1
|
Bugnola M, Shen K, Haviv E, Neumann R. Reductive Electrochemical Activation of Molecular Oxygen Catalyzed by an Iron-Tungstate Oxide Capsule: Reactivity Studies Consistent with Compound I Type Oxidants. ACS Catal 2020. [DOI: 10.1021/acscatal.0c00897] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Marco Bugnola
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Kaiji Shen
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Eynat Haviv
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Ronny Neumann
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
2
|
Zhang W, Hollmann F. Nonconventional regeneration of redox enzymes - a practical approach for organic synthesis? Chem Commun (Camb) 2018; 54:7281-7289. [PMID: 29714371 DOI: 10.1039/c8cc02219d] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Oxidoreductases have become useful tools in the hands of chemists to perform selective and mild oxidation and reduction reactions. Instead of mimicking native catalytic cycles, generally involving costly and unstable nicotinamide cofactors, more direct, NAD(P)-independent methodologies are being developed. The promise of these approaches not only lies with simpler and cheaper reaction schemes but also with higher selectivity as compared to whole cell approaches and their mimics.
Collapse
Affiliation(s)
- Wuyuan Zhang
- Delft University of Technology, van der Maasweg 9, 2629HZ Delft, The Netherlands.
| | | |
Collapse
|
3
|
Bugnola M, Carmieli R, Neumann R. Aerobic Electrochemical Oxygenation of Light Hydrocarbons Catalyzed by an Iron–Tungsten Oxide Molecular Capsule. ACS Catal 2018. [DOI: 10.1021/acscatal.8b00477] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Marco Bugnola
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Raanan Carmieli
- Department for Chemical Research Support, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Ronny Neumann
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
4
|
Li SW, Zhang X, Sheng GP. Silver nanoparticles formation by extracellular polymeric substances (EPS) from electroactive bacteria. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:8627-8633. [PMID: 26797954 DOI: 10.1007/s11356-016-6105-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 01/11/2016] [Indexed: 06/05/2023]
Abstract
Microbial extracellular polymeric substances (EPS) excreted from microorganisms were a complex natural biological polymer mixture of proteins and polysaccharides, which played an important roles in the transport of metals, such as Ag(+). Electroactive bacteria, is an important class of environmental microorganisms, which can use iron or manganese mineral as terminal electron acceptors to generate energy for biosynthesis and cell maintenance. In this work, the EPS extracted of three electroactive bacteria (Shewanella oneidensis, Aeromonas hydrophila, and Pseudomonas putida) were used for reducing Ag(+) and forming silver nanoparticles (AgNPs). Results showed that all the three microbial EPS could reduce Ag(+) to AgNPs. The formed AgNPs were characterized in depth by the UV-visible spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and high-resolution transmission electron microscopy. The main components in the EPS from the three electroactive bacteria were analyzed. The presence of cytochrome c in these EPS was confirmed, and they were found to contribute to the reduction of Ag(+) to AgNPs. The results indicated that the EPS of electroactive bacteria could act as a reductant for AgNPs synthesis and could provide new information to understand the fate of metals and their metal nanoparticles in the natural environments.
Collapse
Affiliation(s)
- Shan-Wei Li
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Xing Zhang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Guo-Ping Sheng
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China.
| |
Collapse
|
5
|
Park JH, Lee SH, Cha GS, Choi DS, Nam DH, Lee JH, Lee JK, Yun CH, Jeong KJ, Park CB. Cofactor-free light-driven whole-cell cytochrome P450 catalysis. Angew Chem Int Ed Engl 2014; 54:969-73. [PMID: 25430544 DOI: 10.1002/anie.201410059] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Indexed: 11/11/2022]
Abstract
Cytochromes P450 can catalyze various regioselective and stereospecific oxidation reactions of non-functionalized hydrocarbons. Here, we have designed a novel light-driven platform for cofactor-free, whole-cell P450 photo-biocatalysis using eosin Y (EY) as a photosensitizer. EY can easily enter into the cytoplasm of Escherichia coli and bind specifically to the heme domain of P450. The catalytic turnover of P450 was mediated through the direct transfer of photoinduced electrons from the photosensitized EY to the P450 heme domain under visible light illumination. The photoactivation of the P450 catalytic cycle in the absence of cofactors and redox partners is successfully conducted using many bacterial P450s (variants of P450 BM3) and human P450s (CYPs 1A1, 1A2, 1B1, 2A6, 2E1, and 3A4) for the bioconversion of different substrates, including marketed drugs (simvastatin, lovastatin, and omeprazole) and a steroid (17β-estradiol), to demonstrate the general applicability of the light-driven, cofactor-free system.
Collapse
Affiliation(s)
- Jong Hyun Park
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, 335 Science Road, Daejeon 305-701 (Republic of Korea)
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Park JH, Lee SH, Cha GS, Choi DS, Nam DH, Lee JH, Lee JK, Yun CH, Jeong KJ, Park CB. Cofactor-Free Light-Driven Whole-Cell Cytochrome P450 Catalysis. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201410059] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
7
|
|
8
|
Electrochemistry of mammalian cytochrome P450 2B4 indicates tunable thermodynamic parameters in surfactant films. J Inorg Biochem 2013; 129:30-4. [PMID: 24013063 DOI: 10.1016/j.jinorgbio.2013.07.039] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 07/28/2013] [Accepted: 07/29/2013] [Indexed: 11/23/2022]
Abstract
Electrochemical methods continue to present an attractive means for achieving in vitro biocatalysis with cytochromes P450; however understanding fully the nature of electrode-bound P450 remains elusive. Herein we report thermodynamic parameters using electrochemical analysis of full-length mammalian microsomal cytochrome P450 2B4 (CYP 2B4) in didodecyldimethylammonium bromide (DDAB) surfactant films. Electronic absorption spectra of CYP 2B4-DDAB films on silica slides reveal an absorption maximum at 418nm, characteristic of low-spin, six-coordinate, water-ligated Fe(III) heme in P450. The Fe(III/II) and Fe(II/I) redox couples (E1/2) of substrate-free CYP 2B4 measured by cyclic voltammetry are -0.23V and -1.02V (vs. SCE, or 14mV and -776mV vs. NHE) at 21°C. The standard heterogeneous rate constant for electron transfer from the electrode to the heme for the Fe(III/II) couple was estimated at 170s(-1). Experiments indicate that the system is capable of catalytic reduction of dioxygen, however substrate oxidation was not observed. From the variation of E1/2 with temperature (18-40°C), we have measured entropy and enthalpy changes that accompany heme reduction, -151Jmol(-1)K(-1) and -46kJmol(-1), respectfully. The corresponding entropy and enthalpy values are less for the six-coordinate low-spin, imidazole-ligated enzyme (-59Jmol(-1)K(-1) and -18kJmol(-1)), consistent with limited conformational changes upon reduction. These thermodynamic parameters are comparable to those measured for bacterial P450 from Bacillus megaterium (CYP BM3), confirming our prior reports that the surfactant environment exerts a strong influence on the redox properties of the heme.
Collapse
|
9
|
Jung C. The mystery of cytochrome P450 Compound I. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2011; 1814:46-57. [DOI: 10.1016/j.bbapap.2010.06.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Revised: 05/31/2010] [Accepted: 06/04/2010] [Indexed: 10/19/2022]
|
10
|
Hollmann F, Arends I, Buehler K. Biocatalytic Redox Reactions for Organic Synthesis: Nonconventional Regeneration Methods. ChemCatChem 2010. [DOI: 10.1002/cctc.201000069] [Citation(s) in RCA: 206] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
11
|
Rajbongshi J, Das DK, Mazumdar S. Direct electrochemistry of dinuclear CuA fragment from cytochrome c oxidase of Thermus thermophilus at surfactant modified glassy carbon electrode. Electrochim Acta 2010. [DOI: 10.1016/j.electacta.2010.02.045] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
12
|
Rudakov YO, Shumyantseva VV, Bulko TV, Suprun EV, Kuznetsova GP, Samenkova NF, Archakov AI. Stoichiometry of electrocatalytic cycle of cytochrome P450 2B4. J Inorg Biochem 2008; 102:2020-5. [DOI: 10.1016/j.jinorgbio.2008.08.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2008] [Revised: 08/07/2008] [Accepted: 08/18/2008] [Indexed: 10/21/2022]
|
13
|
Léger C, Bertrand P. Direct Electrochemistry of Redox Enzymes as a Tool for Mechanistic Studies. Chem Rev 2008; 108:2379-438. [DOI: 10.1021/cr0680742] [Citation(s) in RCA: 594] [Impact Index Per Article: 37.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
14
|
Wiwatchaiwong S, Matsumura H, Nakamura N, Yohda M, Ohno H. Spectroscopic and Electrochemical Characterization of Cytochrome P450st-DDAB Films on a Plastic-Formed Carbon Electrode. ELECTROANAL 2007. [DOI: 10.1002/elan.200603764] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|