1
|
Makanyane DM, Mabuza LP, Ngubane P, Khathi A, Mambanda A, Booysen IN. Anti-Amyloid Aggregation and Anti-Hyperglycemic Activities of Novel Ruthenium Uracil Schiff Base Compounds. ChemMedChem 2024; 19:e202400477. [PMID: 39136611 DOI: 10.1002/cmdc.202400477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/02/2024] [Indexed: 11/10/2024]
Abstract
The formation and characterization of new diamagnetic ruthenium uracil mono-imine compounds: [(η6-p-cymene)RuII(L)Cl][BF4] (L=H2urpda=5-((pyridin-2-yl)methyleneamino)-6-aminouracil) for 1, urdpy=6-amino-1,3-dimethyl-5-((pyridin-2-ylmethylene)amino)uracil) for 2 or urqda=5-((quinolin-2-yl)methyleneamino)-6-aminouracil) for 3); cis-[Ru(bipy)2(urpy)](BF4)2 (4) (urpy=5-((pyridin-2-yl)methyleneamino)uracil) and cis-[Ru(bipy)2(dapd)] (5) (H2dadp=5,6-diaminouracil) are described. A ruthenium(IV) uracil Schiff base compound, trans-[Ru(urpda)(PPh3)Cl2] (6) was also formed. Various physicochemical techniques were utilized to characterize the novel ruthenium compounds. Similarly, the stabilities of 1-3 and 6 monitored in chloro-containing and the non-coordinating solvent, dichloromethane show that they are kinetically inert, whereas, in a high nucleophilic environment, the chloride co-ligands of these ruthenium complexes were rapidly substituted by DMSO. In contrast, the substitution of the labile co-ligands for these ruthenium complexes by DMSO molecules in a high chloride content was suppressed. Solution chemical reactivities of the different ruthenium complexes were rationalized by density functional theory computations. Furthermore, the binding affinities and strengths between BSA and the respective ruthenium complexes were monitored using fluorescence spectroscopy. In addition, the in vitro anti-diabetic activities of the novel metal complexes were assessed in selected skeletal muscle and liver cell lines.
Collapse
Affiliation(s)
- Daniel M Makanyane
- School of Chemistry and Physics, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| | - Lindokuhle P Mabuza
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Phikelelani Ngubane
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Andile Khathi
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Allen Mambanda
- School of Chemistry and Physics, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| | - Irvin N Booysen
- School of Chemistry and Physics, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| |
Collapse
|
2
|
Makanyane DM, Maikoo S, Van Heerden FR, Rhyman L, Ramasami P, Mabuza LP, Ngubane P, Khathi A, Mambanda A, Booysen IN. Bovine serum albumin uptake and polypeptide disaggregation studies of hypoglycemic ruthenium(II) uracil Schiff-base complexes. J Inorg Biochem 2024; 255:112541. [PMID: 38554578 DOI: 10.1016/j.jinorgbio.2024.112541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 02/13/2024] [Accepted: 03/22/2024] [Indexed: 04/01/2024]
Abstract
Our prior studies have illustrated that the uracil ruthenium(II) diimino complex, [Ru(H3ucp)Cl(PPh3)] (1) (H4ucp = 2,6-bis-((6-amino-1,3-dimethyluracilimino)methylene)pyridine) displayed high hypoglycemic effects in diet-induced diabetic rats. To rationalize the anti-diabetic effects of 1, three new derivatives have been prepared, cis-[Ru(bpy)2(urdp)]Cl2 (2) (urdp = 2,6-bis-((uracilimino)methylene)pyridine), trans-[RuCl2(PPh3)(urdp)] (3), and cis-[Ru(bpy)2(H4ucp)](PF6)2 (4). Various physicochemical techniques were utilized to characterize the structures of the novel ruthenium compounds. Prior to biomolecular interactions or in vitro studies, the stabilities of 1-4 were monitored in anhydrous DMSO, aqueous phosphate buffer containing 2% DMSO, and dichloromethane (DCM) via UV-Vis spectrophotometry. Time-dependent stability studies showed ligand exchange between DMSO nucleophiles and chloride co-ligands of 1 and 3, which was suppressed in the presence of an excess amount of chloride ions. In addition, the metal complexes 1 and 3 are stable in both DCM and an aqueous phosphate buffer containing 2% DMSO. In the case of compounds 2 and 4 with no chloride co-ligands within their coordination spheres, high stability in aqueous phosphate buffer containing 2% DMSO was observed. Fluorescence emission titrations of the individual ruthenium compounds with bovine serum albumin (BSA) showed that the metal compounds interact non-discriminately within the protein's hydrophobic cavities as moderate to strong binders. The metal complexes were capable of disintegrating mature amylin amyloid fibrils. In vivo glucose metabolism studies in liver (Chang) cell lines confirmed enhanced glucose metabolism as evidenced by the increased glucose utilization and glycogen synthesis in liver cell lines in the presence of complexes 2-4.
Collapse
Affiliation(s)
- Daniel M Makanyane
- School of Chemistry and Physics, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| | - Sanam Maikoo
- School of Chemistry and Physics, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| | - Fanie R Van Heerden
- School of Chemistry and Physics, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| | - Lydia Rhyman
- Computational Chemistry Group, Department of Chemistry, Faculty of Science, University of Mauritius, Réduit 80837, Mauritius; Centre of Natural Product, Department of Chemical Sciences, University of Johannesburg, Doornfontein, Johannesburg 2028, South Africa
| | - Ponnadurai Ramasami
- Computational Chemistry Group, Department of Chemistry, Faculty of Science, University of Mauritius, Réduit 80837, Mauritius; Centre of Natural Product, Department of Chemical Sciences, University of Johannesburg, Doornfontein, Johannesburg 2028, South Africa
| | - Lindokuhle P Mabuza
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa.
| | - Phikelelani Ngubane
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Andile Khathi
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Allen Mambanda
- School of Chemistry and Physics, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| | - Irvin N Booysen
- School of Chemistry and Physics, University of KwaZulu-Natal, Pietermaritzburg, South Africa.
| |
Collapse
|
3
|
Oszajca M, Flejszar M, Szura A, Dróżdż P, Brindell M, Kurpiewska K. Exploring the coordination chemistry of ruthenium complexes with lysozymes: structural and in-solution studies. Front Chem 2024; 12:1371637. [PMID: 38638879 PMCID: PMC11024358 DOI: 10.3389/fchem.2024.1371637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/06/2024] [Indexed: 04/20/2024] Open
Abstract
This study presents a comprehensive structural analysis of the adducts formed upon the reaction of two Ru(III) complexes [HIsq][trans-RuIIICl4(dmso)(Isq)] (1) and [H2Ind][trans-RuIIICl4(dmso)(HInd)] (2) (where HInd-indazole, Isq-isoquinoline, analogs of NAMI-A) and two Ru(II) complexes, cis-[RuCl2(dmso)4] (c) and trans-[RuCl2(dmso)4] (t), with hen-egg white lysozyme (HEWL). Additionally, the crystal structure of an adduct of human lysozyme (HL) with ruthenium complex, [H2Ind][trans-RuCl4(dmso)(HInd)] was solved. X-ray crystallographic data analysis revealed that all studied Ru complexes, regardless of coordination surroundings and metal center charge, coordinate to the same amino acids (His15, Arg14, and Asp101) of HEWL, losing most of their original ligands. In the case of the 2-HL adduct, two distinct metalation sites: (i) Arg107, Arg113 and (ii) Gln127, Gln129, were identified. Crystallographic data were supported by studies of the interaction of 1 and 2 with HEWL in an aqueous solution. Hydrolytic stability studies revealed that both complexes 1 and 2 liberate the N-heterocyclic ligand under crystallization-like conditions (pH 4.5) as well as under physiological pH conditions, and this process is not significantly affected by the presence of HEWL. A comparative examination of nine crystal structures of Ru complexes with lysozyme, obtained through soaking and co-crystallization experiments, together with in-solution studies of the interaction between 1 and 2 with HEWL, indicates that the hydrolytic release of the N-heterocyclic ligand is one of the critical factors in the interaction between Ru complexes and lysozyme. This understanding is crucial in shedding light on the tendency of Ru complexes to target diverse metalation sites during the formation and in the final forms of the adducts with proteins.
Collapse
Affiliation(s)
- Maria Oszajca
- Department of Inorganic Chemistry, Faculty of Chemistry, Jagiellonian University, Kraków, Poland
| | - Monika Flejszar
- Department of Inorganic Chemistry, Faculty of Chemistry, Jagiellonian University, Kraków, Poland
- Department of Physical Chemistry, Faculty of Chemistry, Rzeszów University of Technology, Rzeszów, Poland
| | - Arkadiusz Szura
- Department of Crystal Chemistry and Crystal Physics, Faculty of Chemistry, Jagiellonian University, Kraków, Poland
| | - Patrycja Dróżdż
- Department of Crystal Chemistry and Crystal Physics, Faculty of Chemistry, Jagiellonian University, Kraków, Poland
| | - Małgorzata Brindell
- Department of Inorganic Chemistry, Faculty of Chemistry, Jagiellonian University, Kraków, Poland
| | - Katarzyna Kurpiewska
- Department of Crystal Chemistry and Crystal Physics, Faculty of Chemistry, Jagiellonian University, Kraków, Poland
| |
Collapse
|
4
|
Chyba J, Hruzíková A, Knor M, Pikulová P, Marková K, Novotný J, Marek R. Nature of NMR Shifts in Paramagnetic Octahedral Ru(III) Complexes with Axial Pyridine-Based Ligands. Inorg Chem 2023; 62:3381-3394. [PMID: 36763803 PMCID: PMC10017024 DOI: 10.1021/acs.inorgchem.2c03282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Indexed: 02/12/2023]
Abstract
In recent decades, transition-metal coordination compounds have been extensively studied for their antitumor and antimetastatic activities. In this work, we synthesized a set of symmetric and asymmetric Ru(III) and Rh(III) coordination compounds of the general structure (Na+/K+/PPh4+/LH+) [trans-MIIIL(eq)nL(ax)2]- (M = RuIII or RhIII; L(eq) = Cl, n = 4; L(eq) = ox, n = 2; L(ax) = 4-R-pyridine, R = CH3, H, C6H5, COOH, CF3, CN; L(ax) = DMSO-S) and systematically investigated their structure, stability, and NMR properties. 1H and 13C NMR spectra measured at various temperatures were used to break down the total NMR shifts into the orbital (temperature-independent) and hyperfine (temperature-dependent) contributions. The hyperfine NMR shifts for paramagnetic Ru(III) compounds were analyzed in detail using relativistic density functional theory (DFT). The effects of (i) the 4-R substituent of pyridine, (ii) the axial trans ligand L(ax), and (iii) the equatorial ligands L(eq) on the distribution of spin density reflected in the "through-bond" (contact) and the "through-space" (pseudocontact) contributions to the hyperfine NMR shifts of the individual atoms of the pyridine ligands are rationalized. Further, we demonstrate the large effects of the solvent on the hyperfine NMR shifts and discuss our observations in the general context of the paramagnetic NMR spectroscopy of transition-metal complexes.
Collapse
Affiliation(s)
- Jan Chyba
- CEITEC—Central
European Institute of Technology, Masaryk
University, Kamenice 5, CZ-62500 Brno, Czechia
- Department
of Chemistry, Faculty of Science, Masaryk
University, Kamenice
5, CZ-62500 Brno, Czechia
| | - Anna Hruzíková
- CEITEC—Central
European Institute of Technology, Masaryk
University, Kamenice 5, CZ-62500 Brno, Czechia
- Department
of Chemistry, Faculty of Science, Masaryk
University, Kamenice
5, CZ-62500 Brno, Czechia
| | - Michal Knor
- CEITEC—Central
European Institute of Technology, Masaryk
University, Kamenice 5, CZ-62500 Brno, Czechia
- Department
of Chemistry, Faculty of Science, Masaryk
University, Kamenice
5, CZ-62500 Brno, Czechia
| | - Petra Pikulová
- CEITEC—Central
European Institute of Technology, Masaryk
University, Kamenice 5, CZ-62500 Brno, Czechia
- Department
of Chemistry, Faculty of Science, Masaryk
University, Kamenice
5, CZ-62500 Brno, Czechia
| | - Kateřina Marková
- CEITEC—Central
European Institute of Technology, Masaryk
University, Kamenice 5, CZ-62500 Brno, Czechia
- Department
of Chemistry, Faculty of Science, Masaryk
University, Kamenice
5, CZ-62500 Brno, Czechia
| | - Jan Novotný
- CEITEC—Central
European Institute of Technology, Masaryk
University, Kamenice 5, CZ-62500 Brno, Czechia
- Department
of Chemistry, Faculty of Science, Masaryk
University, Kamenice
5, CZ-62500 Brno, Czechia
- National
Center for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, CZ-62500 Brno, Czechia
- Institute
of Inorganic Chemistry, Slovak Academy of
Science, Dúbravská
cesta 9, SK-84536 Bratislava, Slovakia
| | - Radek Marek
- CEITEC—Central
European Institute of Technology, Masaryk
University, Kamenice 5, CZ-62500 Brno, Czechia
- Department
of Chemistry, Faculty of Science, Masaryk
University, Kamenice
5, CZ-62500 Brno, Czechia
- National
Center for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, CZ-62500 Brno, Czechia
| |
Collapse
|
5
|
Wu CY, Chen HJ, Wu YC, Tsai SW, Liu YH, Bhattacharya U, Lin D, Tai HC, Kong KV. Highly Efficient Singlet Oxygen Generation by BODIPY-Ruthenium(II) Complexes for Promoting Neurite Outgrowth and Suppressing Tau Protein Aggregation. Inorg Chem 2023; 62:1102-1112. [PMID: 36622931 DOI: 10.1021/acs.inorgchem.2c03017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Singlet oxygen (1O2) has been recently identified as a key molecule against toxic Aβ aggregation, which is associated with the currently incurable Alzheimer's disease (AD). However, limited research has studied its efficiency against tau protein aggregation, the other major hallmark of AD. Herein, we designed and synthesized boron-dipyrromethene (BODIPY)-ruthenium conjugates and isolated three isomers. Under visible-light irradiation, the ε isomer can be photoactivated and efficiently generate singlet oxygen. Particularly, the complex demonstrated successful results in attenuating tauopathy─an appreciable decrease to 43 ± 2% at 100 nM. The photosensitizer was further found to remarkably promote neurite outgrowth and significantly increased the length and number of neurites in nerve cells. As a result of effective photoinduced singlet oxygen generation and proactive neurite outgrowth, the hybrid design has great potential for therapeutics for Alzheimer's disease.
Collapse
Affiliation(s)
- Cheng-Yun Wu
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Hsin-Jou Chen
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Yun-Chin Wu
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Shu-Wei Tsai
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Yi-Hung Liu
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | | | - Duo Lin
- Key Laboratory of OptoElectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Digital Fujian Internet-of-Things Laboratory of Environment Monitoring, Fujian Normal University, Fuzhou 350007, China
| | - Hwan-Ching Tai
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Kien Voon Kong
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
6
|
Lu Y, Zhu D, Le Q, Wang Y, Wang W. Ruthenium-based antitumor drugs and delivery systems from monotherapy to combination therapy. NANOSCALE 2022; 14:16339-16375. [PMID: 36341705 DOI: 10.1039/d2nr02994d] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Ruthenium complex is an important compound group for antitumor drug research and development. NAMI-A, KP1019, TLD1433 and other ruthenium complexes have entered clinical research. In recent years, the research on ruthenium antitumor drugs has not been limited to single chemotherapy drugs; other applications of ruthenium complexes have emerged such as in combination therapy. During the development of ruthenium complexes, drug delivery forms of ruthenium antitumor drugs have also evolved from single-molecule drugs to nanodrug delivery systems. The review summarizes the following aspects: (1) ruthenium complexes from monotherapy to combination therapy, including the development of single-molecule compounds, carrier nanomedicine, and self-assembly of carrier-free nanomedicine; (2) ruthenium complexes in the process of ADME in terms of absorption, distribution, metabolism and excretion; (3) the applications of ruthenium complexes in combination therapy, including photodynamic therapy (PDT), photothermal therapy (PTT), photoactivated chemotherapy (PACT), immunotherapy, and their combined application; (4) the future prospects of ruthenium-based antitumor drugs.
Collapse
Affiliation(s)
- Yu Lu
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences of Capital Medical University, Beijing 100069, P. R. China.
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Beijing Laboratory of Oral Health, Beijing 100069, P. R. China
- Department of Chemistry, University of Bergen, P. O. Box 7803, 5020 Bergen, Norway
| | - Di Zhu
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences of Capital Medical University, Beijing 100069, P. R. China.
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Beijing Laboratory of Oral Health, Beijing 100069, P. R. China
| | - Quynh Le
- Center for Pharmacy, University of Bergen, P. O. Box 7803, 5020 Bergen, Norway.
| | - Yuji Wang
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences of Capital Medical University, Beijing 100069, P. R. China.
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Beijing Laboratory of Oral Health, Beijing 100069, P. R. China
| | - Wei Wang
- Center for Pharmacy, University of Bergen, P. O. Box 7803, 5020 Bergen, Norway.
- Department of Chemistry, University of Bergen, P. O. Box 7803, 5020 Bergen, Norway
| |
Collapse
|
7
|
A split β-lactamase sensor for the detection of DNA modification by cisplatin and ruthenium-based chemotherapeutic drugs. J Inorg Biochem 2022; 236:111986. [PMID: 36084568 DOI: 10.1016/j.jinorgbio.2022.111986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 08/23/2022] [Accepted: 08/28/2022] [Indexed: 12/15/2022]
Abstract
Here we present a split-enzyme sensor approach for the sequence-specific detection of metal-based drug adducts of DNA. Split β-lactamase reporters were constructed using domain A of the High Mobility Group Box 1 protein (HMGB1a) in conjunction with zinc finger DNA-binding domains. As a proof of concept, the sensors were characterized with the well-known drug cisplatin, which forms 1,2-intrastrand crosslinks with DNA that are recognized by HMGB1a. After promising results with cisplatin, five ruthenium-based drugs were studied, four of which produced significant signal over background. These results highlight the utility of our approach for rapid screening of novel metal-based chemotherapeutic drug candidates and provide evidence that HMGB1a likely binds to DNA adducts formed by NAMI-A (imidazolium trans-tetrachlorodimethylsulfoxideimidazoleruthenate(III)), KP1019 (indazolium trans-tetrachlorodiindazoleruthenate(III)), KP418 (imidazolium trans-tetrachlorodiimidazoleruthenate(III)), and RAPTA-C (dichloro(η6-p-cymene)(1,3,5-triaza-7-phosphaadamantane)ruthenium(II)). These results thus imply a potential biologically relevant mode of action for the ruthenium-based drugs investigated herein.
Collapse
|
8
|
A theoretical characterization of mechanisms of action of osmium(III)-based drug Os-KP418: hydrolysis and its binding with guanine. Struct Chem 2022. [DOI: 10.1007/s11224-022-02064-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Reactions of Ru(III)-drugs KP1019 and KP418 with guanine, 2'-deoxyguanosine and guanosine: a DFT study. J Mol Model 2022; 28:291. [PMID: 36063245 DOI: 10.1007/s00894-022-05304-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 08/29/2022] [Indexed: 10/14/2022]
Abstract
Ruthenium (Ru)-based anticancer drugs are considered to be novel alternatives of platinum-based drugs. They exhibit potent cytotoxicity against the cancer cells and hence are useful for the treatment of cancer. Herein, the density functional theory calculations in the gas phase and aqueous media are carried out to study the reactions of two Ru(III)-based drugs such as KP1019 and KP418 with the N7 site of guanine (G), 2'-deoxyguanosine (dGua), and guanosine (Gua) to understand their reactivity against the DNA and RNA. All the reactions are found to be exothermic. The activation free energies and rate constants of these reactions indicate that KP1019 and KP418 would react with the dGua more readily than Gua. Hence, the binding of these drugs with the DNA would be more preferred as compared to RNA. It is further found that among these drugs, KP1019 would be more reactive than KP418 in agreement with the experimental observation. Thus, this study is expected to aid in the future development of potent anticancer drugs.
Collapse
|
10
|
Formation of bifunctional cross-linked products due to reaction of NAMI-A with DNA bases – a DFT study. Struct Chem 2022. [DOI: 10.1007/s11224-022-01897-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
11
|
Sangeetha S, Murali M. Cytotoxic Ruthenium(II) Complexes Containing a Dangling Pyridine: Selectivity for Diseased Cells Mediated by pH-Dependent DNA Binding. Inorg Chem 2022; 61:2864-2882. [PMID: 35099196 DOI: 10.1021/acs.inorgchem.1c03399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ruthenium(II) complexes of the type [Ru(bpy)2(L1/L2/L3)]PF6 [where bpy = 2,2'-bipyridine, H(L1) = N-(pyrid-2-yl)salicylaldimine (1), H(L2) = N-(6-methylpyrid-2-yl)salicylaldimine (2), and H(L3) = N-(4,6-dimethylpyrid-2-yl)salicylaldimine (3)] have been isolated. The X-ray structures of 1-3 reveal distorted octahedral coordination geometry with a planar ruthenium phenolate moiety. They exhibit interpair dimeric association in their solid state such as (a) π-π-stacking interactions (1-3) and (b) C-H···π interactions (2). The 1H NMR spectral data shed light on the characteristics of metal-ligand bonding and chelate ring conformations. The complexes exhibit strong metal-to-ligand charge-transfer transitions in the visible region. The complexes also undergo two successive metal-based oxidative processes corresponding to the RuII/RuIII and RuIII/RuIV couples. Resonance Raman studies strongly suggest that the lowest unoccupied molecular orbital of 1-3 is localized at the bpy ligand. Absorption, emission, and circular dichroic spectral measurements for 1-3 with calf-thymus DNA reveal a groove binding mode of interaction. Interestingly, all of the complexes exhibit pH-dependent DNA damage, and the pH at which the damage is highest corresponds to the pH conditions of the cancer cells. The DNA damage is in the order of 3 > 2 > 1, in which a hydrolytic mechanism dominates. The protein binding properties of the complexes examined by the tryptophan quenching measurements suggest a static mechanism. The positive ΔH and ΔS values indicate that the force acting between the complexes and bovine serum albumin (BSA) is mainly a hydrophobic interaction, and thus BSA may act as a targeted drug-delivery vehicle for ruthenium(II) complexes (K ∼ 105). It is noteworthy that 3 exhibits selectivity with high cytotoxicity against breast cancer cells (EVSA-T and MCF-7), and its potency is comparable to that of cisplatin.
Collapse
Affiliation(s)
- Somasundaram Sangeetha
- Coordination and Bioinorganic Chemistry Research Laboratory, Department of Chemistry, National College (Autonomous), Tiruchirappalli 620001, Tamil Nadu, India
| | - Mariappan Murali
- Coordination and Bioinorganic Chemistry Research Laboratory, Department of Chemistry, National College (Autonomous), Tiruchirappalli 620001, Tamil Nadu, India
| |
Collapse
|
12
|
Liu Y, Li Q, Gu M, Lu D, Xiong X, Zhang Z, Pan Y, Liao Y, Ding Q, Gong W, Chen DS, Guan M, Wu J, Tian Z, Deng H, Gu L, Hong X, Xiao Y. A Second Near-Infrared Ru(II) Polypyridyl Complex for Synergistic Chemo-Photothermal Therapy. J Med Chem 2022; 65:2225-2237. [PMID: 34994554 DOI: 10.1021/acs.jmedchem.1c01736] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The clinical success of cisplatin ushered in a new era of the application of metallodrugs. When it comes to practice, however, drug resistance, tumor recurrence, and drug systemic toxicity make it implausible to completely heal the patients. Herein, we successfully transform an electron acceptor [1, 2, 5]thiadiazolo[3,4-g]quinoxaline into a novel second near-infrared (NIR-II) fluorophore H7. After PEGylation and chelation, HL-PEG2k exhibits a wavelength bathochromic shift, enhanced photothermal conversion efficiency (41.77%), and an antineoplastic effect against glioma. Its potential for in vivo tumor tracking and image-guided chemo-photothermal therapy is explored. High levels of uptake and high-resolution NIR-II imaging results are thereafter obtained. The hyperthermia effect could disrupt the lysosomal membranes, which in turn aggravate the mitochondria dysfunction, arrest the cell cycle in the G2 phase, and finally lead to cancer cell apoptosis. HL-PEG2k displays a superior biocompatibility and thus can be a potential theranostic platform to combat the growth and recurrence of tumors.
Collapse
Affiliation(s)
- Yishen Liu
- Department of Neurosurgery, Central Laboratory, Renmin Hospital of Wuhan University, State Key Laboratory of Virology, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China.,College of Science, Laboratory of Extreme Environmental Biological Resources and Adaptive Evolution, Research Center for Ecology, Tibet University, Lhasa 850000, China.,Shenzhen Institute of Wuhan University, Shenzhen 518057, China.,Center for Experimental Basic Medical Education, Hubei Provincial Key Laboratory of Developmentally Originated Disease and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), Wuhan 430071, China
| | - Qianqian Li
- Hubei Key Laboratory for Processing and Application of Catalytic Materials, Huanggang Normal University, Huanggang 438000, China.,Shenzhen Institute of Wuhan University, Shenzhen 518057, China
| | - Meijia Gu
- Department of Neurosurgery, Central Laboratory, Renmin Hospital of Wuhan University, State Key Laboratory of Virology, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Disheng Lu
- Department of Neurosurgery, Central Laboratory, Renmin Hospital of Wuhan University, State Key Laboratory of Virology, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China.,College of Science, Laboratory of Extreme Environmental Biological Resources and Adaptive Evolution, Research Center for Ecology, Tibet University, Lhasa 850000, China.,Shenzhen Institute of Wuhan University, Shenzhen 518057, China.,Center for Experimental Basic Medical Education, Hubei Provincial Key Laboratory of Developmentally Originated Disease and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), Wuhan 430071, China
| | - Xiaoxing Xiong
- Department of Neurosurgery, Central Laboratory, Renmin Hospital of Wuhan University, State Key Laboratory of Virology, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Zhiyun Zhang
- Department of Neurosurgery, Central Laboratory, Renmin Hospital of Wuhan University, State Key Laboratory of Virology, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China.,Center for Experimental Basic Medical Education, Hubei Provincial Key Laboratory of Developmentally Originated Disease and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), Wuhan 430071, China
| | - Yanna Pan
- Department of Neurosurgery, Central Laboratory, Renmin Hospital of Wuhan University, State Key Laboratory of Virology, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China.,Center for Experimental Basic Medical Education, Hubei Provincial Key Laboratory of Developmentally Originated Disease and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), Wuhan 430071, China
| | - Yuqin Liao
- Department of Neurosurgery, Central Laboratory, Renmin Hospital of Wuhan University, State Key Laboratory of Virology, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China.,Center for Experimental Basic Medical Education, Hubei Provincial Key Laboratory of Developmentally Originated Disease and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), Wuhan 430071, China
| | - Qihang Ding
- Department of Neurosurgery, Central Laboratory, Renmin Hospital of Wuhan University, State Key Laboratory of Virology, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China.,Center for Experimental Basic Medical Education, Hubei Provincial Key Laboratory of Developmentally Originated Disease and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), Wuhan 430071, China
| | - Wanxia Gong
- Department of Neurosurgery, Central Laboratory, Renmin Hospital of Wuhan University, State Key Laboratory of Virology, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China.,Center for Experimental Basic Medical Education, Hubei Provincial Key Laboratory of Developmentally Originated Disease and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), Wuhan 430071, China
| | - Dean Shuailin Chen
- Department of Chemistry, Pennsylvania State University, Philadelphia, Pennsylvania 19104, United States
| | - Mengting Guan
- Center for Experimental Basic Medical Education, Hubei Provincial Key Laboratory of Developmentally Originated Disease and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), Wuhan 430071, China
| | - Junzhu Wu
- Center for Experimental Basic Medical Education, Hubei Provincial Key Laboratory of Developmentally Originated Disease and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), Wuhan 430071, China
| | - Zhiquan Tian
- College of Science, Laboratory of Extreme Environmental Biological Resources and Adaptive Evolution, Research Center for Ecology, Tibet University, Lhasa 850000, China
| | - Hai Deng
- Department of Chemistry, University of Aberdeen, Aberdeen AB24 3FX, U.K
| | - Lijuan Gu
- Department of Neurosurgery, Central Laboratory, Renmin Hospital of Wuhan University, State Key Laboratory of Virology, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Xuechuan Hong
- Department of Neurosurgery, Central Laboratory, Renmin Hospital of Wuhan University, State Key Laboratory of Virology, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China.,College of Science, Laboratory of Extreme Environmental Biological Resources and Adaptive Evolution, Research Center for Ecology, Tibet University, Lhasa 850000, China.,Center for Experimental Basic Medical Education, Hubei Provincial Key Laboratory of Developmentally Originated Disease and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), Wuhan 430071, China
| | - Yuling Xiao
- Department of Neurosurgery, Central Laboratory, Renmin Hospital of Wuhan University, State Key Laboratory of Virology, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China.,Shenzhen Institute of Wuhan University, Shenzhen 518057, China
| |
Collapse
|
13
|
Meiss CJ, Bothwell PJ, Webb MI. Ruthenium(II)–arene complexes with chelating quinoline ligands as anti-amyloid agents. CAN J CHEM 2022. [DOI: 10.1139/cjc-2021-0180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recent recognition of the soluble form of the amyloid-beta (Aβ) peptide as a neurotoxic agent in Alzheimer’s disease (AD) has spurred the development of agents to target this species. Because Aβ is known to chelate metal ions in solution, metal-based therapeutics are uniquely suited to exploit this affinity, where coordination to Aβ has been shown to impact the neurotoxicity of the peptide. Ruthenium(II)–arene complexes are unique candidates for evaluation, as one face of the molecule is blocked by the hydrophobic arene ring, while coordination to the Aβ peptide can occur on the other side of the molecule. We have prepared and evaluated two Ru(II)–arene complexes with chelating quinoline-based ligands, Ru1 and Ru2, for their respective anti-amyloid abilities. Although both complexes decreased the aggregation of soluble Aβ, Ru1 displayed promise in disrupting formed aggregates of the peptide. These findings represent an exciting new avenue for therapeutic development in AD, where both sides of the aggregation equilibrium are affected.
Collapse
Affiliation(s)
- Cade J. Meiss
- Department of Chemistry, Illinois State University, Normal, IL 61790-4160, USA
| | - Paige J. Bothwell
- Core Microscope Facility, Department of Biological Sciences, Northern Illinois University, DeKalb, IL 60115, USA
| | - Michael I. Webb
- Department of Chemistry, Illinois State University, Normal, IL 61790-4160, USA
| |
Collapse
|
14
|
Nolan VC, Rafols L, Harrison J, Soldevila-Barreda JJ, Crosatti M, Garton NJ, Wegrzyn M, Timms DL, Seaton CC, Sendron H, Azmanova M, Barry NP, Pitto-Barry A, Cox JA. Indole-containing arene-ruthenium complexes with broad spectrum activity against antibiotic-resistant bacteria. CURRENT RESEARCH IN MICROBIAL SCIENCES 2022; 3:100099. [PMID: 35059676 PMCID: PMC8760505 DOI: 10.1016/j.crmicr.2021.100099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/13/2021] [Accepted: 12/13/2021] [Indexed: 11/10/2022] Open
Abstract
A new family of indole-containing arene ruthenium organometallic compounds are active against several bacterial species and drug resistant strains Bactericidal activity observed against various Gram negative, Gram positive and acid-fast bacteria, demonstrating broad-spectrum inhibitory activity Compound series exhibits low toxicity against human cells Shows considerable promise as next generation antibiotics
Antimicrobial resistant (AMR) bacteria are emerging and spreading globally, threatening our ability to treat common infectious diseases. The development of new classes of antibiotics able to kill or inhibit the growth of such AMR bacteria through novel mechanisms of action is therefore urgently needed. Here, a new family of indole-containing arene ruthenium organometallic compounds are screened against several bacterial species and drug resistant strains. The most active complex [(p-cym)Ru(O-cyclohexyl-1H-indole-2-carbothioate)Cl] (3) shows growth inhibition and bactericidal activity against different organisms (Acinetobacter baumannii, Mycobacterium abscessus, Mycobacterium tuberculosis, Staphylococcus aureus, Salmonella enterica serovar Typhi and Escherichia coli), demonstrating broad-spectrum inhibitory activity. Importantly, this compound series exhibits low toxicity against human cells. Owing to the novelty of the antibiotic family, their moderate cytotoxicity, and their inhibitory activity against Gram positive, Gram negative and acid-fast, antibiotic resistant microorganisms, this series shows significant promise for further development.
Collapse
|
15
|
Stimulation of Sulfonamides Antibacterial Drugs Activity as a Result of Complexation with Ru(III): Physicochemical and Biological Study. Int J Mol Sci 2021; 22:ijms222413482. [PMID: 34948278 PMCID: PMC8708937 DOI: 10.3390/ijms222413482] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/03/2021] [Accepted: 12/12/2021] [Indexed: 11/16/2022] Open
Abstract
Antibiotic resistance is a global problem, and one promising solution to overcome this issue is using metallodrugs, which are drugs containing metal ions and ligands. These complexes are superior to free ligands in various characteristics including anticancer properties and mechanism of action. The pharmacological potential of metallodrugs can be modulated by the appropriate selection of ligands and metal ions. A good example of proper coordination is the combination of sulfonamides (sulfamerazine, sulfathiazole) with a ruthenium(III) ion. This work aimed to confirm that the activity of sulfonamides antibacterial drugs is initiated and/or stimulated by their coordination to an Ru(III) ion. The study determined the structure, electrochemical profile, CT-DNA affinity, and antimicrobial as well as anticancer properties of the synthesized complexes. The results proved that Ru(III) complexes exhibited better biological properties than the free ligands.
Collapse
|
16
|
Leesakul N, Kullawanichaiyanan K, Mutić S, Guzsvány V, Nhukeaw T, Ratanaphan A, Saithong S, Konno T, Sirimahachai U, Promarak V. A photoactive iridium(III) complex with 3-methyl-2-phenyl pyridine and 1,1-bis(diphenylphosphino)methane: Synthesis, structural characterization and cytotoxicity in breast cancer cells. J COORD CHEM 2021. [DOI: 10.1080/00958972.2021.1949585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Nararak Leesakul
- Division of Physical Science and Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Thailand
| | - Keerati Kullawanichaiyanan
- Division of Physical Science and Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Thailand
| | - Sanja Mutić
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia
| | - Valéria Guzsvány
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia
| | - Tidarat Nhukeaw
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Thailand
| | - Adisorn Ratanaphan
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Thailand
| | - Saowanit Saithong
- Division of Physical Science and Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Thailand
| | - Takumi Konno
- Department of Chemistry, Graduate School of Science, Osaka University, Suita, Japan
| | - Uraiwan Sirimahachai
- Division of Physical Science and Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Thailand
| | - Vinich Promarak
- Department Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Wangchan, Thailand
| |
Collapse
|
17
|
Chiniadis L, Giastas P, Bratsos I, Papakyriakou A. Insights into the Protein Ruthenation Mechanism by Antimetastatic Metallodrugs: High-Resolution X-ray Structures of the Adduct Formed between Hen Egg-White Lysozyme and NAMI-A at Various Time Points. Inorg Chem 2021; 60:10729-10737. [PMID: 34197115 DOI: 10.1021/acs.inorgchem.1c01441] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The pharmacological profile of medicinally relevant Ru(III) coordination compounds has been ascribed to their interactions with proteins, as several studies have provided evidence that DNA is not the primary target. In this regard, numerous spectroscopic and crystallographic studies have indicated that the Ru(III) ligands play an important role in determining the metal binding site, acting as the recognition element in the early stages of the protein-complex formation. Herein, we present a series of near-atomic-resolution X-ray crystal structures of the adducts formed between the antimetastatic metallodrug imidazolium trans-[tetrachlorido(S-dimethyl sufoxide)(1H-imidazole)ruthenate(III)] (NAMI-A) and hen egg-white lysozyme (HEWL). These structures elucidate a series of binding events starting from the noncovalent interaction of intact NAMI-A ions with HEWL (1.5 h), followed by the stepwise exchange of all Ru ligands except for 1H-imidazole (26 h) to the final "ruthenated" protein comprising one aquated Ru ion coordinated to histidine-15 of HEWL (98 h). Our structural data clearly support a two-step mechanism of protein ruthenation, illustrating the ligand-mediated recognition step of the process.
Collapse
Affiliation(s)
| | - Petros Giastas
- Department of Neurobiology, Hellenic Pasteur Institute, 11521 Athens, Greece.,Department of Biotechnology, School of Applied Biology & Biotechnology, Agricultural University of Athens, 11855 Athens, Greece
| | | | | |
Collapse
|
18
|
Wall BJ, Will MF, Yawson GK, Bothwell PJ, Platt DC, Apuzzo CF, Jones MA, Ferrence GM, Webb MI. Importance of Hydrogen Bonding: Structure-Activity Relationships of Ruthenium(III) Complexes with Pyridine-Based Ligands for Alzheimer's Disease Therapy. J Med Chem 2021; 64:10124-10138. [PMID: 34197109 DOI: 10.1021/acs.jmedchem.1c00360] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Alzheimer's disease (AD) is the most common form of dementia, where one of the pathological hallmarks of AD is extracellular protein deposits, the primary component of which is the peptide amyloid-β (Aβ). Recently, the soluble form of Aβ has been recognized as the primary neurotoxic species, making it an important target for therapeutic development. Metal-based drugs are promising candidates to target Aβ, as the interactions with the peptide can be tuned by ligand design. In the current study, 11 ruthenium complexes containing pyridine-based ligands were prepared, where the functional groups at the para position on the coordinated pyridine ligand were varied to determine structure-activity relationships. Overall, the complexes with terminal primary amines had the greatest impact on modulating the aggregation of Aβ and diminishing its cytotoxicity. These results identify the importance of specific intermolecular interactions and are critical in the advancement of metal-based drugs for AD therapy.
Collapse
Affiliation(s)
- Brendan J Wall
- Department of Chemistry, Illinois State University, Normal, Illinois 61790-4160, United States
| | - Mark F Will
- Department of Chemistry, Illinois State University, Normal, Illinois 61790-4160, United States
| | - Gideon K Yawson
- Department of Chemistry, Illinois State University, Normal, Illinois 61790-4160, United States
| | - Paige J Bothwell
- Core Microscope Facility, Department of Biological Sciences, Northern Illinois University, DeKalb, Illinois 60115, United States
| | - David C Platt
- Department of Chemistry, Illinois State University, Normal, Illinois 61790-4160, United States
| | - C Fiore Apuzzo
- Department of Chemistry, Illinois State University, Normal, Illinois 61790-4160, United States
| | - Marjorie A Jones
- Department of Chemistry, Illinois State University, Normal, Illinois 61790-4160, United States
| | - Gregory M Ferrence
- Department of Chemistry, Illinois State University, Normal, Illinois 61790-4160, United States
| | - Michael I Webb
- Department of Chemistry, Illinois State University, Normal, Illinois 61790-4160, United States
| |
Collapse
|
19
|
Lazić D, Scheurer A, Ćoćić D, Milovanović J, Arsenijević A, Stojanović B, Arsenijević N, Milovanović M, Rilak Simović A. A new bis-pyrazolylpyridine ruthenium(III) complex as a potential anticancer drug: in vitro and in vivo activity in murine colon cancer. Dalton Trans 2021; 50:7686-7704. [PMID: 33982702 DOI: 10.1039/d1dt00185j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We synthesized and characterized the ruthenium(iii) pincer-type complex [RuCl3(H2Lt-Bu] (H2Lt-Bu = 2,6-bis(5-tert-butyl-1H-pyrazol-3-yl)pyridine, 1) by elemental analysis, IR and UV-Vis spectroscopy, and the mass spectrometry (MS) method ESI Q-TOF. For comparison reasons, we also studied ruthenium(iii) terpyridine complexes of the general formula [Ru(N-N-N)Cl3], where N-N-N = 4'-chloro-terpyridine (Cl-tpy; 2) or 4'-chlorophenyl-terpyridine (Cl-Ph-tpy; 3). A kinetic study of the substitution reactions of 1-3 with biomolecules showed that the rate constants depend on the properties of the spectator ligand and the nature of the entering nucleophile. The DNA/HSA binding study showed that in comparison to complex 1 (bis-pyrazolylpyridine), the other two (2 and 3) terpyridine complexes had a slightly better binding affinity to calf thymus DNA (CT DNA), while in the case of human serum albumin (HSA), complex 1 exhibited the strongest quenching ability. We demonstrated that 1 possesses significant in vitro cytotoxic activity against mouse colon carcinoma CT26 cells and in vivo antitumor activity in murine heterotopic colon carcinoma. Complex 1 induced G0/G1 cell cycle arrest and apoptotic death in CT26 cells. Additionally, 1 showed antiproliferative activity, as evaluated by the detection of the expression levels of the Ki67 protein. Furthermore, the in vivo results showed that 1 reduced primary tumour growth and the number and growth of lung and liver metastases, significantly prolonging the treated mice's survival rate. This study highlighted that 1 does not show hepato- and nephrotoxicity. Our data demonstrated the considerable antitumor activity of the ruthenium(iii) pincer complex against CT26 tumour cells and implicated further investigations of its role as a potential chemotherapeutic agent for colon carcinoma.
Collapse
Affiliation(s)
- Dejan Lazić
- Department of Surgery, Faculty of Medical Sciences, University of Kraujevac, Svetozara Markovića 69, 34000 Kragujevac, Serbia
| | - Andreas Scheurer
- Inorganic Chemistry, Department of Chemistry and Pharmacy, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Dušan Ćoćić
- University of Kragujevac, Faculty of Science, Radoja Domanovića 12, P. O. Box 60, 34000 Kragujevac, Serbia
| | - Jelena Milovanović
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia. and Department of Histology, Faculty of Medical Sciences, University of Kragujevac, Serbia
| | - Aleksandar Arsenijević
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia.
| | - Bojana Stojanović
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia. and Department of Pathophysiology, Faculty of Medical Sciences, University of Kragujevac, Serbia
| | - Nebojša Arsenijević
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia.
| | - Marija Milovanović
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia.
| | - Ana Rilak Simović
- University of Kragujevac, Institute for Information Technologies Kragujevac, Department of Natural Sciences, Jovana Cvijića bb, 34000 Kragujevac, Serbia.
| |
Collapse
|
20
|
Nandi PG, Jadi PK, Das K, Prathapa SJ, Mandal BB, Kumar A. Synthesis of NNN Chiral Ruthenium Complexes and Their Cytotoxicity Studies. Inorg Chem 2021; 60:7422-7432. [PMID: 33909427 DOI: 10.1021/acs.inorgchem.1c00698] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The synthesis and characterization of chiral pincer-ruthenium complexes of the type (R2NNN)RuCl2 (PPh3) (R = 3-methylbutyl and 3,3-dimethylbutyl) is reported here. The cytotoxicity studies of these complexes were studied and compared with the corresponding activity of achiral complexes. The cytotoxic effect of pincer-ruthenium complexes on human dermal fibroblasts and human tongue carcinoma cells assessed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay displayed an inhibition of normal and cancer cell growth in a dose-dependent manner. Intracellular reactive oxygen species (ROS) level measurement, lactate dehydrogenase assay, DNA fragmentation, and necrosis studies revealed that treatment with pincer-ruthenium complexes induced a redox imbalance in SAS cells by upregulating ROS generation and caused necrotic cell death by disrupting the cellular membrane integrity.
Collapse
Affiliation(s)
- Pran Gobinda Nandi
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Praveen Kumar Jadi
- Biomaterial and Tissue Engineering Laboratory, Department of Biosciences & Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Kanu Das
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | | | - Biman B Mandal
- Biomaterial and Tissue Engineering Laboratory, Department of Biosciences & Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.,Center for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Akshai Kumar
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.,Center for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| |
Collapse
|
21
|
Pereira ES, Rodrigues GLS, Rocha WR. Electronic structure and mechanism for the uptake of nitric oxide by the Ru(iii) antitumor complex NAMI-A. RSC Adv 2021; 11:7381-7390. [PMID: 35423255 PMCID: PMC8695036 DOI: 10.1039/d0ra10622d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 02/05/2021] [Indexed: 11/24/2022] Open
Abstract
Nitric oxide (NO) has well known vasodilation effects in living organisms and its participation in the metastasis of cancer cells through the angiogenesis process has been demonstrated experimentally. Therefore, the uptake of NO has become one focus of investigation to produce anti-metastatic drugs. In this article we have investigated the uptake of NO by the ruthenium based metallodrug trans-tetrachloride(dimethylsulfoxide)imidazole ruthenate(iii) [Im]trans-[RuCl4(Im)(DMSO)], known as New Anti-tumor Metastasis Inhibitor-A (NAMI-A). Electronic structure calculations using Density Functional Theory, DFT, and State-Averaged Complete Active Space Self Consistent Field, SA-CASSCF, with second order perturbation theory corrections, NEVPT2 were carried out to investigate the mechanism involved in the uptake of NO by the Ru-based anticancer metallodrug NAMI-A. The calculations revealed that the reaction takes place at the triplet potential energy surface, with the singlet surface being ∼15 kcal mol-1 shifted to higher energies, and there is a surface crossing to form the most stable singlet product after the reaction takes place at the triplet surface. The spin pairing and electron transfer from the nitric oxide to the metallic fragment takes place at the region of the minimum energy crossing point between the two surfaces. The Ru-NO bond in the {Ru-NO}6 product has ∼10% of the RuIII-NO0 character. The SA-CASSCF/NEVPT2 calculations revealed that the uptake of NO by NAMI-A has a small energy barrier of ∼8 kcal mol-1 and, therefore a rate constant of 11.3 × 106 s-1 at 300 K. In addition, the reaction is thermodynamically favorable, with a Gibbs free energy of ∼30 kcal mol-1. These results show that the uptake of nitric oxide by the NAMI-A complex is kinetically and thermodynamically feasible in biological medium and, therefore, gives support to the anti-angiogenesis theory associated to the mode of action of NAMI-A and other related compounds.
Collapse
Affiliation(s)
- Eufrásia S Pereira
- Laboratório de Estudos Computacionais em Sistemas Moleculares, eCsMolab, Departamento de Química, ICEx, Universidade Federal de Minas Gerais 31270-901 Pampulha Belo Horizonte MG Brazil
| | - Gabriel L S Rodrigues
- Laboratório de Estudos Computacionais em Sistemas Moleculares, eCsMolab, Departamento de Química, ICEx, Universidade Federal de Minas Gerais 31270-901 Pampulha Belo Horizonte MG Brazil
| | - Willian R Rocha
- Laboratório de Estudos Computacionais em Sistemas Moleculares, eCsMolab, Departamento de Química, ICEx, Universidade Federal de Minas Gerais 31270-901 Pampulha Belo Horizonte MG Brazil
| |
Collapse
|
22
|
Ali I, Mahmood LM, Mehdar YT, Aboul-Enein HY, Said MA. Synthesis, characterization, simulation, DNA binding and anticancer activities of Co(II), Cu(II), Ni(II) and Zn(II) complexes of a Schiff base containing o-hydroxyl group nitrogen ligand. INORG CHEM COMMUN 2020. [DOI: 10.1016/j.inoche.2020.108004] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
23
|
Malali S, Chyba J, Knor M, Horní M, Nečas M, Novotný J, Marek R. Zwitterionic Ru(III) Complexes: Stability of Metal-Ligand Bond and Host-Guest Binding with Cucurbit[7]uril. Inorg Chem 2020; 59:10185-10196. [PMID: 32633504 DOI: 10.1021/acs.inorgchem.0c01328] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A wide range of ruthenium-based coordination compounds have been reported to possess potential as metallodrugs with anticancer or antimetastatic activity. In this work, we synthesized a set of new zwitterionic Ru(III) compounds bearing ligands derived from N-alkyl (R) systems based on pyridine, 4,4'-bipyridine, or 1,4-diazabicyclo[2.2.2]octane (DABCO). The effects of the ligand(s) and their environment on the coordination stability have been investigated. Whereas the [DABCO-R]+ ligand is shown to be easily split out of a negative [RuCl4]- core, positively charged R-pyridine and R-bipyridine ligands form somewhat more stable Ru(III) complexes and can be used as supramolecular anchors for binding with macrocycles. Therefore, supramolecular host-guest assemblies between the stable zwitterionic Ru(III) guests and the cucurbit[7]uril host were investigated and characterized in detail by using NMR spectroscopy and single-crystal X-ray diffraction. Paramagnetic 1H NMR experiments supplemented by relativistic DFT calculations of the structure and hyperfine NMR shifts were performed to determine the host-guest binding modes in solution. In contrast to the intramolecular hyperfine shifts, dominated by the through-bond Fermi-contact mechanism, supramolecular hyperfine shifts were shown to depend on the "through-space" spin-dipole contributions with structural trends being satisfactorily reproduced by a simple point-dipole approximation.
Collapse
Affiliation(s)
- Sanaz Malali
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500 Brno, Czechia.,Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, CZ-62500 Brno, Czechia
| | - Jan Chyba
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500 Brno, Czechia
| | - Michal Knor
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500 Brno, Czechia.,Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, CZ-62500 Brno, Czechia
| | - Michal Horní
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500 Brno, Czechia.,Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, CZ-62500 Brno, Czechia
| | - Marek Nečas
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500 Brno, Czechia.,Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, CZ-62500 Brno, Czechia
| | - Jan Novotný
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500 Brno, Czechia.,National Center for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, CZ-62500 Brno, Czechia
| | - Radek Marek
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500 Brno, Czechia.,Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, CZ-62500 Brno, Czechia.,National Center for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, CZ-62500 Brno, Czechia
| |
Collapse
|
24
|
A DFT study of reactions of Ru(III) anticancer drug KP1019 with 8-oxoguanine and 8-oxoadenine. Struct Chem 2020. [DOI: 10.1007/s11224-020-01563-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
25
|
Huffman SE, Yawson GK, Fisher SS, Bothwell PJ, Platt DC, Jones MA, Hamaker CG, Webb MI. Ruthenium(iii) complexes containing thiazole-based ligands that modulate amyloid-β aggregation. Metallomics 2020; 12:491-503. [PMID: 32239079 DOI: 10.1039/d0mt00054j] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Alzheimer's Disease (AD) is a devastating neurodegenerative disorder where one of the commonly observed pathological hallmarks is extracellular deposits of the peptide amyloid-β (Aβ). These deposits contain a high concentration of metals and initially presented a promising target for therapy; however it has become increasingly evident that the soluble form of the peptide is neurotoxic, not the amyloidogenic species. Metal-based therapeutics are uniquely suited to target soluble Aβ and have shown considerable promise to prevent the aggregation and induced cytotoxicity of the peptide in vitro. Herein, we have prepared a small series of derivatives of two promising Ru(iii) complexes NAMI-A (imidazolium [trans-RuCl4(1H-imidazole)(dimethyl sulfoxide-S)]) and PMRU20 (2-aminothiazolium [trans-RuCl4(2-aminothiazole)2]), to determine structure-activity relationships (SAR) for Ru(iii) therapeutics for AD. Using the three complementary methods of Thioflavin T fluorescence, dynamic light scattering (DLS), and transmission electron microscopy (TEM), it was determined that the symmetry around the metal center did not significantly impact the activity of the complexes, but rather the attached thiazole ligand(s) mitigated Aβ aggregation. Across both families of Ru(iii) complexes the determined SAR for the functional groups on the thiazole ligands to modulate Aβ aggregation were NH2 > CH3 > H. These results highlight the importance of secondary interactions between the metallotherapeutic and the Aβ peptide where hydrogen-bonding has the greatest impact on modulating Aβ aggregation.
Collapse
Affiliation(s)
- Samantha E Huffman
- Department of Chemistry, Illinois State University, Normal, IL, 61790-4160, USA.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Rezki N, Al-blewi FF, Al-Sodies SA, Alnuzha AK, Messali M, Ali I, Aouad MR. Synthesis, Characterization, DNA Binding, Anticancer, and Molecular Docking Studies of Novel Imidazolium-Based Ionic Liquids with Fluorinated Phenylacetamide Tethers. ACS OMEGA 2020; 5:4807-4815. [PMID: 32201766 PMCID: PMC7081306 DOI: 10.1021/acsomega.9b03468] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 02/28/2020] [Indexed: 05/23/2023]
Abstract
Newer imidazolium ionic liquid (IL) halides 4a-f appending variety of fluorinated phenylacetamide side chains were designed and synthesized through quaternization of 1-methyl and/or 1,2-dimethylimidazole with appropriate 2-chloro-N-(fluorinatedphenyl)acetamides. The resulting ILs were converted to their respective ionic liquid analogues carrying fluorinated counteranions (PF6 -, BF4 -, and/or CF3COO-) 5a-r. All newly synthesized ILs were fully characterized using several spectroscopic experiments such as 1H, 13C, 11B, 19F, 31P NMR, and mass analysis. The synthesized ionic liquids were investigated for their DNA binding and anticancer activities. The obtained DNA binding constants ranged from 1.444 × 105 to 3.518 × 105, indicating a reasonably good binding affinity. The percentage of anticancer activities ranged from 48 to 59 with H-1229 cell line, showing quite good anticancer potential. The modeling studies indicated the interactions of the reported molecules with DNA via hydrogen bonds. These were in agreement with those of DNA binding and anticancer results. Briefly, the designed ionic liquids may be used as good anticancer candidates for treating human cancer.
Collapse
Affiliation(s)
- Nadjet Rezki
- Department of Chemistry,
Faculty of Science, Taibah University, Al-Madinah Al-Munawarah 30002, Saudi Arabia
- Department
of Chemistry, Faculty of Sciences, University
of Sciences and Technology Mohamed Boudiaf, Laboratoire de Chimie
and Electrochimie des Complexes Metalliques (LCECM) USTO-MB, P.O. Box 1505, El M‘nouar, Oran 31000, Algeria
| | - Fawzia Faleh Al-blewi
- Department of Chemistry,
Faculty of Science, Taibah University, Al-Madinah Al-Munawarah 30002, Saudi Arabia
| | - Salsabeel A. Al-Sodies
- Department of Chemistry,
Faculty of Science, Taibah University, Al-Madinah Al-Munawarah 30002, Saudi Arabia
| | - Asaad Khalid Alnuzha
- Department of Chemistry,
Faculty of Science, Taibah University, Al-Madinah Al-Munawarah 30002, Saudi Arabia
| | - Mouslim Messali
- Department of Chemistry,
Faculty of Science, Taibah University, Al-Madinah Al-Munawarah 30002, Saudi Arabia
| | - Imran Ali
- Department of Chemistry,
Faculty of Science, Taibah University, Al-Madinah Al-Munawarah 30002, Saudi Arabia
- Department of Chemistry, Jamia Millia Islamia
(A Central University), New Delhi 110025, India
| | - Mohamed Reda Aouad
- Department of Chemistry,
Faculty of Science, Taibah University, Al-Madinah Al-Munawarah 30002, Saudi Arabia
- Department
of Chemistry, Faculty of Sciences, University
of Sciences and Technology Mohamed Boudiaf, Laboratoire de Chimie
and Electrochimie des Complexes Metalliques (LCECM) USTO-MB, P.O. Box 1505, El M‘nouar, Oran 31000, Algeria
| |
Collapse
|
27
|
Photochemical and antibacterial properties of ruthenium complex of N,N’-bis(benzimidazole-2yl-ethyl)ethylenediamine under visible light: Experimental and theoretical studies. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127377] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
28
|
Pradhan AK, Mondal P. Quantum chemical investigation on the interaction of cysteine and DNA purine bases with aquated ruthenium(III) anticancer drug (ImH)[trans-RuCl4(Im)2]. COMPUT THEOR CHEM 2020. [DOI: 10.1016/j.comptc.2019.112664] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
29
|
Yuan S, Chen S, Wu H, Jiang H, Zheng S, Zhang Q, Liu Y. NAMI-A preferentially reacts with the Sp1 protein: understanding the anti-metastasis effect of the drug. Chem Commun (Camb) 2020; 56:1397-1400. [DOI: 10.1039/c9cc08775c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The anti-metastasis drug NAMI-A selectively reacts with Sp1, a protein associated with cancer metastasis.
Collapse
Affiliation(s)
- Siming Yuan
- Shenzhen Key Laboratory for Functional Polymer
- College of Chemistry and Environmental Engineering
- Shenzhen University
- Shenzhen
- China
| | - Siming Chen
- CAS Key Laboratory of Soft Matter Chemistry
- Department of Chemistry
- University of Science and Technology of China
- Hefei
- China
| | - Han Wu
- CAS Key Laboratory of Soft Matter Chemistry
- Department of Chemistry
- University of Science and Technology of China
- Hefei
- China
| | - Huan Jiang
- CAS Key Laboratory of Soft Matter Chemistry
- Department of Chemistry
- University of Science and Technology of China
- Hefei
- China
| | - Shihui Zheng
- CAS Key Laboratory of Soft Matter Chemistry
- Department of Chemistry
- University of Science and Technology of China
- Hefei
- China
| | - Qianling Zhang
- Shenzhen Key Laboratory for Functional Polymer
- College of Chemistry and Environmental Engineering
- Shenzhen University
- Shenzhen
- China
| | - Yangzhong Liu
- CAS Key Laboratory of Soft Matter Chemistry
- Department of Chemistry
- University of Science and Technology of China
- Hefei
- China
| |
Collapse
|
30
|
Shah PK, Shukla PK. Effect of axial ligands on the mechanisms of action of Ru(III) complexes structurally similar to NAMI-A: a DFT study. Struct Chem 2019. [DOI: 10.1007/s11224-019-01439-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
31
|
Riccardi C, Musumeci D, Trifuoggi M, Irace C, Paduano L, Montesarchio D. Anticancer Ruthenium(III) Complexes and Ru(III)-Containing Nanoformulations: An Update on the Mechanism of Action and Biological Activity. Pharmaceuticals (Basel) 2019; 12:E146. [PMID: 31561546 PMCID: PMC6958509 DOI: 10.3390/ph12040146] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 09/22/2019] [Accepted: 09/23/2019] [Indexed: 12/15/2022] Open
Abstract
The great advances in the studies on metal complexes for the treatment of different cancer forms, starting from the pioneering works on platinum derivatives, have fostered an increasingly growing interest in their properties and biomedical applications. Among the various metal-containing drugs investigated thus far, ruthenium(III) complexes have emerged for their selective cytotoxic activity in vitro and promising anticancer properties in vivo, also leading to a few candidates in advanced clinical trials. Aiming at addressing the solubility, stability and cellular uptake issues of low molecular weight Ru(III)-based compounds, some research groups have proposed the development of suitable drug delivery systems (e.g., taking advantage of nanoparticles, liposomes, etc.) able to enhance their activity compared to the naked drugs. This review highlights the unique role of Ru(III) complexes in the current panorama of anticancer agents, with particular emphasis on Ru-containing nanoformulations based on the incorporation of the Ru(III) complexes into suitable nanocarriers in order to enhance their bioavailability and pharmacokinetic properties. Preclinical evaluation of these nanoaggregates is discussed with a special focus on the investigation of their mechanism of action at a molecular level, highlighting their pharmacological potential in tumour disease models and value for biomedical applications.
Collapse
Affiliation(s)
- Claudia Riccardi
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, I-80126 Naples, Italy.
| | - Domenica Musumeci
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, I-80126 Naples, Italy.
| | - Marco Trifuoggi
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, I-80126 Naples, Italy.
| | - Carlo Irace
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, I-80131 Naples, Italy.
| | - Luigi Paduano
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, I-80126 Naples, Italy.
| | - Daniela Montesarchio
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, I-80126 Naples, Italy.
| |
Collapse
|
32
|
Aouad MR, Almehmadi MA, Rezki N, Al-blewi FF, Messali M, Ali I. Design, click synthesis, anticancer screening and docking studies of novel benzothiazole-1,2,3-triazoles appended with some bioactive benzofused heterocycles. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.04.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
33
|
Gramni L, Vukea N, Chakraborty A, Samson WJ, Dingle LMK, Xulu B, de la Mare JA, Edkins AL, Booysen IN. Anticancer evaluation of ruthenium(III) complexes with N-donor ligands tethered to coumarin or uracil moieties. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2019.04.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
34
|
D'Amora A, Cucciolito ME, Iannitti R, Morelli G, Palumbo R, Ruffo F, Tesauro D. Pyridine Ruthenium(III) complexes entrapped in liposomes with enhanced cytotoxic properties in PC-3 prostate cancer cells. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.02.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
35
|
NAMI-A and KP1019/1339, Two Iconic Ruthenium Anticancer Drug Candidates Face-to-Face: A Case Story in Medicinal Inorganic Chemistry. Molecules 2019; 24:molecules24101995. [PMID: 31137659 PMCID: PMC6571951 DOI: 10.3390/molecules24101995] [Citation(s) in RCA: 230] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 05/22/2019] [Indexed: 01/23/2023] Open
Abstract
NAMI-A ((ImH)[trans-RuCl4(dmso-S)(Im)], Im = imidazole) and KP1019/1339 (KP1019 = (IndH)[trans-RuCl4(Ind)2], Ind = indazole; KP1339 = Na[trans-RuCl4(Ind)2]) are two structurally related ruthenium(III) coordination compounds that have attracted a lot of attention in the medicinal inorganic chemistry scientific community as promising anticancer drug candidates. This has led to a considerable amount of studies on their respective chemico-biological features and to the eventual admission of both to clinical trials. The encouraging pharmacological performances qualified KP1019 mainly as a cytotoxic agent for the treatment of platinum-resistant colorectal cancers, whereas the non-cytotoxic NAMI-A has gained the reputation of being a very effective antimetastatic drug. A critical and strictly comparative analysis of the studies conducted so far on NAMI-A and KP1019 allows us to define the state of the art of these experimental ruthenium drugs in terms of the respective pharmacological profiles and potential clinical applications, and to gain some insight into the inherent molecular mechanisms. Despite their evident structural relatedness, deeply distinct biological and pharmacological profiles do emerge. Overall, these two iconic ruthenium complexes form an exemplary and unique case in the field of medicinal inorganic chemistry.
Collapse
|
36
|
Wiśniewska J, Fandzloch M, Łakomska I. The reduction of ruthenium(III) complexes with triazolopyrimidine ligands by ascorbic acid and mechanistic insight into their action in anticancer therapy. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2018.09.051] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
37
|
De S, Chaudhuri SR, Panda A, Jadhav GR, Kumar RS, Manohar P, Ramesh N, Mondal A, Moorthy A, Banerjee S, Paira P, Kumar SKA. Synthesis, characterisation, molecular docking, biomolecular interaction and cytotoxicity studies of novel ruthenium(ii)–arene-2-heteroarylbenzoxazole complexes. NEW J CHEM 2019. [DOI: 10.1039/c8nj04999h] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ru(ii)–arene-2-heteroarylbenzoxazole complexes were synthesized and implemented for their biological evaluation.
Collapse
Affiliation(s)
- Sourav De
- Department of Chemistry, School of Advance Sciences, Vellore Institute of Technology
- Vellore-632014
- India
| | - Shreya Ray Chaudhuri
- Department of Chemistry, School of Advance Sciences, Vellore Institute of Technology
- Vellore-632014
- India
| | - Arpita Panda
- Department of Chemistry, School of Advance Sciences, Vellore Institute of Technology
- Vellore-632014
- India
| | - Gajanan Rahosaheb Jadhav
- Department of Chemistry, School of Advance Sciences, Vellore Institute of Technology
- Vellore-632014
- India
| | - R. Selva Kumar
- Department of Chemistry, School of Advance Sciences, Vellore Institute of Technology
- Vellore-632014
- India
| | - Prasanth Manohar
- Department of Biotechnology, School of Bioscience & Technology, Vellore Institute of Technology
- Vellore 632014
- India
| | - N. Ramesh
- Department of Biotechnology, School of Bioscience & Technology, Vellore Institute of Technology
- Vellore 632014
- India
| | - Ashaparna Mondal
- Department of Chemistry, School of Advance Sciences, Vellore Institute of Technology
- Vellore-632014
- India
| | - Anbalagan Moorthy
- Department of Biotechnology, School of Bioscience & Technology, Vellore Institute of Technology
- Vellore 632014
- India
| | - Subhasis Banerjee
- Department of Pharmaceutical Chemistry, Gupta College of Technological Sciences
- Asansol-713301
- India
| | - Priyankar Paira
- Department of Chemistry, School of Advance Sciences, Vellore Institute of Technology
- Vellore-632014
- India
| | - S. K. Ashok Kumar
- Department of Chemistry, School of Advance Sciences, Vellore Institute of Technology
- Vellore-632014
- India
| |
Collapse
|
38
|
Sarkar B, Mondal A, Madaan Y, Roy N, Moorthy A, Kuo YC, Paira P. Luminescent anticancer ruthenium(ii)-p-cymene complexes of extended imidazophenanthroline ligands: synthesis, structure, reactivity, biomolecular interactions and live cell imaging. Dalton Trans 2019; 48:12257-12271. [DOI: 10.1039/c9dt00921c] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The violence of cancer triggered us to design lipophilic, target specific, water soluble, cytoselective and fluorescent Ru(ii)-p-cymene imidazophenanthroline scaffolds as effective DNA targeting agents as well as life cell imaging probes.
Collapse
Affiliation(s)
- Bidisha Sarkar
- Department of Chemistry
- School of Advanced Sciences
- VIT
- Vellore-632014
- India
| | - Ashaparna Mondal
- Department of Chemistry
- School of Advanced Sciences
- VIT
- Vellore-632014
- India
| | - Yukti Madaan
- Department of Chemistry
- School of Advanced Sciences
- VIT
- Vellore-632014
- India
| | - Nilmadhab Roy
- Department of Chemistry
- School of Advanced Sciences
- VIT
- Vellore-632014
- India
| | - Anbalagan Moorthy
- Department of Biotechnology
- School of Bioscience & Technology
- Vellore Institute of Technology
- Vellore 632014
- India
| | - Yung-Chih Kuo
- Department of Chemical Engineering
- National Chung Cheng University
- Min-Hsiung
- Taiwan 62102
| | - Priyankar Paira
- Department of Chemistry
- School of Advanced Sciences
- VIT
- Vellore-632014
- India
| |
Collapse
|
39
|
Andriani KF, Heinzelmann G, Caramori GF. Shedding Light on the Hydrolysis Mechanism of cis, trans-[Ru(dmso)4Cl2] Complexes and Their Interactions with DNA—A Computational Perspective. J Phys Chem B 2018; 123:457-467. [DOI: 10.1021/acs.jpcb.8b11287] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
40
|
(Pyridyl)benzoazole ruthenium(III) complexes: Kinetics of ligand substitution reaction and potential cytotoxic properties. Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2018.06.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
41
|
Das D, Khan MS, Barik G, Avasare V, Pal S. Computational Approach to Unravel the Role of Hydrogen Bonding in the Interaction of NAMI-A with DNA Nucleobases and Nucleotides. J Phys Chem A 2018; 122:8397-8411. [PMID: 30114366 DOI: 10.1021/acs.jpca.7b12617] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Density functional theory method in combination with a continuum solvation model is used to understand the role of hydrogen bonding in the interactions of tertiary nitrogen centers of guanine and adenine with monoaqua and diaqua NAMI-A. In the case of adenine, the interaction of N3 with monoaqua NAMI-A is preferred over that of N7 and N1 whereas, N7 site is the most preferred site over N3 and N1 in the diaqua ruthenium-adenine interaction. In the monoaqua and diaqua NAMI-A-guanine interactions, the N7 site is the most preferred site over the N3 site. Here, the strength and number of H-bonds play important roles in stabilizing intermediates and transition states involved in the interaction of NAMI-A and purine bases. Atoms in molecules and Becke surface analysis confirm that the interactions between monoaqua and diaqua NAMI-A with the base pairs of GC and AT dinucleotides leads to the structural deformation in the geometry of the base pairs of dinucleotides. The diaqua NAMI-A adducts induce more disruption in the base pairs as compared to monoaqua NAMI-A adducts. which suggests that diaqua NAMI-A could be a better anticancer agent than monoaqua NAMI-A. This study can be extended to envisage the potential applications of computational studies in the development of new drugs and targeted drug delivery systems.
Collapse
Affiliation(s)
- Dharitri Das
- Department of Chemistry , Indian Institute of Technology Bombay , Mumbai 400076 , India
| | - Muntazir S Khan
- Department of Chemistry , Indian Institute of Technology Bombay , Mumbai 400076 , India
| | - Gayatree Barik
- Department of Chemistry , Indian Institute of Technology Bombay , Mumbai 400076 , India
| | - Vidya Avasare
- Department of Chemistry , Sir Parashurambhau College , Pune 411030 , India
| | - Sourav Pal
- Department of Chemistry , Indian Institute of Technology Bombay , Mumbai 400076 , India
| |
Collapse
|
42
|
Chyba J, Novák M, Munzarová P, Novotný J, Marek R. Through-Space Paramagnetic NMR Effects in Host–Guest Complexes: Potential Ruthenium(III) Metallodrugs with Macrocyclic Carriers. Inorg Chem 2018; 57:8735-8747. [DOI: 10.1021/acs.inorgchem.7b03233] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
43
|
Messori L, Merlino A. Protein metalation by metal-based drugs: X-ray crystallography and mass spectrometry studies. Chem Commun (Camb) 2018; 53:11622-11633. [PMID: 29019481 DOI: 10.1039/c7cc06442j] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The combined use of X-ray crystallography and mass spectrometry represents a valuable strategy to investigate and characterize protein metalation induced by anticancer metal-based drugs. Here, we summarize a series of significant results recently obtained in our laboratories upon the examination of the structures of several adducts of proteins with representative metallodrugs (mostly containing ruthenium, gold and platinum). The general mechanisms of protein metalation that emerge from a careful comparative analysis of these structures are illustrated and their mechanistic implications are discussed. Possible directions for future work in the field are delineated.
Collapse
Affiliation(s)
- L Messori
- Department of Chemistry, University of Florence, Italy.
| | | |
Collapse
|
44
|
Dwyer BG, Johnson E, Cazares E, McFarlane Holman KL, Kirk SR. Ruthenium anticancer agent KP1019 binds more tightly than NAMI-A to tRNA Phe. J Inorg Biochem 2018; 182:177-183. [PMID: 29501978 DOI: 10.1016/j.jinorgbio.2018.02.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 02/22/2018] [Accepted: 02/23/2018] [Indexed: 12/29/2022]
Abstract
The ruthenium-based anticancer agent NAMI-A (ImH[trans-RuCl4(dmso)(Im)], where Im = imidazole) has been shown to interact with RNA in vivo and in vitro. We hypothesized that the similarly structured drug KP1019 (IndH[trans-RuCl4(Ind)2], where Ind = indazole) binds to RNA as well. Fluorescence spectroscopy was employed to assay the interactions between either NAMI-A or KP1019 and tRNAPhe through an intrinsic fluorophore wybutosine (Y) base and by extrinsic displacement of the intercalating agent ethidium bromide. In both the intrinsic Y-base and extrinsic ethidium bromide studies, KP1019 exhibited tighter binding to phenylalanine-specific tRNA (tRNAPhe) than NAMI-A. In the ethidium bromide study, reducing both drugs from RuIII to RuII resulted in a significant decrease in binding. Our findings suggest that the relatively large heteroaromatic indazole ligands of KP1019 intercalate in the π-stacks of tRNAPhe within structurally complex binding pockets. In addition, NAMI-A appears to be sensitive to destabilizing electrostatic interactions with the negative phosphate backbone of tRNAPhe. Interactions with additional tRNA molecules and other types of RNA require further evaluation to determine the role of RNA in the mechanisms of action for KP1019 and to better understand how Ru drugs fundamentally interact with biomolecules that are more structurally sophisticated than short DNA oligonucleotides. To the best of our knowledge, this is the first study to report KP1019 binding interactions with RNA.
Collapse
Affiliation(s)
- Brendan G Dwyer
- Department of Chemistry, Willamette University, 900 State Street, Salem, Oregon 97301, United States
| | - Emily Johnson
- Department of Chemistry, Willamette University, 900 State Street, Salem, Oregon 97301, United States
| | - Efren Cazares
- Department of Chemistry, Willamette University, 900 State Street, Salem, Oregon 97301, United States
| | - Karen L McFarlane Holman
- Department of Chemistry, Willamette University, 900 State Street, Salem, Oregon 97301, United States
| | - Sarah R Kirk
- Department of Chemistry, Willamette University, 900 State Street, Salem, Oregon 97301, United States.
| |
Collapse
|
45
|
Meiklejohn V, Depan D, Boudreaux SP, Murru S, Perkins RS, Fronczek FR, Srivastava RS. Ru( iii)–TMSO complexes containing azole-based ligands: synthesis and cytotoxicity study. NEW J CHEM 2018. [DOI: 10.1039/c7nj03267f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The reaction of mer-[RuCl3(S-TMSO)2(O-TMSO)] with azoles in dichloromethane produced the complexes mer-[RuCl3(S-TMSO)(pzH)2], mer-[RuCl3(S-TMSO)(O-TMSO)(pzH)], mer-[RuCl3(S-TMSO)(dmpzH)2], and mer-[RuCl3(S-TMSO)(O-TMSO)(dmpzH)].
Collapse
Affiliation(s)
| | - Dilip Depan
- Department of Chemical Engineering, University of Louisiana at Lafayette
- Lafayette
- USA
| | - Seth P. Boudreaux
- New Iberia Research Center, University of Louisiana at Lafayette
- Lafayette
- USA
| | - Siva Murru
- Department of Chemistry, University of Louisiana at Lafayette
- Lafayette
- USA
| | - Richard S. Perkins
- Department of Chemistry, University of Louisiana at Lafayette
- Lafayette
- USA
| | | | | |
Collapse
|
46
|
Riccardi C, Musumeci D, Capuozzo A, Irace C, King S, Russo Krauss I, Paduano L, Montesarchio D. "Dressing up" an Old Drug: An Aminoacyl Lipid for the Functionalization of Ru(III)-Based Anticancer Agents. ACS Biomater Sci Eng 2017; 4:163-174. [PMID: 33418686 DOI: 10.1021/acsbiomaterials.7b00547] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In the search for more efficient anticancer treatments, Ru(III) complexes have attracted much interest among metal-based candidate drugs, showing marked antitumor and antimetastatic activity associated with lower systemic toxicity. Remarkable examples are the Ru(III) complexes NAMI-A and KP1019, which have reached advanced clinical evaluation. In order to improve the in vivo stability of Ru(III)-based drugs, as well as their cellular uptake and effectiveness, a new approach has been proposed by our research group, based on the incorporation of the active, NAMI-A-like Ru(III) complex into highly functionalized nucleolipidic structures, i.e., hybrid molecules containing a nucleoside or nucleotide central core derivatized with a lipid chain, ensuring both efficient protection against extracellular degradation and high cellular internalization of the metal. Aiming at expanding the chemical diversity of available amphiphilic Ru(III) complexes, we here selected a trifunctional α-amino acid to replace the nucleosidic core of previously prepared nucleolipid-based Ru(III) complexes. The amino acidic scaffold, linked to the Ru(III) complex, is decorated with both hydrophilic and lipophilic moieties, conferring high propensity to form stable aggregates in water, which is required to obtain a suitable nanocarrier for the drug delivery. Following this approach, a novel compound, indicated here as compound I, was successfully prepared and characterized, then studied in coformulation with the biocompatible cationic lipid 1,2-dioleyl-3-trimethylammoniumpropane chloride (DOTAP) by dynamic light scattering (DLS), small angle neutron scattering (SANS), and UV-vis analysis. Evaluated in vitro on a panel of human and nonhuman cell lines, it showed good antiproliferative activity on cancer cells, with IC50 values in the μM range, and no relevant cytotoxicity on the healthy cells used as control.
Collapse
Affiliation(s)
- Claudia Riccardi
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Via Cintia 21, 80126 Napoli, Italy
| | - Domenica Musumeci
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Via Cintia 21, 80126 Napoli, Italy.,CNR, Istituto di Biostrutture e Bioimmagini, Via Mezzocannone 16, 80134 Napoli, Italy
| | - Antonella Capuozzo
- Dipartimento di Farmacia, Università di Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| | - Carlo Irace
- Dipartimento di Farmacia, Università di Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| | - Stephen King
- ISIS Facility, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Campus, Didcot OX11 0QX, United Kingdom
| | - Irene Russo Krauss
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Via Cintia 21, 80126 Napoli, Italy.,CSGI, Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase, Via della Lastruccia 3, 50019 Sesto Fiorentino (Florence), Italy
| | - Luigi Paduano
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Via Cintia 21, 80126 Napoli, Italy.,CSGI, Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase, Via della Lastruccia 3, 50019 Sesto Fiorentino (Florence), Italy
| | - Daniela Montesarchio
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Via Cintia 21, 80126 Napoli, Italy.,Istituto per l'Endocrinologia e l'Oncologia "Gaetano Salvatore", Consiglio Nazionale delle Ricerche (CNR), Via Pansini 5, 80131 Napoli, Italy
| |
Collapse
|
47
|
Zeng L, Gupta P, Chen Y, Wang E, Ji L, Chao H, Chen ZS. The development of anticancer ruthenium(ii) complexes: from single molecule compounds to nanomaterials. Chem Soc Rev 2017; 46:5771-5804. [PMID: 28654103 PMCID: PMC5624840 DOI: 10.1039/c7cs00195a] [Citation(s) in RCA: 741] [Impact Index Per Article: 92.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Cancer is rapidly becoming the top killer in the world. Most of the FDA approved anticancer drugs are organic molecules, while metallodrugs are very scarce. The advent of the first metal based therapeutic agent, cisplatin, launched a new era in the application of transition metal complexes for therapeutic design. Due to their unique and versatile biochemical properties, ruthenium-based compounds have emerged as promising anti-cancer agents that serve as alternatives to cisplatin and its derivertives. Ruthenium(iii) complexes have successfully been used in clinical research and their mechanisms of anticancer action have been reported in large volumes over the past few decades. Ruthenium(ii) complexes have also attracted significant attention as anticancer candidates; however, only a few of them have been reported comprehensively. In this review, we discuss the development of ruthenium(ii) complexes as anticancer candidates and biocatalysts, including arene ruthenium complexes, polypyridyl ruthenium complexes, and ruthenium nanomaterial complexes. This review focuses on the likely mechanisms of action of ruthenium(ii)-based anticancer drugs and the relationship between their chemical structures and biological properties. This review also highlights the catalytic activity and the photoinduced activation of ruthenium(ii) complexes, their targeted delivery, and their activity in nanomaterial systems.
Collapse
Affiliation(s)
- Leli Zeng
- College of Pharmacy and Health Sciences, St. John's University, New York, NY 11439, USA.
| | | | | | | | | | | | | |
Collapse
|
48
|
Ali I, Lone MN, Alothman ZA, Alwarthan A. Insights into the pharmacology of new heterocycles embedded with oxopyrrolidine rings: DNA binding, molecular docking, and anticancer studies. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2017.03.112] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
49
|
Basri AM, Lord RM, Allison SJ, Rodríguez-Bárzano A, Lucas SJ, Janeway FD, Shepherd HJ, Pask CM, Phillips RM, McGowan PC. Bis-picolinamide Ruthenium(III) Dihalide Complexes: Dichloride-to-Diiodide Exchange Generates Single trans
Isomers with High Potency and Cancer Cell Selectivity. Chemistry 2017; 23:6341-6356. [DOI: 10.1002/chem.201605960] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 02/16/2017] [Indexed: 01/25/2023]
Affiliation(s)
- Aida M. Basri
- School of Chemistry; University of Leeds; Woodhouse Lane Leeds LS2 9JT UK
| | - Rianne M. Lord
- School of Chemistry and Forensic Sciences; University of Bradford; Bradford BD7 1DP UK
| | - Simon J. Allison
- School of Applied Sciences; University of Huddersfield; Huddersfield HD1 3DH UK
| | | | - Stephanie J. Lucas
- School of Chemistry; University of Leeds; Woodhouse Lane Leeds LS2 9JT UK
| | - Felix D. Janeway
- School of Chemistry; University of Leeds; Woodhouse Lane Leeds LS2 9JT UK
| | - Helena J. Shepherd
- School of Physical Sciences; University of Kent; Canterbury, Kent CT2 7NH UK
| | | | - Roger M. Phillips
- School of Applied Sciences; University of Huddersfield; Huddersfield HD1 3DH UK
| | - Patrick C. McGowan
- School of Chemistry; University of Leeds; Woodhouse Lane Leeds LS2 9JT UK
| |
Collapse
|
50
|
Li H, Sun TT, Zhang C, Liu L, Zhao D, Yang Z. QM/MM(ABEEM) Study on the Ligand Substitution Processes of Ruthenium(III) Complex NAMI-A. CHINESE J CHEM 2017. [DOI: 10.1002/cjoc.201600605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Hui Li
- Chemistry and Chemical Engineering Faculty; Liaoning Normal University; Dalian Liaoning 116029 China
| | - Ting-Ting Sun
- Chemistry and Chemical Engineering Faculty; Liaoning Normal University; Dalian Liaoning 116029 China
| | - Chao Zhang
- Chemistry and Chemical Engineering Faculty; Liaoning Normal University; Dalian Liaoning 116029 China
| | - Linlin Liu
- Chemistry and Chemical Engineering Faculty; Liaoning Normal University; Dalian Liaoning 116029 China
| | - Dongxia Zhao
- Chemistry and Chemical Engineering Faculty; Liaoning Normal University; Dalian Liaoning 116029 China
| | - Zhongzhi Yang
- Chemistry and Chemical Engineering Faculty; Liaoning Normal University; Dalian Liaoning 116029 China
| |
Collapse
|