is a major issue. The rapid emergence of resistance-associated substitutions (RASs), in particular in the context of incomplete drug pressure, has an impact on sustained virological response (SVR) rates. Several RASs in NS3, NS5A and NS5B have been linked with reduced susceptibility to DAAs. RAS vary based on HCV characteristics and the different drug classes. DAA-resistant HCV variant haplotypes (RVs) are dominant in cases of virological failure. Viruses with resistance to NS3-4A protease inhibitors are only detected in the peripheral blood in a time frame ranging from weeks to months following completion of treatment, whereas NS5A inhibitor-resistant viruses may persist for years. Novel agents have been developed that demonstrate promising results in DAA-experienced patients. The recent approval of broad-spectrum drug combinations with a high genetic barrier to resistance and antiviral potency may overcome the problem of resistance.
Collapse
Affiliation(s)
- Konstantinos Malandris
- Second Department of Internal Medicine, Hippokration General Hospital, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece; (K.M.); (E.T.)
| | - Georgios Kalopitas
- First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece;
- Basic and Translational Research Unit, Special Unit for Biomedical Research and Education, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Eleni Theocharidou
- Second Department of Internal Medicine, Hippokration General Hospital, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece; (K.M.); (E.T.)
| | - Georgios Germanidis
- First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece;
- Basic and Translational Research Unit, Special Unit for Biomedical Research and Education, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| |
Collapse
|
4
|
Smith DA, Bradshaw D, Mbisa JL, Manso CF, Bibby DF, Singer JB, Thomson EC, da Silva Filipe A, Aranday-Cortes E, Ansari MA, Brown A, Hudson E, Benselin J, Healy B, Troke P, McLauchlan J, Barnes E, Irving WL. Real world SOF/VEL/VOX retreatment outcomes and viral resistance analysis for HCV patients with prior failure to DAA therapy. J Viral Hepat 2021; 28:1256-1264. [PMID: 34003556 DOI: 10.1111/jvh.13549] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 04/23/2021] [Accepted: 05/05/2021] [Indexed: 12/14/2022]
Abstract
Sustained viral response (SVR) rates for direct-acting antiviral (DAA) therapy for hepatitis C virus (HCV) infection routinely exceed 95%. However, a small number of patients require retreatment. Sofosbuvir, velpatasvir and voxilaprevir (SOF/VEL/VOX) is a potent DAA combination primarily used for the retreatment of patients who failed by DAA therapies. Here we evaluate retreatment outcomes and the effects of resistance-associated substitutions (RAS) in a real-world cohort, including a large number of genotype (GT)3 infected patients. 144 patients from the UK were retreated with SOF/VEL/VOX following virologic failure with first-line DAA treatment regimens. Full-length HCV genome sequencing was performed prior to retreatment with SOF/VEL/VOX. HCV subtypes were assigned and RAS relevant to each genotype were identified. GT1a and GT3a each made up 38% (GT1a n = 55, GT3a n = 54) of the cohort. 40% (n = 58) of patients had liver cirrhosis of whom 7% (n = 4) were decompensated, 10% (n = 14) had hepatocellular carcinoma (HCC) and 8% (n = 12) had received a liver transplant prior to retreatment. The overall retreatment SVR12 rate was 90% (129/144). On univariate analysis, GT3 infection (50/62; SVR = 81%, p = .009), cirrhosis (47/58; SVR = 81%, p = .01) and prior treatment with SOF/VEL (12/17; SVR = 71%, p = .02) or SOF+DCV (14/19; SVR = 74%, p = .012) were significantly associated with retreatment failure, but existence of pre-retreatment RAS was not when viral genotype was taken into account. Retreatment with SOF/VEL/VOX is very successful for non-GT3-infected patients. However, for GT3-infected patients, particularly those with cirrhosis and failed by initial SOF/VEL treatment, SVR rates were significantly lower and alternative retreatment regimens should be considered.
Collapse
Affiliation(s)
- David A Smith
- Nuffield Department of Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK.,NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Daniel Bradshaw
- National Infection Service, Public Health England, London, UK
| | - Jean L Mbisa
- National Infection Service, Public Health England, London, UK
| | - Carmen F Manso
- National Infection Service, Public Health England, London, UK
| | - David F Bibby
- National Infection Service, Public Health England, London, UK
| | - Joshua B Singer
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Emma C Thomson
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | | | | | - M Azim Ansari
- Nuffield Department of Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
| | - Anthony Brown
- Nuffield Department of Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
| | - Emma Hudson
- Nuffield Department of Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
| | - Jennifer Benselin
- NIHR Biomedical Research Centre (BRC), Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, UK
| | - Brendan Healy
- Public Health Wales Microbiology Cardiff, University Hospital of Wales, Cardiff, UK
| | | | - John McLauchlan
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Eleanor Barnes
- Nuffield Department of Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK.,NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - William L Irving
- NIHR Biomedical Research Centre (BRC), Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, UK
| |
Collapse
|
5
|
de Salazar A, Dietz J, di Maio VC, Vermehren J, Paolucci S, Müllhaupt B, Coppola N, Cabezas J, Stauber RE, Puoti M, Arenas Ruiz Tapiador JI, Graf C, Aragri M, Jimenez M, Callegaro A, Pascasio Acevedo JM, Macias Rodriguez MA, Rosales Zabal JM, Micheli V, Garcia Del Toro M, Téllez F, García F, Sarrazin C, Ceccherini-Silberstein F, Canbay A, Port K, Cornberg M, Manns M, Reinhardt L, Ellenrieder V, Zizer E, Dikopoulos N, Backhus J, Seufferlein T, Beckebaum S, Hametner S, Schöfl R, Niederau C, Schlee P, Dreck M, Görlitz B, Hinrichsen H, Seegers B, Jung M, Link R, Mauss S, Meister V, Schnaitmann E, Sick C, Simon KG, Schmidt KJ, Andreoni M, Craxì A, Giaccone P, Perno CF, Zazzi M, Bertoli A, Angelico M, Masetti C, Giannelli V, Camillo S, Begini P, De Santis A, Taliani G, Lichtner M, Rossetti B, Caudai C, Cozzolongo R, De Bellis S, Starace M, Minichini C, Gaeta G, Pisaturo MA, Messina V, Dentone C, Bruzzone B, Landonio S, Magni C, Merli M, De Gasperi E, Policlinico GOM, Hasson H, Boeri E, Beretta I, Molteni C, Maffezzini AME, Dorigoni N, Guella L, Götze T, Canbay A, Port K, Cornberg M, Manns M, Reinhardt L, Ellenrieder V, Zizer E, Dikopoulos N, Backhus J, Seufferlein T, Beckebaum S, Hametner S, Schöfl R, Niederau C, Schlee P, Dreck M, Görlitz B, Hinrichsen H, Seegers B, Jung M, Link R, Mauss S, Meister V, Schnaitmann E, Sick C, Simon KG, Schmidt KJ, Andreoni M, Craxì A, Giaccone P, Perno CF, Zazzi M, Bertoli A, Angelico M, Masetti C, Giannelli V, Camillo S, Begini P, De Santis A, Taliani G, Lichtner M, Rossetti B, Caudai C, Cozzolongo R, De Bellis S, Starace M, Minichini C, Gaeta G, Pisaturo MA, Messina V, Dentone C, Bruzzone B, Landonio S, Magni C, Merli M, De Gasperi E, Policlinico GOM, Hasson H, Boeri E, Beretta I, Molteni C, Maffezzini AME, Dorigoni N, Guella L. Prevalence of resistance-associated substitutions and retreatment of patients failing a glecaprevir/pibrentasvir regimen. J Antimicrob Chemother 2021; 75:3349-3358. [PMID: 32772078 DOI: 10.1093/jac/dkaa304] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 06/02/2020] [Indexed: 12/27/2022] Open
Abstract
OBJECTIVES To investigate resistance-associated substitutions (RASs) as well as retreatment efficacies in a large cohort of European patients with failure of glecaprevir/pibrentasvir. METHODS Patients were identified from three European Resistance Reference centres in Spain, Italy and Germany. Sequencing of NS3, NS5A and NS5B was conducted and substitutions associated with resistance to direct antiviral agents were analysed. Clinical and virological parameters were documented retrospectively and retreatment efficacies were evaluated. RESULTS We evaluated 90 glecaprevir/pibrentasvir failures [3a (n = 36), 1a (n = 23), 2a/2c (n = 20), 1b (n = 10) and 4d (n = 1)]. Ten patients were cirrhotic, two had previous exposure to PEG-interferon and seven were coinfected with HIV; 80 had been treated for 8 weeks. Overall, 31 patients (34.4%) failed glecaprevir/pibrentasvir without any NS3 or NS5A RASs, 62.4% (53/85) showed RASs in NS5A, 15.6% (13/83) in NS3 and 10% (9/90) in both NS5A and NS3. Infection with HCV genotypes 1a and 3a was associated with a higher prevalence of NS5A RASs. Patients harbouring two (n = 34) or more (n = 8) RASs in NS5A were frequent. Retreatment was initiated in 56 patients, almost all (n = 52) with sofosbuvir/velpatasvir/voxilaprevir. The overall sustained virological response rate was 97.8% in patients with end-of-follow-up data available. CONCLUSIONS One-third of patients failed glecaprevir/pibrentasvir without resistance. RASs in NS5A were more prevalent than in NS3 and were frequently observed as dual and triple combination patterns, with a high impact on NS5A inhibitor activity, particularly in genotypes 1a and 3a. Retreatment of glecaprevir/pibrentasvir failures with sofosbuvir/velpatasvir/voxilaprevir achieved viral suppression across all genotypes.
Collapse
Affiliation(s)
- Adolfo de Salazar
- Clinical Microbiology Unit, University Hospital San Cecilio, Instituto de Investigacion Ibs.Granada. Granada, Spain
| | - Julia Dietz
- Department of Internal Medicine 1, University Hospital Frankfurt, Frankfurt, Germany; German Center for Infection Research (DZIF), External Partner Site, Frankfurt, Germany
| | - Velia Chiara di Maio
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Johannes Vermehren
- Department of Internal Medicine 1, University Hospital Frankfurt, Frankfurt, Germany; German Center for Infection Research (DZIF), External Partner Site, Frankfurt, Germany
| | - Stefania Paolucci
- Molecular Virology Unit, Microbiology and Virology Department, IRCCS Policlinic Foundation San Matteo, Pavia, Italy
| | - Beat Müllhaupt
- Swiss Hepato-Pancreato-Biliary Center and Department of Gastroenterology and Hepatology, University Hospital Zürich, Zürich, Switzerland
| | - Nicola Coppola
- Department of Mental Health and Public Medicine, Infectious Diseases Unit, University of Campania "L. Vanvitelli", Naples, Italy
| | - Joaquín Cabezas
- Department of Hepatology, Marqués de Valdecilla University Hospital, Santander, Spain
| | - Rudolf E Stauber
- Department of Gastroenterology and Hepatology, Medical University of Graz, Graz, Austria
| | - Massimo Puoti
- Infectious Diseases, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | | | - Christiana Graf
- Department of Internal Medicine 1, University Hospital Frankfurt, Frankfurt, Germany; German Center for Infection Research (DZIF), External Partner Site, Frankfurt, Germany
| | - Marianna Aragri
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Miguel Jimenez
- Hepatology Unit, Hospital Regional de Málaga, Málaga, Spain
| | | | | | | | | | - Valeria Micheli
- Clinical Microbiology, Virology and Bioemergencies, ASST Fatebenefratelli Sacco University Hospital, Milan, Italy
| | | | - Francisco Téllez
- Infectious Diseases Unit, Hospital Puerto Real, Puerto Real, Cádiz, Spain
| | - Federico García
- Clinical Microbiology Unit, University Hospital San Cecilio, Instituto de Investigacion Ibs.Granada. Granada, Spain
| | - Christoph Sarrazin
- Department of Internal Medicine 1, University Hospital Frankfurt, Frankfurt, Germany; German Center for Infection Research (DZIF), External Partner Site, Frankfurt, Germany.,Medizinische Klinik 2, St. Josefs Hospital, Wiesbaden, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Carrasco T, Barquín D, Ndarabu A, Fernández-Alonso M, Rubio-Garrido M, Carlos S, Makonda B, Holguín Á, Reina G. HCV Diagnosis and Sequencing Using Dried Blood Spots from Patients in Kinshasa (DRC): A Tool to Achieve WHO 2030 Targets. Diagnostics (Basel) 2021; 11:522. [PMID: 33804260 PMCID: PMC8002119 DOI: 10.3390/diagnostics11030522] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/09/2021] [Accepted: 03/11/2021] [Indexed: 12/11/2022] Open
Abstract
The World Health Organization has established an elimination plan for hepatitis C virus (HCV) by 2030. In Sub-Saharan Africa (SSA) access to diagnostic tools is limited, and a number of genotype 4 subtypes have been shown to be resistant to some direct-acting antivirals (DAAs). This study aims to analyze diagnostic assays for HCV based on dried blood spots (DBS) specimens collected in Kinshasa and to characterize genetic diversity of the virus within a group of mainly HIV positive patients. HCV antibody detection was performed on 107 DBS samples with Vidas® anti-HCV and Elecsys anti-HCV II, and on 31 samples with INNO-LIA HCV. Twenty-six samples were subjected to molecular detection. NS3, NS5A, and NS5B regions from 11 HCV viremic patients were sequenced. HCV seroprevalence was 12.2% (72% with detectable HCV RNA). Both Elecsys Anti-HCV and INNO-LIA HCV were highly sensitive and specific, whereas Vidas® anti-HCV lacked full sensitivity and specificity when DBS sample was used. NS5B/NS5A/NS3 sequencing revealed exclusively GT4 isolates (50% subtype 4r, 30% 4c and 20% 4k). All 4r strains harbored NS5A resistance-associated substitutions (RAS) at positions 28, 30, and 31, but no NS3 RAS was detected. Elecsys Anti-HCV and INNO-LIA HCV are reliable methods to detect HCV antibodies using DBS. HCV subtype 4r was the most prevalent among our patients. RASs found in subtype 4r in NS5A region confer unknown susceptibility to DAA.
Collapse
Affiliation(s)
- Teresa Carrasco
- Microbiology Department, Clínica Universidad de Navarra, 31008 Pamplona, Spain; (T.C.); (D.B.); (M.F.-A.)
| | - David Barquín
- Microbiology Department, Clínica Universidad de Navarra, 31008 Pamplona, Spain; (T.C.); (D.B.); (M.F.-A.)
| | - Adolphe Ndarabu
- Department of Internal Medicine, Centre Hospitalier Monkole, 4484 Kinshasa, Democratic Republic of the Congo; (A.N.); (B.M.)
| | - Mirian Fernández-Alonso
- Microbiology Department, Clínica Universidad de Navarra, 31008 Pamplona, Spain; (T.C.); (D.B.); (M.F.-A.)
- ISTUN, Institute of Tropical Health, Universidad de Navarra, 31008 Pamplona, Spain;
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
| | - Marina Rubio-Garrido
- HIV-1 Molecular Epidemiology Laboratory, Microbiology and Parasitology Department and Instituto Ramón y Cajal para la Investigación Sanitaria (IRYCIS), Hospital Universitario Ramón y Cajal, CIBER en Epidemiología y Salud Pública (CIBERESP), Red en Investigación Translacional en Infecciones Pediátricas (RITIP), 28034 Madrid, Spain; (M.R.-G.); (Á.H.)
| | - Silvia Carlos
- ISTUN, Institute of Tropical Health, Universidad de Navarra, 31008 Pamplona, Spain;
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
- Department Preventive Medicine and Public Health, Universidad de Navarra, 31008 Pamplona, Spain
| | - Benit Makonda
- Department of Internal Medicine, Centre Hospitalier Monkole, 4484 Kinshasa, Democratic Republic of the Congo; (A.N.); (B.M.)
| | - África Holguín
- HIV-1 Molecular Epidemiology Laboratory, Microbiology and Parasitology Department and Instituto Ramón y Cajal para la Investigación Sanitaria (IRYCIS), Hospital Universitario Ramón y Cajal, CIBER en Epidemiología y Salud Pública (CIBERESP), Red en Investigación Translacional en Infecciones Pediátricas (RITIP), 28034 Madrid, Spain; (M.R.-G.); (Á.H.)
| | - Gabriel Reina
- Microbiology Department, Clínica Universidad de Navarra, 31008 Pamplona, Spain; (T.C.); (D.B.); (M.F.-A.)
- ISTUN, Institute of Tropical Health, Universidad de Navarra, 31008 Pamplona, Spain;
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
| |
Collapse
|
7
|
Abstract
Activation and viral control of the innate immune response are hallmarks of hepatitis C virus (HCV) infection and are major determinants of spontaneous clearance or progression to chronic infection and liver disease. In this review, we provide a contemporary overview of how HCV is sensed by the host cell to trigger innate immune activation and the mechanisms deployed by the virus to evade this response. Type I and III interferons (IFNs) are crucial mediators of antiviral innate immunity against HCV, and we specifically highlight the importance of IFN-λ host genetics for the outcome of HCV infection. Last, we focus on the proinflammatory responses elicited by HCV infection and describe our current understanding of how interleukin (IL)-1β signaling and cross talk between the IL-1β and IFN signaling pathways lead to sustained inflammation and increased risk of liver pathology.
Collapse
Affiliation(s)
- Johannes Schwerk
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington School of Medicine, Seattle, Washington 98109, USA
| | - Amina Negash
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington School of Medicine, Seattle, Washington 98109, USA
| | - Ram Savan
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington School of Medicine, Seattle, Washington 98109, USA
| | - Michael Gale
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington School of Medicine, Seattle, Washington 98109, USA
| |
Collapse
|
8
|
Soria ME, García-Crespo C, Martínez-González B, Vázquez-Sirvent L, Lobo-Vega R, de Ávila AI, Gallego I, Chen Q, García-Cehic D, Llorens-Revull M, Briones C, Gómez J, Ferrer-Orta C, Verdaguer N, Gregori J, Rodríguez-Frías F, Buti M, Esteban JI, Domingo E, Quer J, Perales C. Amino Acid Substitutions Associated with Treatment Failure for Hepatitis C Virus Infection. J Clin Microbiol 2020; 58:JCM.01985-20. [PMID: 32999010 PMCID: PMC7685896 DOI: 10.1128/jcm.01985-20] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 09/21/2020] [Indexed: 02/07/2023] Open
Abstract
Despite the high virological response rates achieved with current directly acting antiviral agents (DAAs) against hepatitis C virus (HCV), around 2% to 5% of treated patients do not achieve a sustained viral response. The identification of amino acid substitutions associated with treatment failure requires analytical designs, such as subtype-specific ultradeep sequencing (UDS) methods, for HCV characterization and patient management. Using this procedure, we have identified six highly represented amino acid substitutions (HRSs) in NS5A and NS5B of HCV, which are not bona fide resistance-associated substitutions (RAS), from 220 patients who failed therapy. They were present frequently in basal and posttreatment virus of patients who failed different DAA-based therapies. Contrary to several RAS, HRSs belong to the acceptable subset of substitutions according to the PAM250 replacement matrix. Their mutant frequency, measured by the number of deep sequencing reads within the HCV quasispecies that encode the relevant substitutions, ranged between 90% and 100% in most cases. They also have limited predicted disruptive effects on the three-dimensional structures of the proteins harboring them. Possible mechanisms of HRS origin and dominance, as well as their potential predictive value for treatment response, are discussed.
Collapse
Affiliation(s)
- María Eugenia Soria
- Department of Clinical Microbiology, IIS-Fundación Jiménez Díaz, Madrid, Spain
- Liver Unit, Internal Medicine Hospital Universitari Vall d'Hebron, Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Carlos García-Crespo
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Brenda Martínez-González
- Department of Clinical Microbiology, IIS-Fundación Jiménez Díaz, Madrid, Spain
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Lucía Vázquez-Sirvent
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Rebeca Lobo-Vega
- Department of Clinical Microbiology, IIS-Fundación Jiménez Díaz, Madrid, Spain
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Ana Isabel de Ávila
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Isabel Gallego
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) del Instituto de Salud Carlos III, Madrid, Spain
| | - Qian Chen
- Liver Unit, Internal Medicine Hospital Universitari Vall d'Hebron, Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) del Instituto de Salud Carlos III, Madrid, Spain
| | - Damir García-Cehic
- Liver Unit, Internal Medicine Hospital Universitari Vall d'Hebron, Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) del Instituto de Salud Carlos III, Madrid, Spain
| | - Meritxell Llorens-Revull
- Liver Unit, Internal Medicine Hospital Universitari Vall d'Hebron, Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) del Instituto de Salud Carlos III, Madrid, Spain
| | - Carlos Briones
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) del Instituto de Salud Carlos III, Madrid, Spain
- Centro de Astrobiología (CAB, CSIC-INTA), Torrejón de Ardoz, Madrid, Spain
| | - Jordi Gómez
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) del Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Parasitología y Biomedicina 'López-Neyra' (CSIC), Parque Tecnológico Ciencias de la Salud, Armilla, Granada, Spain
| | - Cristina Ferrer-Orta
- Structural Biology Department, Institut de Biología Molecular de Barcelona CSIC, Barcelona, Spain
| | - Nuria Verdaguer
- Structural Biology Department, Institut de Biología Molecular de Barcelona CSIC, Barcelona, Spain
| | - Josep Gregori
- Liver Unit, Internal Medicine Hospital Universitari Vall d'Hebron, Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) del Instituto de Salud Carlos III, Madrid, Spain
- Roche Diagnostics, S.L., Barcelona, Spain
| | - Francisco Rodríguez-Frías
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) del Instituto de Salud Carlos III, Madrid, Spain
- Biochemistry and Microbiology Departments, VHIR-HUVH, Barcelona, Spain
| | - María Buti
- Liver Unit, Internal Medicine Hospital Universitari Vall d'Hebron, Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) del Instituto de Salud Carlos III, Madrid, Spain
| | - Juan Ignacio Esteban
- Liver Unit, Internal Medicine Hospital Universitari Vall d'Hebron, Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) del Instituto de Salud Carlos III, Madrid, Spain
| | - Esteban Domingo
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) del Instituto de Salud Carlos III, Madrid, Spain
| | - Josep Quer
- Liver Unit, Internal Medicine Hospital Universitari Vall d'Hebron, Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) del Instituto de Salud Carlos III, Madrid, Spain
| | - Celia Perales
- Department of Clinical Microbiology, IIS-Fundación Jiménez Díaz, Madrid, Spain
- Liver Unit, Internal Medicine Hospital Universitari Vall d'Hebron, Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) del Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
9
|
Manso CF, Bibby DF, Lythgow K, Mohamed H, Myers R, Williams D, Piorkowska R, Chan YT, Bowden R, Ansari MA, Ip CLC, Barnes E, Bradshaw D, Mbisa JL. Technical Validation of a Hepatitis C Virus Whole Genome Sequencing Assay for Detection of Genotype and Antiviral Resistance in the Clinical Pathway. Front Microbiol 2020; 11:576572. [PMID: 33162957 PMCID: PMC7583327 DOI: 10.3389/fmicb.2020.576572] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 09/14/2020] [Indexed: 01/05/2023] Open
Abstract
Choice of direct acting antiviral (DAA) therapy for Hepatitis C Virus (HCV) in the United Kingdom and similar settings usually requires knowledge of the genotype and, in some cases, antiviral resistance (AVR) profile of the infecting virus. To determine these, most laboratories currently use Sanger technology, but next-generation sequencing (NGS) offers potential advantages in throughput and accuracy. However, NGS poses unique technical challenges, which require idiosyncratic development and technical validation approaches. This applies particularly to virology, where sequence diversity is high and the amount of starting genetic material is low, making it difficult to distinguish real data from artifacts. We describe the development and technical validation of a sequence capture-based HCV whole genome sequencing (WGS) assay to determine viral genotype and AVR profile. We use clinical samples of known subtypes and viral loads, and simulated FASTQ datasets to validate the analytical performances of both the wet laboratory and bioinformatic pipeline procedures. We show high concordance of the WGS assay compared to current "gold standard" Sanger assays. Specificity was 92.3 and 96.1% for AVR and genotyping, respectively. Discordances were due to the inability of Sanger assays to assign the correct subtype or accurately call mixed drug-resistant variants. We show high repeatability and reproducibility with >99.8% sequence similarity between sequence runs as well as high precision for variant frequency detection at >98.8% in the 95th percentile. Post-sequencing bioinformatics quality control workflows allow the accurate distinction between mixed infections, cross-contaminants and recombinant viruses at a threshold of >5% for the minority population. The sequence capture-based HCV WGS assay is more accurate than legacy AVR and genotyping assays. The assay has now been implemented in the clinical pathway of England's National Health Service HCV treatment programs, representing the first validated HCV WGS pipeline in clinical service. The data generated will additionally provide granular national-level genomic information for public health policy making and support the WHO HCV elimination strategy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Rory Bowden
- The Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - M. Azim Ansari
- The Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- Peter Medawar Building for Pathogen Research and the NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Camilla L. C. Ip
- The Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Eleanor Barnes
- Peter Medawar Building for Pathogen Research and the NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | | | - Jean L. Mbisa
- Public Health England, London, United Kingdom
- National Institute for Health Research Health Protection Research Unit (NIHR HPRU) in Blood Borne and Sexually Transmitted Infections, London, United Kingdom
| |
Collapse
|
10
|
May S, Kurmoo F, Iliffe M, David J, Patel A, Wiselka M, Stephenson I, Delahooke T, Lai FY, Dustan S, Tang JW. Comparative hepatitis C genotype 1–3 viral load kinetics in response to directly-acting antiviral therapy. J Infect 2020; 80:578-606. [DOI: 10.1016/j.jinf.2020.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 01/16/2020] [Accepted: 01/18/2020] [Indexed: 11/29/2022]
|
11
|
Impact of Sustained Virological Response for Gastroesophageal Varices in Hepatitis-C-Virus-Related Liver Cirrhosis. J Clin Med 2019; 9:jcm9010095. [PMID: 31905953 PMCID: PMC7019884 DOI: 10.3390/jcm9010095] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 12/27/2019] [Indexed: 12/11/2022] Open
Abstract
We aimed to clarify the relationship between sustained virological response (SVR) and gastroesophageal varices (GEVs) progression among hepatitis C virus (HCV)-related liver cirrhosis (LC) patients treated with interferon (IFN)-based therapies (n = 18) and direct-acting antiviral (DAA)-based therapies (n = 37), and LC patients with no SVR (n = 71) who had already developed GEVs. Factors influencing GEVs progression were also examined. During the follow-up period, GEVs progression was observed in 50 patients (39.7%). The 3-year cumulative GEVs progression rates in the DAA-SVR group, the IFN-SVR group, and the non-SVR group were 32.27%, 5.88%, and 33.76%, respectively (overall p value = 0.0108). Multivariate analysis revealed that sex (p = 0.0430), esophageal varices (EVs) F2 or more (p < 0.0001), and DAA-SVR (p = 0.0126, IFN-SVR as a reference) and non-SVR (p = 0.0012, IFN-SVR as a reference) were independent predictors for GEVs progression. The proportion of GEVs progression in patients with no or F1 EVs was significantly lower than that in patients with F2 or F3 EVs (33.9% (38/112) vs. 85.7% (12/14), p = 0.0003). In conclusion, IFN-based therapies can have a favorable impact for preventing GEVs progression in HCV-related LC patients with GEVs. Clinicians should be aware of a point of no return where SVR is no longer capable of avoiding GEVs progression.
Collapse
|