1
|
You TY, Lo CL, Tsai WC, Jan HE, Ko WC, Lee NY. Efficacy of short- versus prolonged-courses of antimicrobial therapy for carbapenem-resistant Klebsiella pneumoniae bloodstream infections: A propensity score-matched cohort study. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2024; 57:594-600. [PMID: 38849216 DOI: 10.1016/j.jmii.2024.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 05/09/2024] [Accepted: 05/25/2024] [Indexed: 06/09/2024]
Abstract
BACKGROUND As limited antibiotic options are available for the treatment of carbapenem-resistant Klebsiella pneumoniae (CRKP) bloodstream infections (BSIs), the optimal treatment duration for CRKP BSIs is unclear. Our objective was to investigate whether short courses (6-10 days) are as effective as prolonged courses (≥11 days) of active antibiotic therapy for CRKP BSIs. METHODS A retrospective cohort study comprising adults with monomicrobial CRKP BSI receiving a short or prolonged course of in vitro active therapy at a medical center was conducted between 2010 and 2021. Comparisons of two therapeutic strategies were assessed by the logistic regression model and propensity score analysis. The primary endpoint was 30-day crude mortality. Secondary outcomes included recurrent BSIs, the emergence of multidrug-resistant organisms and candidemia during hospitalization after completing antibiotic therapy for CRKP BSIs. RESULTS Of 263 eligible adults, 160 (60.8%) were male, and the median (interquartile range) age was 69.0 (53.0-76.0) years. Common comorbidities included diabetes (143 patients, 54.4%), malignancy (75, 28.5%), cerebrovascular accident (58, 22.1%), and hemodialysis (49, 18.6%). The 30-day mortality rate was 8.4% (22 patients). Of 84 propensity score well-balanced matched pairs, the 30-day mortality was similar in the short-course and prolonged-course group (6.0% and 7.1%, respectively; P = 1.00). However, there were less episodes candidemia in the short-course group (1.2% versus 13.1%; odds ratio, 0.08; 95% confidence interval, 0.01-0.63; P = 0.005). CONCLUSION Short courses of active therapy for CRKP BSIs demonstrate comparable clinical outcomes to prolonged courses and are associated with a lower risk of subsequent candidemia.
Collapse
Affiliation(s)
- Tian-Yu You
- Department of Internal Medicine and Center for Infection Control, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ching-Lung Lo
- Department of Internal Medicine and Center for Infection Control, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wen-Chia Tsai
- Department of Internal Medicine and Center for Infection Control, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Hao-En Jan
- Department of Internal Medicine and Center for Infection Control, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wen-Chien Ko
- Department of Internal Medicine and Center for Infection Control, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| | - Nan-Yao Lee
- Department of Internal Medicine and Center for Infection Control, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
2
|
Gatica S, Fuentes B, Rivera-Asín E, Ramírez-Céspedes P, Sepúlveda-Alfaro J, Catalán EA, Bueno SM, Kalergis AM, Simon F, Riedel CA, Melo-Gonzalez F. Novel evidence on sepsis-inducing pathogens: from laboratory to bedside. Front Microbiol 2023; 14:1198200. [PMID: 37426029 PMCID: PMC10327444 DOI: 10.3389/fmicb.2023.1198200] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/05/2023] [Indexed: 07/11/2023] Open
Abstract
Sepsis is a life-threatening condition and a significant cause of preventable morbidity and mortality globally. Among the leading causative agents of sepsis are bacterial pathogens Escherichia coli, Klebsiella pneumoniae, Staphylococcus aureus, Pseudomonas aeruginosa, and Streptococcus pyogenes, along with fungal pathogens of the Candida species. Here, we focus on evidence from human studies but also include in vitro and in vivo cellular and molecular evidence, exploring how bacterial and fungal pathogens are associated with bloodstream infection and sepsis. This review presents a narrative update on pathogen epidemiology, virulence factors, host factors of susceptibility, mechanisms of immunomodulation, current therapies, antibiotic resistance, and opportunities for diagnosis, prognosis, and therapeutics, through the perspective of bloodstream infection and sepsis. A list of curated novel host and pathogen factors, diagnostic and prognostic markers, and potential therapeutical targets to tackle sepsis from the research laboratory is presented. Further, we discuss the complex nature of sepsis depending on the sepsis-inducing pathogen and host susceptibility, the more common strains associated with severe pathology and how these aspects may impact in the management of the clinical presentation of sepsis.
Collapse
Affiliation(s)
- Sebastian Gatica
- Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Brandon Fuentes
- Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Elizabeth Rivera-Asín
- Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Paula Ramírez-Céspedes
- Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Javiera Sepúlveda-Alfaro
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Eduardo A. Catalán
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Susan M. Bueno
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis M. Kalergis
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Felipe Simon
- Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Claudia A. Riedel
- Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Felipe Melo-Gonzalez
- Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| |
Collapse
|
3
|
Pertics BZ, Kovács T, Schneider G. Characterization of a Lytic Bacteriophage and Demonstration of Its Combined Lytic Effect with a K2 Depolymerase on the Hypervirulent Klebsiella pneumoniae Strain 52145. Microorganisms 2023; 11:microorganisms11030669. [PMID: 36985241 PMCID: PMC10051899 DOI: 10.3390/microorganisms11030669] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Klebsiella pneumoniae is a nosocomial pathogen. Among its virulence factors is the capsule with a prominent role in defense and biofilm formation. Bacteriophages (phages) can evoke the lysis of bacterial cells. Due to the mode of action of their polysaccharide depolymerase enzymes, phages are typically specific for one bacterial strain and its capsule type. In this study, we characterized a bacteriophage against the capsule-defective mutant of the nosocomial K. pneumoniae 52145 strain, which lacks K2 capsule. The phage showed a relatively narrow host range but evoked lysis on a few strains with capsular serotypes K33, K21, and K24. Phylogenetic analysis showed that the newly isolated Klebsiella phage 731 belongs to the Webervirus genus in the Drexlerviridae family; it has a 31.084 MDa double-stranded, linear DNA with a length of 50,306 base pairs and a G + C content of 50.9%. Out of the 79 open reading frames (ORFs), we performed the identification of orf22, coding for a trimeric tail fiber protein with putative capsule depolymerase activity, along with the mapping of other putative depolymerases of phage 731 and homologous phages. Efficacy of a previously described recombinant K2 depolymerase (B1dep) was tested by co-spotting phage 731 on K. pneumoniae strains, and it was demonstrated that the B1dep-phage 731 combination allows the lysis of the wild type 52145 strain, originally resistant to the phage 731. With phage 731, we showed that B1dep is a promising candidate for use as a possible antimicrobial agent, as it renders the virulent strain defenseless against other phages. Phage 731 alone is also important due to its efficacy on K. pneumoniae strains possessing epidemiologically important serotypes.
Collapse
Affiliation(s)
- Botond Zsombor Pertics
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Szigeti St. 12., H-7624 Pécs, Hungary
| | - Tamás Kovács
- Department of Biotechnology, Nanophagetherapy Center, Enviroinvest Corporation, Kertváros St. 2., H-7632 Pécs, Hungary
| | - György Schneider
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Szigeti St. 12., H-7624 Pécs, Hungary
- Correspondence: ; Tel.: +36-72-536-200 (ext. 1908)
| |
Collapse
|
4
|
Chen IR, Lin SN, Wu XN, Chou SH, Wang FD, Lin YT. Clinical and Microbiological Characteristics of Bacteremic Pneumonia Caused by Klebsiella pneumoniae. Front Cell Infect Microbiol 2022; 12:903682. [PMID: 35811668 PMCID: PMC9259976 DOI: 10.3389/fcimb.2022.903682] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/24/2022] [Indexed: 12/14/2022] Open
Abstract
Klebsiella pneumoniae is a common pathogen of nosocomial pneumonia worldwide and community-acquired pneumonia (CAP) in Asia. Previous studies have shown that K. pneumoniae bacteremic CAP is associated with high mortality. We aimed to revisit K. pneumoniae bacteremic pneumonia in the current era and determine the risk factors associated with 28-day mortality. Between January 2014 and August 2020, adult patients with K. pneumoniae bacteremic pneumonia in a medical center in Taiwan were identified. Clinical and microbiological characteristics were compared between CAP and nosocomial pneumonia. Risk factors for 28-day mortality were analyzed using multivariate logistic regression. Among 150 patients with K. pneumoniae bacteremic pneumonia, 52 had CAP and 98 had nosocomial pneumonia. The 28-day mortality was 52% for all patients, 36.5% for CAP, and 60.2% for nosocomial pneumonia. Hypervirulent K. pneumoniae was more prevalent in CAP (61.5%) than in nosocomial pneumonia (16.3%). Carbapenem-resistant K. pneumoniae was more prevalent in nosocomial pneumonia (58.2%) than in CAP (5.8%). Nosocomial pneumonia, a higher Severe Organ Failure Assessment score, and not receiving appropriate definitive therapy were independent risk factors for 28-day mortality. In conclusion, revisiting K. pneumoniae bacteremic pneumonia in the current era showed a high mortality rate. Host factors, disease severity, and timely effective therapy affect the treatment outcomes of these patients.
Collapse
Affiliation(s)
- I-Ren Chen
- Division of Infectious Diseases, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shih-Neng Lin
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Xin-Ni Wu
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Sheng-Hua Chou
- Institute of Emergency and Critical Care Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Fu-Der Wang
- Division of Infectious Diseases, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yi-Tsung Lin
- Division of Infectious Diseases, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Emergency and Critical Care Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- *Correspondence: Yi-Tsung Lin,
| |
Collapse
|
5
|
Liao CH, Huang YT, Hsueh PR. Multicenter Surveillance of Capsular Serotypes, Virulence Genes, and Antimicrobial Susceptibilities of Klebsiella pneumoniae Causing Bacteremia in Taiwan, 2017–2019. Front Microbiol 2022; 13:783523. [PMID: 35369508 PMCID: PMC8971976 DOI: 10.3389/fmicb.2022.783523] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 01/17/2022] [Indexed: 11/13/2022] Open
Abstract
We conducted a longitudinal epidemiological surveillance of hypervirulent Klebsiella pneumoniae (hvKP) in Taiwan. Bacteremic KP isolates collected from 16 hospitals in Taiwan between 2017 and 2019 were collected, and the virulent serotypes (K1, K2, K20, K54, and K57), antimicrobial susceptibilities, and virulence genes of these isolates were investigated. During the 3-year period, 1,310 bacteremic KP isolates were collected, of which 27.5% belonged to virulent serotypes, including K1 (n = 162), K2 (n = 74), K57 (n = 56), K54 (n = 41), and K20 (n = 27). K1 was the most prevalent capsular serotype, with an annual prevalence of 11–15%, and was equally distributed across the four geographic areas. The prevalence of K2 declined significantly in 2019. According to wzi-K typing results, 87% of K1 isolates were classified as wzi-1. Among K2 isolates, wzi-72 (55.4%) and wzi-2 (41.9%) were the most common, whereas wzi-206 was the most prevalent (48.2%) among K57 isolates, followed by wzi-77 (25.0%). Wzi-115 accounted for 85.4% of the K54 isolates, whereas wzi-95 accounted for 92.6% of K20 isolates. rmpA was present in 99.4% of K1, 98.6% of K2, 89.3% of K57, 78.0% of K54, and 84.0% of K20 isolates. rmpA2 was present in 100% of K1 and 98.6% of K2 isolates but was only present in 64.3% of K57, 58.5% of K54, and 74.1% of K20 isolates. K1 remains the dominant hvKP serotype and is associated with most virulence genes in Taiwan. Further studies are required to elucidate the significance of other virulent serotypes.
Collapse
Affiliation(s)
- Chun-Hsing Liao
- Department of Medicine, Far Eastern Memorial Hospital, New Taipei City, Taiwan
- Department of Medicine, Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yu-Tsung Huang
- Departments of Laboratory Medicine and Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Po-Ren Hsueh
- Ph.D. Program for Aging, School of Medicine, China Medical University, Taichung, Taiwan
- Departments of Laboratory Medicine and Internal Medicine, China Medical University Hospital, School of Medicine, China Medical University, Taichung, Taiwan
- *Correspondence: Po-Ren Hsueh,
| |
Collapse
|
6
|
Isolation and Characterization of a Novel Lytic Bacteriophage against the K2 Capsule-Expressing Hypervirulent Klebsiella pneumoniae Strain 52145, and Identification of Its Functional Depolymerase. Microorganisms 2021; 9:microorganisms9030650. [PMID: 33801047 PMCID: PMC8003838 DOI: 10.3390/microorganisms9030650] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/16/2021] [Accepted: 03/18/2021] [Indexed: 12/30/2022] Open
Abstract
Klebsiella pneumoniae is among the leading bacteria that cause nosocomial infections. The capsule of this Gram-negative bacterium is a dominant virulence factor, with a prominent role in defense and biofilm formation. Bacteriophages, which are specific for one bacterial strain and its capsule type, can evoke the lysis of bacterial cells, aided by polysaccharide depolymerase enzymes. In this study, we isolated and characterized a bacteriophage against the nosocomial K. pneumoniae 52145 strain with K2 capsular serotype. The phage showed a narrow host range and stable lytic activity, even when exposed to different temperatures or detergents. Preventive effect of the phage in a nasal colonization model was investigated in vivo. Phlyogenetic analysis showed that the newly isolated Klebsiella phage B1 belongs to the Webervirus genus in Drexlerviridae family. We identified the location of the capsule depolymerase gene of the new phage, which was amplified, cloned, expressed, and purified. The efficacy of the recombinant B1dep depolymerase was tested by spotting on K. pneumoniae strains and it was confirmed that the extract lowers the thickness of the bacterium lawn as it degrades the protective capsule on bacterial cells. As K. pneumoniae strains possessing the K2 serotype have epidemiological importance, the B1 phage and its depolymerase are promising candidates for use as possible antimicrobial agents.
Collapse
|