1
|
Park JS, Kang DR, Shim KS. Proteomic changes in broiler liver by body weight differences under chronic heat stress. Poult Sci 2022; 101:101794. [PMID: 35334443 PMCID: PMC8942842 DOI: 10.1016/j.psj.2022.101794] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 02/03/2022] [Accepted: 02/17/2022] [Indexed: 11/19/2022] Open
Abstract
The increasing global temperature is causing economic losses and animal welfare problems in the poultry industry. Because poultry do not have sweat glands, it is difficult for them to return to their usual body temperature. Heat stress has negative impact on production and health in broilers. Given the effects of chronic stress on broilers, the objective of this study was to identify physiological changes in differentially expressed proteins in broilers with different growth performances using liver tissue from 35-day-old chickens (Ross-308). Changes in protein levels were analyzed with two-dimensional gel electrophoresis (2DE) and mass spectrometry. This study contained 2 groups (control and heat treatment groups) with 8 replicates per group. After d 20, ten birds were assigned to each replicate. On d 35, the heat treatment group was subdivided into 2 groups, a heat stressed high body weight group (HH) and a heat stressed low body weight group (HL). Body weight was lower in the heat treatment group than that in the control group. In the heat treatment group, the HH group had a significantly higher body weight than the HL group. The expression of heat shock protein 70 significantly increased in the HL group. Protein spots with significant differences in 2DE analysis were screened and selected. Thirteen significant spots were excised and analyzed using matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF). Among the 13 spots, 8 spots were identified. The identified spots were MRP-126, fatty acid binding protein, ferritin heavy chain, glutathione S-transferase, agmatinase; mitochondrial, alpha-enolase, 60 kDa heat shock protein; mitochondrial, and tubulin beta-7 chain. Our study has showed that high temperature stress aggravated oxidative stress in broilers, which resulted in comparatively slow growth to preserve body homeostasis.
Collapse
Affiliation(s)
- Jin Sung Park
- Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Da Rae Kang
- Department of Animal Biotechnology, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Kwan Seob Shim
- Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju 54896, Republic of Korea; Department of Animal Biotechnology, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju 54896, Republic of Korea.
| |
Collapse
|
2
|
Maturana P, Orellana MS, Herrera SM, Martínez I, Figueroa M, Martínez-Oyanedel J, Castro-Fernandez V, Uribe E. Crystal Structure of Escherichia coli Agmatinase: Catalytic Mechanism and Residues Relevant for Substrate Specificity. Int J Mol Sci 2021; 22:ijms22094769. [PMID: 33946272 PMCID: PMC8125230 DOI: 10.3390/ijms22094769] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 04/18/2021] [Accepted: 04/28/2021] [Indexed: 11/16/2022] Open
Abstract
Agmatine is the product of the decarboxylation of L-arginine by the enzyme arginine decarboxylase. This amine has been attributed to neurotransmitter functions, anticonvulsant, anti-neurotoxic, and antidepressant in mammals and is a potential therapeutic agent for diseases such as Alzheimer's, Parkinson's, and cancer. Agmatinase enzyme hydrolyze agmatine into urea and putrescine, which belong to one of the pathways producing polyamines, essential for cell proliferation. Agmatinase from Escherichia coli (EcAGM) has been widely studied and kinetically characterized, described as highly specific for agmatine. In this study, we analyze the amino acids involved in the high specificity of EcAGM, performing a series of mutations in two loops critical to the active-site entrance. Two structures in different space groups were solved by X-ray crystallography, one at low resolution (3.2 Å), including a guanidine group; and other at high resolution (1.8 Å) which presents urea and agmatine in the active site. These structures made it possible to understand the interface interactions between subunits that allow the hexameric state and postulate a catalytic mechanism according to the Mn2+ and urea/guanidine binding site. Molecular dynamics simulations evaluated the conformational dynamics of EcAGM and residues participating in non-binding interactions. Simulations showed the high dynamics of loops of the active site entrance and evidenced the relevance of Trp68, located in the adjacent subunit, to stabilize the amino group of agmatine by cation-pi interaction. These results allow to have a structural view of the best-kinetic characterized agmatinase in literature up to now.
Collapse
Affiliation(s)
- Pablo Maturana
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Ñuñoa 7800003, Santiago, Chile; (P.M.); (S.M.H.)
| | - María S. Orellana
- Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370251, Santiago, Chile;
| | - Sixto M. Herrera
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Ñuñoa 7800003, Santiago, Chile; (P.M.); (S.M.H.)
| | - Ignacio Martínez
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Casilla 160-C, Concepción 4070386, Concepción, Chile; (I.M.); (M.F.); (J.M.-O.)
| | - Maximiliano Figueroa
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Casilla 160-C, Concepción 4070386, Concepción, Chile; (I.M.); (M.F.); (J.M.-O.)
| | - José Martínez-Oyanedel
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Casilla 160-C, Concepción 4070386, Concepción, Chile; (I.M.); (M.F.); (J.M.-O.)
| | - Victor Castro-Fernandez
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Ñuñoa 7800003, Santiago, Chile; (P.M.); (S.M.H.)
- Correspondence: (V.C.-F.); (E.U.); Tel.: +56-2-2978-7332 (V.C.-F.); +56-41-220-4428 (E.U.)
| | - Elena Uribe
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Casilla 160-C, Concepción 4070386, Concepción, Chile; (I.M.); (M.F.); (J.M.-O.)
- Correspondence: (V.C.-F.); (E.U.); Tel.: +56-2-2978-7332 (V.C.-F.); +56-41-220-4428 (E.U.)
| |
Collapse
|
3
|
Chitrakar I, Ahmed SF, Torelli AT, French JB. Structure of the E. coli agmatinase, SPEB. PLoS One 2021; 16:e0248991. [PMID: 33857156 PMCID: PMC8049259 DOI: 10.1371/journal.pone.0248991] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 03/09/2021] [Indexed: 01/05/2023] Open
Abstract
Agmatine amidinohydrolase, or agmatinase, catalyzes the conversion of agmatine to putrescine and urea. This enzyme is found broadly across kingdoms of life and plays a critical role in polyamine biosynthesis and the regulation of agmatine concentrations. Here we describe the high-resolution X-ray crystal structure of the E. coli agmatinase, SPEB. The data showed a relatively high degree of pseudomerohedral twinning, was ultimately indexed in the P31 space group and led to a final model with eighteen chains, corresponding to three full hexamers in the asymmetric unit. There was a solvent content of 38.5% and refined R/Rfree values of 0.166/0.216. The protein has the conserved fold characteristic of the agmatine ureohydrolase family and displayed a high degree of structural similarity among individual protomers. Two distinct peaks of electron density were observed in the active site of most of the eighteen chains of SPEB. As the activity of this protein is known to be dependent upon manganese and the fold is similar to other dinuclear metallohydrolases, these peaks were modeled as manganese ions. The orientation of the conserved active site residues, in particular those amino acids that participate in binding the metal ions and a pair of acidic residues (D153 and E274 in SPEB) that play a role in catalysis, are similar to other agmatinase and arginase enzymes and is consistent with a hydrolytic mechanism that proceeds via a metal-activated hydroxide ion.
Collapse
Affiliation(s)
- Iva Chitrakar
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, United States of America
- Biochemistry and Structural Biology Graduate Program, Stony Brook University, Stony Brook, NY, United States of America
| | - Syed Fardin Ahmed
- Department of Chemistry, Ithaca College, Ithaca, NY, United States of America
| | - Andrew T. Torelli
- Department of Chemistry, Ithaca College, Ithaca, NY, United States of America
| | - Jarrod B. French
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, United States of America
- Chemistry Department, Stony Brook University, Stony Brook, NY, United States of America
- Hormel Institute, University of Minnesota, Austin, MN, United States of America
| |
Collapse
|
4
|
Insights into the Mn 2+ Binding Site in the Agmatinase-Like Protein (ALP): A Critical Enzyme for the Regulation of Agmatine Levels in Mammals. Int J Mol Sci 2020; 21:ijms21114132. [PMID: 32531922 PMCID: PMC7313459 DOI: 10.3390/ijms21114132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/01/2020] [Accepted: 06/05/2020] [Indexed: 11/21/2022] Open
Abstract
Agmatine is a neurotransmitter with anticonvulsant, anti-neurotoxic and antidepressant-like effects, in addition it has hypoglycemic actions. Agmatine is converted to putrescine and urea by agmatinase (AGM) and by an agmatinase-like protein (ALP), a new type of enzyme which is present in human and rodent brain tissues. Recombinant rat brain ALP is the only mammalian protein that exhibits significant agmatinase activity in vitro and generates putrescine under in vivo conditions. ALP, despite differing in amino acid sequence from all members of the ureohydrolase family, is strictly dependent on Mn2+ for catalytic activity. However, the Mn2+ ligands have not yet been identified due to the lack of structural information coupled with the low sequence identity that ALPs display with known ureohydrolases. In this work, we generated a structural model of the Mn2+ binding site of the ALP and we propose new putative Mn2+ ligands. Then, we cloned and expressed a sequence of 210 amino acids, here called the “central-ALP”, which include the putative ligands of Mn2+. The results suggest that the central-ALP is catalytically active, as agmatinase, with an unaltered Km for agmatine and a decreased kcat. Similar to wild-type ALP, central-ALP is activated by Mn2+ with a similar affinity. Besides, a simple mutant D217A, a double mutant E288A/K290A, and a triple mutant N213A/Q215A/D217A of these putative Mn2+ ligands result on the loss of ALP agmatinase activity. Our results indicate that the central-ALP contains the active site for agmatine hydrolysis, as well as that the residues identified are relevant for the ALP catalysis.
Collapse
|
5
|
Adaptation of a continuous, calorimetric kinetic assay to study the agmatinase-catalyzed hydrolytic reaction. Anal Biochem 2020; 595:113618. [DOI: 10.1016/j.ab.2020.113618] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/05/2020] [Accepted: 02/09/2020] [Indexed: 11/19/2022]
|
6
|
Functional analysis of the Mn2+ requirement in the catalysis of ureohydrolases arginase and agmatinase - a historical perspective. J Inorg Biochem 2020; 202:110812. [DOI: 10.1016/j.jinorgbio.2019.110812] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/13/2019] [Accepted: 08/25/2019] [Indexed: 12/22/2022]
|
7
|
Benítez J, García D, Romero N, González A, Martínez-Oyanedel J, Figueroa M, Salas M, López V, García-Robles M, Dodd PR, Schenk G, Carvajal N, Uribe E. Metabolic strategies for the degradation of the neuromodulator agmatine in mammals. Metabolism 2018; 81:35-44. [PMID: 29162499 DOI: 10.1016/j.metabol.2017.11.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 10/23/2017] [Accepted: 11/08/2017] [Indexed: 01/08/2023]
Abstract
Agmatine (1-amino-4-guanidinobutane), a precursor for polyamine biosynthesis, has been identified as an important neuromodulator with anticonvulsant, antineurotoxic and antidepressant actions in the brain. In this context it has emerged as an important mediator of addiction/satiety pathways associated with alcohol misuse. Consequently, the regulation of the activity of key enzymes in agmatine metabolism is an attractive strategy to combat alcoholism and related addiction disorders. Agmatine results from the decarboxylation of L-arginine in a reaction catalyzed by arginine decarboxylase (ADC), and can be converted to either guanidine butyraldehyde by diamine oxidase (DAO) or putrescine and urea by the enzyme agmatinase (AGM) or the more recently identified AGM-like protein (ALP). In rat brain, agmatine, AGM and ALP are predominantly localised in areas associated with roles in appetitive and craving (drug-reinstatement) behaviors. Thus, inhibitors of AGM or ALP are promising agents for the treatment of addictions. In this review, the properties of DAO, AGM and ALP are discussed with a view to their role in the agmatine metabolism in mammals.
Collapse
Affiliation(s)
- José Benítez
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Casilla 160-C, Concepción, Chile
| | - David García
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Casilla 160-C, Concepción, Chile
| | - Nicol Romero
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Casilla 160-C, Concepción, Chile
| | - Arlette González
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Casilla 160-C, Concepción, Chile
| | - José Martínez-Oyanedel
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Casilla 160-C, Concepción, Chile
| | - Maximiliano Figueroa
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Casilla 160-C, Concepción, Chile
| | - Mónica Salas
- Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Valdivia, Chile
| | - Vasthi López
- Departamento de Ciencias Biomédicas, Universidad Católica del Norte, Coquimbo, Chile
| | - María García-Robles
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Casilla 160-C, Concepción, Chile
| | - Peter R Dodd
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Gerhard Schenk
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Nelson Carvajal
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Casilla 160-C, Concepción, Chile
| | - Elena Uribe
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Casilla 160-C, Concepción, Chile.
| |
Collapse
|
8
|
Romero N, Benítez J, Garcia D, González A, Bennun L, García-Robles MA, López V, Wilson LA, Schenk G, Carvajal N, Uribe E. Mammalian agmatinases constitute unusual members in the family of Mn 2+ -dependent ureahydrolases. J Inorg Biochem 2017; 166:122-125. [DOI: 10.1016/j.jinorgbio.2016.11.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 10/06/2016] [Accepted: 11/08/2016] [Indexed: 10/20/2022]
|
9
|
Quiñones M, Cofre J, Benítez J, García D, Romero N, González A, Carvajal N, García M, López V, Schenk G, Uribe E. Insight on the interaction of an agmatinase-like protein with Mn(2+) activator ions. J Inorg Biochem 2015; 145:65-9. [PMID: 25635913 DOI: 10.1016/j.jinorgbio.2015.01.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 01/14/2015] [Accepted: 01/15/2015] [Indexed: 11/18/2022]
Abstract
Agmatinase is an enzyme that catalyzes the hydrolysis of agmatine, a compound that is associated with numerous functions in the brain of mammalian organisms such as neurotransmitter, anticonvulsant, antinociceptive, anxiolytic and antidepressant-like actions. To date the only characterized agmatinases with significant enzymatic activity were extracted from bacterial organisms. These agmatinases are closely related to another ureahydrolase, arginase; both have binuclear Mn(2+) centers in their active sites. An agmatinase-like protein (ALP) from rat brain was identified that bears no sequence homology to known agmatinases (E. Uribe, M. Salas, S. Enriquez, M.S. Orellana, N. Carvajal, Arch. Biochem. Biophys. 461(2007) 146-150). Since all known ureahydrolases contain histidines in their binuclear Mn(2+) site each of the five histidine residues in ALP was individually replaced by alanines to identify those that may be involved in metal ion binding. Reactivation assays and thermal stability measurements indicated that His206 is likely to interact with a Mn(2+) bound to a high affinity site. In contrast, His65 and possibly His435 are important for binding of a second Mn(2+) to a lower affinity site. Metal ion binding to that site is not only leading to an increase in reactivity but also enzyme stability. Thus, similar to bacterial agmatinases and some of the antibiotic-degrading, Zn(2+)-dependent metallo-β-lactamases ALP appears to be active in the mono and binuclear form, with binding of the second metal ion increasing both reactivity and stability.
Collapse
Affiliation(s)
- Matías Quiñones
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Casilla 160-C, Concepción, Chile
| | - Jaime Cofre
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Casilla 160-C, Concepción, Chile
| | - José Benítez
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Casilla 160-C, Concepción, Chile
| | - David García
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Casilla 160-C, Concepción, Chile
| | - Nicol Romero
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Casilla 160-C, Concepción, Chile
| | - Arlette González
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Casilla 160-C, Concepción, Chile
| | - Nelson Carvajal
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Casilla 160-C, Concepción, Chile
| | - María García
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Casilla 160-C, Concepción, Chile
| | - Vasthi López
- Departamento de Ciencias Biomedicas, Universidad Católica del Norte, Coquimbo, Chile
| | - Gerhard Schenk
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Elena Uribe
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Casilla 160-C, Concepción, Chile.
| |
Collapse
|
10
|
Mitić N, Miraula M, Selleck C, Hadler KS, Uribe E, Pedroso MM, Schenk G. Catalytic mechanisms of metallohydrolases containing two metal ions. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2014; 97:49-81. [PMID: 25458355 DOI: 10.1016/bs.apcsb.2014.07.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
At least one-third of enzymes contain metal ions as cofactors necessary for a diverse range of catalytic activities. In the case of polymetallic enzymes (i.e., two or more metal ions involved in catalysis), the presence of two (or more) closely spaced metal ions gives an additional advantage in terms of (i) charge delocalisation, (ii) smaller activation barriers, (iii) the ability to bind larger substrates, (iv) enhanced electrostatic activation of substrates, and (v) decreased transition-state energies. Among this group of proteins, enzymes that catalyze the hydrolysis of ester and amide bonds form a very prominent family, the metallohydrolases. These enzymes are involved in a multitude of biological functions, and an increasing number of them gain attention for translational research in medicine and biotechnology. Their functional versatility and catalytic proficiency are largely due to the presence of metal ions in their active sites. In this chapter, we thus discuss and compare the reaction mechanisms of several closely related enzymes with a view to highlighting the functional diversity bestowed upon them by their metal ion cofactors.
Collapse
Affiliation(s)
- Nataša Mitić
- Department of Chemistry, National University of Ireland, Maynooth, Maynooth, Co. Kildare, Ireland.
| | - Manfredi Miraula
- Department of Chemistry, National University of Ireland, Maynooth, Maynooth, Co. Kildare, Ireland; School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Christopher Selleck
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Kieran S Hadler
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Elena Uribe
- Department of Biochemistry and Molecular Biology, University of Concepción, Concepción, Chile
| | - Marcelo M Pedroso
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Gerhard Schenk
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia.
| |
Collapse
|
11
|
Evidence for an inhibitory LIM domain in a rat brain agmatinase-like protein. Arch Biochem Biophys 2011; 512:107-10. [DOI: 10.1016/j.abb.2011.05.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Revised: 05/06/2011] [Accepted: 05/08/2011] [Indexed: 11/16/2022]
|
12
|
Uribe E, Salas M, Enríquez S, Orellana MS, Carvajal N. Cloning and functional expression of a rodent brain cDNA encoding a novel protein with agmatinase activity, but not belonging to the arginase family. Arch Biochem Biophys 2007; 461:146-50. [PMID: 17291445 DOI: 10.1016/j.abb.2007.01.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2006] [Indexed: 11/22/2022]
Abstract
A rat brain cDNA encoding for a novel protein with agmatinase activity was cloned and functionally expressed. The protein was expressed as a histidine-tagged fusion product with a molecular weight of about 63 kDa. Agmatine hydrolysis was strictly dependent on Mn(2+); K(m) and k(cat) values were 2.5+/-0.2 mM and 0.8+/-0.2 s(-1), respectively. The product putrescine was a linear competitive inhibitor (K(i)=5+/-0.5 mM). The substrate specificity, metal ion requirement and pH optimum (9.5) coincide with those reported for Escherichia coli agmatinase, the best characterized of the agmatinases. However, as indicated by the k(cat)/K(m) (320 M(-1)s(-1)), the recombinant protein was about 290-fold less efficient than the bacterial enzyme. The deduced amino sequence revealed great differences with all known agmatinases, thus excluding the protein from the arginase family. It was, however, highly identical (>85%) to the predicted sequences for fragments of hypothetical or unnamed LIM domain-containing proteins. As a suggestion, the agmatinase activity is adscribed to a protein with an active site that promiscuously catalyze a reaction other than the one it evolved to catalyze.
Collapse
Affiliation(s)
- Elena Uribe
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Casilla 160-C, Concepción, Chile
| | | | | | | | | |
Collapse
|
13
|
Alarcón R, Orellana MS, Neira B, Uribe E, García JR, Carvajal N. Mutational analysis of substrate recognition by human arginase type I − agmatinase activity of the N130D variant. FEBS J 2006; 273:5625-31. [PMID: 17212779 DOI: 10.1111/j.1742-4658.2006.05551.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Upon mutation of Asn130 to aspartate, the catalytic activity of human arginase I was reduced to approximately 17% of wild-type activity, the Km value for arginine was increased approximately 9-fold, and the kcat/Km value was reduced approximately 50-fold. The kinetic properties were much less affected by replacement of Asn130 with glutamine. In contrast with the wild-type and N130Q enzymes, the N130D variant was active not only on arginine but also on its decarboxylated derivative, agmatine. Moreover, it exhibited no preferential substrate specificity for arginine over agmatine (kcat/Km values of 2.48 x 10(3) M(-1) x s(-1) and 2.14 x 10(3) M(-1) x s(-1), respectively). After dialysis against EDTA and assay in the absence of added Mn2+, the N130D mutant enzyme was inactive, whereas about 50% full activity was expressed by the wild-type and N130Q variants. Mutations were not accompanied by changes in the tryptophan fluorescence properties, thermal stability or chromatographic behavior of the enzyme. An active site conformational change is proposed as an explanation for the altered substrate specificity and low catalytic efficiency of the N130D variant.
Collapse
Affiliation(s)
- Ricardo Alarcón
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Chile
| | | | | | | | | | | |
Collapse
|