1
|
Gupta S, Sharma P, Jain K, Chandra B, Mallojjala SC, Draksharapu A. Proton-assisted activation of a Mn III-OOH for aromatic C-H hydroxylation through a putative [Mn VO] species. Chem Commun (Camb) 2024; 60:6520-6523. [PMID: 38836330 DOI: 10.1039/d4cc00798k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Adding HClO4 to [(BnTPEN)MnIII-OO]+ in MeOH generates a short-lived MnIII-OOH species, which converts to a putative MnVO species. The potent MnVO species in MeCN oxidizes the pendant phenyl ring of the ligand in an intramolecular fashion. The addition of benzene causes the formation of (BnTPEN)MnIII-phenolate. These findings suggest that high valent Mn species have the potential to catalyze challenging aromatic hydroxylation reactions.
Collapse
Affiliation(s)
- Sikha Gupta
- Southern Laboratories-208A, Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, India.
| | - Parkhi Sharma
- Southern Laboratories-208A, Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, India.
| | - Khyati Jain
- Southern Laboratories-208A, Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, India.
| | - Bittu Chandra
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | - Apparao Draksharapu
- Southern Laboratories-208A, Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, India.
| |
Collapse
|
2
|
Flesch S, Domenianni LI, Vöhringer P. Primary processes of the archetypal model complex azido(porphinato)iron(III) from ultrafast vibrational-electronic spectroscopy. J Chem Phys 2024; 160:214310. [PMID: 38836452 DOI: 10.1063/5.0204617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 05/17/2024] [Indexed: 06/06/2024] Open
Abstract
Azidoiron complexes serve as valuable photochemical precursors for catalytically active species containing high-valent iron. In bioinorganic chemistry, azido(tetraphenylporphinato)iron(III), i.e., [FeIII(tpp)(N3)] with tpp = 5, 10, 15, 20-tetraphenylporphyrin-21, 23-diido, constitutes the archetypal model system that was used to access for the first time the terminal nitridoiron core, FeV ≡ N, in the biomimetic redox-non-innocent ligand environment. So far, the light-induced dynamics leading to the oxidation of the metal and the release of dinitrogen from the N3-ligand have only been studied for precursors featuring redox-innocent auxiliary ligands that simplify the electronic structure change accompanying the photo-transformation. Here, we monitored the primary events of the above paradigmatic complex, following its optical excitation in the ultraviolet-to-visible spectral range using femtosecond spectroscopy with probing in both the UV-vis and mid-infrared regions. Following ultrafast Soret-excitation at 400 nm, the complex relaxes to the lowest excited sextet state by a first internal conversion in less than 200 fs. The excited state then undergoes vibrational relaxation on a time scale of roughly 2 ps before internally converting yet again to recover the sextet electronic ground state within 19.5 ps. Spectroscopic evidence is obtained neither for a transient occupation of the energetically lowest metal-centered state, 41A1, nor for vibrational relaxation in the ground-state. The primary processes seen here are thus in contrast to those previously derived from ultrafast UV-pump/vis-probe and UV-pump/XANES-probe spectroscopies for the halide congener [FeIII(tpp)(Cl)]. Any photochemical transformation of the complex arises from two-photon-induced dynamics.
Collapse
Affiliation(s)
- Stefan Flesch
- Clausius-Institut für Physikalische und Theoretische Chemie, Rheinische Friedrich-Wilhelms-Universität, Wegelerstraße 12, 53115 Bonn, Germany
| | - Luis I Domenianni
- Clausius-Institut für Physikalische und Theoretische Chemie, Rheinische Friedrich-Wilhelms-Universität, Wegelerstraße 12, 53115 Bonn, Germany
| | - Peter Vöhringer
- Clausius-Institut für Physikalische und Theoretische Chemie, Rheinische Friedrich-Wilhelms-Universität, Wegelerstraße 12, 53115 Bonn, Germany
| |
Collapse
|
3
|
Thomas J, Mokkawes T, Senft L, Dey A, Gordon JB, Ivanovic-Burmazovic I, de Visser SP, Goldberg DP. Axial Ligation Impedes Proton-Coupled Electron-Transfer Reactivity of a Synthetic Compound-I Analogue. J Am Chem Soc 2024; 146:12338-12354. [PMID: 38669456 PMCID: PMC11305010 DOI: 10.1021/jacs.3c08950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
The nature of the axial ligand in high-valent iron-oxo heme enzyme intermediates and related synthetic catalysts is a critical structural element for controlling proton-coupled electron-transfer (PCET) reactivity of these species. Herein, we describe the generation and characterization of three new 6-coordinate, iron(IV)-oxo porphyrinoid-π-cation-radical complexes and report their PCET reactivity together with a previously published 5-coordinate analogue, FeIV(O)(TBP8Cz+•) (TBP8Cz = octakis(p-tert-butylphenyl)corrolazinato3-) (2) (Cho, K. A high-valent iron-oxo corrolazine activates C-H bonds via hydrogen-atom transfer. J. Am. Chem. Soc. 2012, 134, 7392-7399). The new complexes FeIV(O)(TBP8Cz+•)(L) (L = 1-methyl imidazole (1-MeIm) (4a), 4-dimethylaminopyridine (DMAP) (4b), cyanide (CN-)(4c)) can be generated from either oxidation of the ferric precursors or by addition of L to the Compound-I (Cpd-I) analogue at low temperatures. These complexes were characterized by UV-vis, electron paramagnetic resonance (EPR), and Mössbauer spectroscopies, and cryospray ionization mass spectrometry (CSI-MS). Kinetic studies using 4-OMe-TEMPOH as a test substrate indicate that coordination of a sixth axial ligand dramatically lowers the PCET reactivity of the Cpd-I analogue (rates up to 7000 times slower). Extensive density functional theory (DFT) calculations together with the experimental data show that the trend in reactivity with the axial ligands does not correlate with the thermodynamic driving force for these reactions or the calculated strengths of the O-H bonds being formed in the FeIV(O-H) products, pointing to non-Bell-Evans-Polanyi behavior. However, the PCET reactivity does follow a trend with the bracketed reduction potential of Cpd-I analogues and calculated electron affinities. The combined data suggest a concerted mechanism (a concerted proton electron transfer (CPET)) and an asynchronous movement of the electron/proton pair in the transition state.
Collapse
Affiliation(s)
- Jithin Thomas
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Thirakorn Mokkawes
- The Manchester Institute of Biotechnology and Department of Chemical Engineering, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Laura Senft
- Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstr., 5-13, Haus D, 81377 München, Germany
| | - Aniruddha Dey
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Jesse B Gordon
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Ivana Ivanovic-Burmazovic
- Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstr., 5-13, Haus D, 81377 München, Germany
| | - Sam P de Visser
- The Manchester Institute of Biotechnology and Department of Chemical Engineering, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - David P Goldberg
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| |
Collapse
|
4
|
Chen J, Yang T, Feng S, Wang L, Xie J, Liu Y. C-H Bond Activation by a Seven-Coordinate Bipyridine-Bipyrazole Ruthenium(IV) Oxo Complex. Inorg Chem 2024; 63:4790-4796. [PMID: 38422551 DOI: 10.1021/acs.inorgchem.4c00223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Ruthenium-oxo species with high coordination numbers have long been proposed as active intermediates in catalytic oxidation chemistry. By employing a tetradentate bipyridine-bipyrazole ligand, we herein reported the synthesis of a seven-coordinate (CN7) ruthenium(IV) oxo complex, [RuIV(tpz)(pic)2(O)]2+ (RuIVO) (tpz = 6,6'-di(1H-pyrazol-1-yl)-2,2'-bipyridine, pic = 4-picoline), which exhibits high activity toward the oxidation of alkylaromatic hydrocarbons. The large kinetic isotope effects (KIE) for the oxidation of DHA/DHA-d4 (KIE = 10.3 ± 0.1) and xanthene/xanthene-d2 (KIE = 17.2 ± 0.1), as well as the linear relationship between log (rate constants) and bond dissociation energies of alkylaromatics, confirmed a mechanism of hydrogen atom abstraction.
Collapse
Affiliation(s)
- Jing Chen
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, P. R. China
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, P. R. China
| | - Tingting Yang
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Sushan Feng
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, P. R. China
| | - Leiyu Wang
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Jianhui Xie
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Yingying Liu
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, P. R. China
| |
Collapse
|
5
|
Manesis AC, Slater JW, Cantave K, Martin Bollinger J, Krebs C, Rosenzweig AC. Capturing a bis-Fe(IV) State in Methylosinus trichosporium OB3b MbnH. Biochemistry 2023; 62:1082-1092. [PMID: 36812111 PMCID: PMC10083075 DOI: 10.1021/acs.biochem.3c00021] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
The diheme bacterial cytochrome c peroxidase (bCcP)/MauG superfamily is a diverse set of enzymes that remains largely uncharacterized. One recently discovered member, MbnH, converts a tryptophan residue in its substrate protein, MbnP, to kynurenine. Here we show that upon reaction with H2O2, MbnH forms a bis-Fe(IV) intermediate, a state previously detected in just two other enzymes, MauG and BthA. Using absorption, Mössbauer, and electron paramagnetic resonance (EPR) spectroscopies coupled with kinetic analysis, we characterized the bis-Fe(IV) state of MbnH and determined that this intermediate decays back to the diferric state in the absence of MbnP substrate. In the absence of MbnP substrate, MbnH can also detoxify H2O2 to prevent oxidative self damage, unlike MauG, which has long been viewed as the prototype for bis-Fe(IV) forming enzymes. MbnH performs a different reaction from MauG, while the role of BthA remains unclear. All three enzymes can form a bis-Fe(IV) intermediate but within distinct kinetic regimes. The study of MbnH significantly expands our knowledge of enzymes that form this species. Computational and structural analyses indicate that electron transfer between the two heme groups in MbnH and between MbnH and the target tryptophan in MbnP likely occurs via a hole-hopping mechanism involving intervening tryptophan residues. These findings set the stage for discovery of additional functional and mechanistic diversity within the bCcP/MauG superfamily.
Collapse
Affiliation(s)
- Anastasia C Manesis
- Departments of Molecular Biosciences and of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Jeffrey W Slater
- Department of Chemistry and Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Kenny Cantave
- Departments of Molecular Biosciences and of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - J Martin Bollinger
- Department of Chemistry and Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Carsten Krebs
- Department of Chemistry and Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Amy C Rosenzweig
- Departments of Molecular Biosciences and of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
6
|
Sil D, Khan FST, Rath SP. Effect of intermacrocyclic interactions: Modulation of metal spin-state in oxo/hydroxo/fluoro-bridged diiron(III)/dimanganese(III) porphyrin dimers. ADVANCES IN INORGANIC CHEMISTRY 2023. [DOI: 10.1016/bs.adioch.2022.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
7
|
Omura K, Aiba Y, Suzuki K, Ariyasu S, Sugimoto H, Shoji O. A P450 Harboring Manganese Protoporphyrin IX Generates a Manganese Analogue of Compound I by Activating Dioxygen. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Keita Omura
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Yuichiro Aiba
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Kazuto Suzuki
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Shinya Ariyasu
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Hiroshi Sugimoto
- RIKEN SPring-8 Center, Harima Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
- Core Research for Evolutional Science and Technology (Japan), Science and Technology Agency, 5 Sanbancho, Chiyoda-ku, Tokyo 102-0075, Japan
| | - Osami Shoji
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
- Core Research for Evolutional Science and Technology (Japan), Science and Technology Agency, 5 Sanbancho, Chiyoda-ku, Tokyo 102-0075, Japan
| |
Collapse
|
8
|
Mohammed TP, Sankaralingam M. Reactivities of high valent manganese-oxo porphyrins in aqueous medium. Tetrahedron 2022. [DOI: 10.1016/j.tet.2021.132483] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
Farley GW, Siegler MA, Goldberg DP. Halogen Transfer to Carbon Radicals by High-Valent Iron Chloride and Iron Fluoride Corroles. Inorg Chem 2021; 60:17288-17302. [PMID: 34709780 DOI: 10.1021/acs.inorgchem.1c02666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
High-valent iron halide corroles were examined to determine their reactivity with carbon radicals and their ability to undergo radical rebound-like processes. Beginning with Fe(Cl)(ttppc) (1) (ttppc = 5,10,15-tris(2,4,6-triphenylphenyl)corrolato3-), the new iron corroles Fe(OTf)(ttppc) (2), Fe(OTf)(ttppc)(AgOTf) (3), and Fe(F)(ttppc) (4) were synthesized. Complexes 3 and 4 are the first iron triflate and iron fluoride corroles to be structurally characterized by single crystal X-ray diffraction. The structure of 3 reveals an AgI-pyrrole (η2-π) interaction. The Fe(Cl)(ttppc) and Fe(F)(ttppc) complexes undergo halogen transfer to triarylmethyl radicals, and kinetic analysis of the reaction between (p-OMe-C6H4)3C• and 1 gave k = 1.34(3) × 103 M-1 s-1 at 23 °C and 2.2(2) M-1 s-1 at -60 °C, ΔH⧧ = +9.8(3) kcal mol-1, and ΔS⧧ = -14(1) cal mol-1 K-1 through an Eyring analysis. Complex 4 is significantly more reactive, giving k = 1.16(6) × 105 M-1 s-1 at 23 °C. The data point to a concerted mechanism and show the trend X = F- > Cl- > OH- for Fe(X)(ttppc). This study provides mechanistic insights into halogen rebound for an iron porphyrinoid complex.
Collapse
Affiliation(s)
- Geoffrey W Farley
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Maxime A Siegler
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - David P Goldberg
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| |
Collapse
|
10
|
Cummins DC, Alvarado JG, Zaragoza JPT, Effendy Mubarak MQ, Lin YT, de Visser SP, Goldberg DP. Hydroxyl Transfer to Carbon Radicals by Mn(OH) vs Fe(OH) Corrole Complexes. Inorg Chem 2020; 59:16053-16064. [PMID: 33047596 DOI: 10.1021/acs.inorgchem.0c02640] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The transfer of •OH from metal-hydroxo species to carbon radicals (R•) to give hydroxylated products (ROH) is a fundamental process in metal-mediated heme and nonheme C-H bond oxidations. This step, often referred to as the hydroxyl "rebound" step, is typically very fast, making direct study of this process challenging if not impossible. In this report, we describe the reactions of the synthetic models M(OH)(ttppc) (M = Fe (1), Mn (3); ttppc = 5,10,15-tris(2,4,6-triphenyl)phenyl corrolato3-) with a series of triphenylmethyl carbon radical (R•) derivatives ((4-X-C6H4)3C•; X = OMe, tBu, Ph, Cl, CN) to give the one-electron reduced MIII(ttppc) complexes and ROH products. Rate constants for 3 for the different radicals ranged from 11.4(1) to 58.4(2) M-1 s-1, as compared to those for 1, which fall between 0.74(2) and 357(4) M-1 s-1. Linear correlations for Hammett and Marcus plots for both Mn and Fe were observed, and the small magnitudes of the slopes for both correlations imply a concerted •OH transfer reaction for both metals. Eyring analyses of reactions for 1 and 3 with (4-X-C6H4)3C• (X = tBu, CN) also give good linear correlations, and a comparison of the resulting activation parameters highlight the importance of entropy in these •OH transfer reactions. Density functional theory calculations of the reaction profiles show a concerted process with one transition state for all radicals investigated and help to explain the electronic features of the OH rebound process.
Collapse
Affiliation(s)
- Daniel C Cummins
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Jessica G Alvarado
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Jan Paulo T Zaragoza
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Muhammad Qadri Effendy Mubarak
- Manchester Institute of Biotechnology and Department of Chemical Engineering and Analytical Science, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Yen-Ting Lin
- Manchester Institute of Biotechnology and Department of Chemical Engineering and Analytical Science, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Sam P de Visser
- Manchester Institute of Biotechnology and Department of Chemical Engineering and Analytical Science, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - David P Goldberg
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| |
Collapse
|
11
|
Sitte E, Senge MO. The Red Color of Life Transformed - Synthetic Advances and Emerging Applications of Protoporphyrin IX in Chemical Biology. European J Org Chem 2020; 2020:3171-3191. [PMID: 32612451 PMCID: PMC7319466 DOI: 10.1002/ejoc.202000074] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Indexed: 01/10/2023]
Abstract
Protoporphyrin IX (PPIX) is the porphyrin scaffold of heme b, a ubiquitous prosthetic group of proteins responsible for oxygen binding (hemoglobin, myoglobin), electron transfer (cytochrome c) and catalysis (cytochrome P450, catalases, peroxidases). PPIX and its metallated derivatives frequently find application as therapeutic agents, imaging tools, catalysts, sensors and in light harvesting. The vast toolkit of accessible porphyrin functionalization reactions enables easy synthetic modification of PPIX to meet the requirements for its multiple uses. In the past few years, particular interest has arisen in exploiting the interaction of PPIX and its synthetic derivatives with biomolecules such as DNA and heme-binding proteins to evolve molecular devices with new functions as well as to uncover potential therapeutic toeholds. This review strives to shine a light on the most recent developments in the synthetic chemistry of PPIX and its uses in selected fields of chemical biology.
Collapse
Affiliation(s)
- Elisabeth Sitte
- School of ChemistryTrinity College DublinThe University of DublinTrinity Biomedical Sciences Institute152‐160 Pearse Street2DublinIreland
| | - Mathias O. Senge
- School of ChemistryTrinity College DublinThe University of DublinTrinity Biomedical Sciences Institute152‐160 Pearse Street2DublinIreland
- Institute for Advanced Study (TUM‐IAS)Technische Universität MünchenLichtenberg‐Str. 2a85748GarchingGermany
| |
Collapse
|
12
|
Sharma N, Lee Y, Nam W, Fukuzumi S. Photoinduced Generation of Superoxidants for the Oxidation of Substrates with High C−H Bond Dissociation Energies. CHEMPHOTOCHEM 2019. [DOI: 10.1002/cptc.201900219] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Namita Sharma
- Department of Chemistry and Nano ScienceEwha Womans University Seoul 03760 Korea
| | - Yong‐Min Lee
- Department of Chemistry and Nano ScienceEwha Womans University Seoul 03760 Korea
| | - Wonwoo Nam
- Department of Chemistry and Nano ScienceEwha Womans University Seoul 03760 Korea
| | - Shunichi Fukuzumi
- Department of Chemistry and Nano ScienceEwha Womans University Seoul 03760 Korea
- Graduate School of Science and EngineeringMeijo University, Nagoya Aichi 468-8502 Japan
| |
Collapse
|
13
|
Zaragoza JPT, Cummins DC, Mubarak MQE, Siegler MA, de Visser SP, Goldberg DP. Hydrogen Atom Abstraction by High-Valent Fe(OH) versus Mn(OH) Porphyrinoid Complexes: Mechanistic Insights from Experimental and Computational Studies. Inorg Chem 2019; 58:16761-16770. [PMID: 31804814 DOI: 10.1021/acs.inorgchem.9b02923] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
High-valent metal-hydroxide species have been implicated as key intermediates in hydroxylation chemistry catalyzed by heme monooxygenases such as the cytochrome P450s. However, in some classes of P450s, a bifurcation from the typical oxygen rebound pathway is observed, wherein the FeIV(OH)(porphyrin) species carries out a net hydrogen atom transfer reaction to form alkene metabolites. In this work, we examine the hydrogen atom transfer (HAT) reactivity of FeIV(OH)(ttppc) (1), ttppc = 5,10,15-tris(2,4,6-triphenyl)-phenyl corrole, toward substituted phenol derivatives. The iron hydroxide complex 1 reacts with a series of para-substituted 2,6-di-tert-butylphenol derivatives (4-X-2,6-DTBP; X = OMe, Me, Et, H, Ac), with second-order rate constants k2 = 3.6(1)-1.21(3) × 104 M-1 s-1 and yielding linear Hammett and Marcus plot correlations. It is concluded that the rate-determining step for O-H cleavage occurs through a concerted HAT mechanism, based on mechanistic analyses that include a KIE = 2.9(1) and DFT calculations. Comparison of the HAT reactivity of 1 to the analogous Mn complex, MnIV(OH)(ttppc), where only the central metal ion is different, indicates a faster HAT reaction and a steeper Hammett slope for 1. The O-H bond dissociation energy (BDE) of the MIII(HO-H) complexes were estimated from a kinetic analysis to be 85 and 89 kcal mol-1 for Mn and Fe, respectively. These estimated BDEs are closely reproduced by DFT calculations and are discussed in the context of how they influence the overall H atom transfer reactivity.
Collapse
Affiliation(s)
- Jan Paulo T Zaragoza
- Department of Chemistry , The Johns Hopkins University , 3400 North Charles Street , Baltimore , Maryland 21218 , United States
| | - Daniel C Cummins
- Department of Chemistry , The Johns Hopkins University , 3400 North Charles Street , Baltimore , Maryland 21218 , United States
| | - M Qadri E Mubarak
- The Manchester Institute of Biotechnology and Department of Chemical Engineering and Analytical Science , The University of Manchester , 131 Princess Street , Manchester M1 7DN , United Kingdom
| | - Maxime A Siegler
- Department of Chemistry , The Johns Hopkins University , 3400 North Charles Street , Baltimore , Maryland 21218 , United States
| | - Sam P de Visser
- The Manchester Institute of Biotechnology and Department of Chemical Engineering and Analytical Science , The University of Manchester , 131 Princess Street , Manchester M1 7DN , United Kingdom
| | - David P Goldberg
- Department of Chemistry , The Johns Hopkins University , 3400 North Charles Street , Baltimore , Maryland 21218 , United States
| |
Collapse
|
14
|
Mondal S, Naik PK, Adha JK, Kar S. Synthesis, characterization, and reactivities of high valent metal–corrole (M = Cr, Mn, and Fe) complexes. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.213043] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
15
|
Garai A, Sobottka S, Schepper R, Sinha W, Bauer M, Sarkar B, Kar S. Chromium Complexes with Oxido and Corrolato Ligands: Metal-Based Redox Processes versus Ligand Non-Innocence. Chemistry 2018; 24:12613-12622. [PMID: 29882607 DOI: 10.1002/chem.201801452] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 06/06/2018] [Indexed: 11/09/2022]
Abstract
Metal- versus ligand-centered redox processes and the effects of substituents on the ligands on the spectroscopic properties of the metal complexes are at the heart of research on metal complexes with non-innocent ligands. This work presents three examples of chromium complexes that contain both oxido and corrolato ligands, with the substituents on the corrolato ligands being different in the three cases. Combined X-ray crystallographic, electrochemical, UV/Vis/NIR/EPR spectroelectrochemical, and EXAFS/XANES measurements, together with DFT calculations, have been used to probe the complexes in three different redox forms. This combined approach makes it possible to address questions related to chromium- versus corrolato-centered redox processes, and the accessibility (or not) of CrIV , CrV , and CrVI in these complexes, as well as their spin states. To the best of our knowledge, these are the first EXAFS/XANES investigations on Cr-corrolato complexes in different redox forms, and hence these data should set benchmarks for future investigations on such complexes by this method.
Collapse
Affiliation(s)
- Antara Garai
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, Khordha, 752050, India
| | - Sebastian Sobottka
- Institut für Chemie und Biochemie, Anorganische Chemie, Freie Universität Berlin, Fabeckstraße 34-36, 14195, Berlin, Germany
| | - Rahel Schepper
- Universität Paderborn, Naturwissenschaftliche Fakultät, Department Chemie, Warburger Straße 100, 33098, Paderborn, Germany
| | - Woormileela Sinha
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, Khordha, 752050, India
| | - Matthias Bauer
- Universität Paderborn, Naturwissenschaftliche Fakultät, Department Chemie, Warburger Straße 100, 33098, Paderborn, Germany
| | - Biprajit Sarkar
- Institut für Chemie und Biochemie, Anorganische Chemie, Freie Universität Berlin, Fabeckstraße 34-36, 14195, Berlin, Germany
| | - Sanjib Kar
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, Khordha, 752050, India.,Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, India
| |
Collapse
|
16
|
Sharma N, Jung J, Ohkubo K, Lee YM, El-Khouly ME, Nam W, Fukuzumi S. Long-Lived Photoexcited State of a Mn(IV)-Oxo Complex Binding Scandium Ions That is Capable of Hydroxylating Benzene. J Am Chem Soc 2018; 140:8405-8409. [PMID: 29906116 DOI: 10.1021/jacs.8b04904] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Photoexcitation of a MnIV-oxo complex binding scandium ions ([(Bn-TPEN)MnIV(O)]2+-(Sc(OTf)3)2) in a solvent mixture of trifluoroethanol and acetonitrile (v/v = 1:1) resulted in formation of the long-lived photoexcited state, which can hydroxylate benzene to phenol. The photohydroxylation of benzene by [(Bn-TPEN)MnIV(O)]2+-(Sc(OTf)3)2 was made possible by electron transfer from benzene to the long-lived 2 E excited state of [(Bn-TPEN)MnIV(O)]2+-(Sc(OTf)3)2 to produce a benzene radical cation, which reacted with water as revealed by laser-induced transient absorption measurements.
Collapse
Affiliation(s)
- Namita Sharma
- Department of Chemistry and Nano Science , Ewha Womans University , Seoul 03760 , Korea
| | - Jieun Jung
- Department of Chemistry and Nano Science , Ewha Womans University , Seoul 03760 , Korea.,Department of Chemistry, Graduate School of Science , Nagoya University , Chikusa , Nagoya 464-8602 , Japan
| | - Kei Ohkubo
- Department of Chemistry and Nano Science , Ewha Womans University , Seoul 03760 , Korea.,Institute for Advanced Co-Creation Studies , Osaka University , Suita , Osaka 565-0871 , Japan.,Open and Transdisciplinary Research Initiatives , Osaka University , Suita , Osaka 565-0871 , Japan
| | - Yong-Min Lee
- Department of Chemistry and Nano Science , Ewha Womans University , Seoul 03760 , Korea
| | - Mohamed E El-Khouly
- Department of Chemistry and Nano Science , Ewha Womans University , Seoul 03760 , Korea.,Department of Chemistry, Faculty of Science , Kafrelsheikh University , Kafrelsheikh 33516 , Egypt
| | - Wonwoo Nam
- Department of Chemistry and Nano Science , Ewha Womans University , Seoul 03760 , Korea.,School of Chemistry and Chemical Engineering , Shaanxi Normal University , Xi'an 710119 , People's Republic of China
| | - Shunichi Fukuzumi
- Department of Chemistry and Nano Science , Ewha Womans University , Seoul 03760 , Korea.,Faculty of Science and Engineering , Meijo University, SENTAN, Japan Science and Technology Agency (JST) , Nagoya , Aichi 468-0073 , Japan
| |
Collapse
|
17
|
Zaragoza JPT, Siegler MA, Goldberg DP. A Reactive Manganese(IV)-Hydroxide Complex: A Missing Intermediate in Hydrogen Atom Transfer by High-Valent Metal-Oxo Porphyrinoid Compounds. J Am Chem Soc 2018. [PMID: 29542921 DOI: 10.1021/jacs.8b00350] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
High-valent metal-hydroxide species are invoked as critical intermediates in both catalytic, metal-mediated O2 activation (e.g., by Fe porphyrin in Cytochrome P450) and O2 production (e.g., by the Mn cluster in Photosystem II). However, well-characterized mononuclear MIV(OH) complexes remain a rarity. Herein we describe the synthesis of MnIV(OH)(ttppc) (3) (ttppc = tris(2,4,6-triphenylphenyl) corrole), which has been characterized by X-ray diffraction (XRD). The large steric encumbrance of the ttppc ligand allowed for isolation of 3. The complexes MnV(O)(ttppc) (4) and MnIII(H2O)(ttppc) (1·H2O) were also synthesized and structurally characterized, providing a series of Mn complexes related only by the transfer of hydrogen atoms. Both 3 and 4 abstract an H atom from the O-H bond of 2,4-di- tert-butylphenol (2,4-DTBP) to give a radical coupling product in good yield (3 = 90(2)%, 4 = 91(5)%). Complex 3 reacts with 2,4-DTBP with a rate constant of k2 = 2.73(12) × 104 M-1 s-1, which is ∼3 orders of magnitude larger than 4 ( k2 = 17.4(1) M-1 s-1). Reaction of 3 with a series of para-substituted 2,6-di- tert-butylphenol derivatives (4-X-2,6-DTBP; X = OMe, Me, tBu, H) gives rate constants in the range k2 = 510(10)-36(1.4) M-1 s-1 and led to Hammett and Marcus plot correlations. Together with kinetic isotope effect measurements, it is concluded that O-H cleavage occurs by a concerted H atom transfer (HAT) mechanism and that the MnIV(OH) complex is a much more powerful H atom abstractor than the higher-valent MnV(O) complex, or even some FeIV(O) complexes.
Collapse
Affiliation(s)
- Jan Paulo T Zaragoza
- Department of Chemistry , The Johns Hopkins University , 3400 North Charles Street , Baltimore , Maryland 21218 , United States
| | - Maxime A Siegler
- Department of Chemistry , The Johns Hopkins University , 3400 North Charles Street , Baltimore , Maryland 21218 , United States
| | - David P Goldberg
- Department of Chemistry , The Johns Hopkins University , 3400 North Charles Street , Baltimore , Maryland 21218 , United States
| |
Collapse
|
18
|
Feng M, Ma Z, Crudup BF, Davidson VL. Properties of the high-spin heme of MauG are altered by binding of preMADH at the protein surface 40 Å away. FEBS Lett 2017; 591:1566-1572. [PMID: 28485817 DOI: 10.1002/1873-3468.12666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 04/28/2017] [Accepted: 05/02/2017] [Indexed: 11/09/2022]
Abstract
The diheme enzyme MauG catalyzes oxidative post-translational modifications of a protein substrate, precursor protein of methylamine dehydrogenase (preMADH), that binds to the surface of MauG. The high-spin heme iron of MauG is located 40 Å from preMADH. The ferric heme is an equilibrium of five- and six-coordinate states. PreMADH binding increases the proportion of five-coordinate heme three-fold. On reaction of MauG with H2 O2 both hemes become FeIV . In the absence of preMADH the hemes autoreduce to ferric in a multistep process involving multiple electron and proton transfers. Binding of preMADH in the absence of catalysis alters the mechanism of autoreduction of the ferryl heme. Thus, substrate binding alters the environment in the distal heme pocket of the high-spin heme over very long distance.
Collapse
Affiliation(s)
| | - Zhongxin Ma
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
| | | | - Victor L Davidson
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
| |
Collapse
|
19
|
Lopes IC, Oliveira-Brett AM. Human Cytochrome P450 (CYP1A2)-dsDNA Interactionin situEvaluation Using a dsDNA-electrochemical Biosensor. ELECTROANAL 2017. [DOI: 10.1002/elan.201600713] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Ilanna Campelo Lopes
- Chemistry Department; Faculty of Sciences and Technology; University of Coimbra; 3004-535 Coimbra Portugal
| | - Ana Maria Oliveira-Brett
- Chemistry Department; Faculty of Sciences and Technology; University of Coimbra; 3004-535 Coimbra Portugal
| |
Collapse
|
20
|
Yosca TH, Langston MC, Krest CM, Onderko EL, Grove TL, Livada J, Green MT. Spectroscopic Investigations of Catalase Compound II: Characterization of an Iron(IV) Hydroxide Intermediate in a Non-thiolate-Ligated Heme Enzyme. J Am Chem Soc 2016; 138:16016-16023. [PMID: 27960340 PMCID: PMC5987761 DOI: 10.1021/jacs.6b09693] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We report on the protonation state of Helicobacter pylori catalase compound II. UV/visible, Mössbauer, and X-ray absorption spectroscopies have been used to examine the intermediate from pH 5 to 14. We have determined that HPC-II exists in an iron(IV) hydroxide state up to pH 11. Above this pH, the iron(IV) hydroxide complex transitions to a new species (pKa = 13.1) with Mössbauer parameters that are indicative of an iron(IV)-oxo intermediate. Recently, we discussed a role for an elevated compound II pKa in diminishing the compound I reduction potential. This has the effect of shifting the thermodynamic landscape toward the two-electron chemistry that is critical for catalase function. In catalase, a diminished potential would increase the selectivity for peroxide disproportionation over off-pathway one-electron chemistry, reducing the buildup of the inactive compound II state and reducing the need for energetically expensive electron donor molecules.
Collapse
Affiliation(s)
- Timothy H. Yosca
- Departments of Chemistry & Molecular Biology and Biochemistry, University of California, Irvine, California 92697, United States
| | - Matthew C. Langston
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Courtney M. Krest
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Elizabeth L. Onderko
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Tyler L. Grove
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Jovan Livada
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Michael T. Green
- Departments of Chemistry & Molecular Biology and Biochemistry, University of California, Irvine, California 92697, United States
| |
Collapse
|
21
|
Oszajca M, Brindell M, Orzeł Ł, Dąbrowski JM, Śpiewak K, Łabuz P, Pacia M, Stochel-Gaudyn A, Macyk W, van Eldik R, Stochel G. Mechanistic studies on versatile metal-assisted hydrogen peroxide activation processes for biomedical and environmental incentives. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2016.05.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
22
|
Zhu Y, Ksibe AZ, Schäfer H, Blindauer CA, Bugg TDH, Chen Y. O2-independent demethylation of trimethylamineN-oxide by Tdm ofMethylocella silvestris. FEBS J 2016; 283:3979-3993. [DOI: 10.1111/febs.13902] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 09/09/2016] [Accepted: 09/15/2016] [Indexed: 12/11/2022]
Affiliation(s)
- Yijun Zhu
- School of Life Sciences; University of Warwick; Coventry UK
| | - Amira Z. Ksibe
- Department of Chemistry; University of Warwick; Coventry UK
| | | | | | | | - Yin Chen
- School of Life Sciences; University of Warwick; Coventry UK
| |
Collapse
|
23
|
Affiliation(s)
- Timothy H. Yosca
- Departments of Chemistry & Molecular Biology and Biochemistry; University of California-Irvine, Irvine; California 92697 USA
| | - Michael T. Green
- Departments of Chemistry & Molecular Biology and Biochemistry; University of California-Irvine, Irvine; California 92697 USA
| |
Collapse
|
24
|
Oszajca M, Franke A, Brindell M, Stochel G, van Eldik R. Redox cycling in the activation of peroxides by iron porphyrin and manganese complexes. ‘Catching’ catalytic active intermediates. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2015.01.013] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
25
|
Neu HM, Baglia RA, Goldberg DP. A Balancing Act: Stability versus Reactivity of Mn(O) Complexes. Acc Chem Res 2015; 48:2754-64. [PMID: 26352344 DOI: 10.1021/acs.accounts.5b00273] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A large class of heme and non-heme metalloenzymes utilize O2 or its derivatives (e.g., H2O2) to generate high-valent metal-oxo intermediates for performing challenging and selective oxidations. Due to their reactive nature, these intermediates are often short-lived and very difficult to characterize. Synthetic chemists have sought to prepare analogous metal-oxo complexes with ligands that impart enough stability to allow for their characterization and an examination of their inherent reactivity. The challenge in designing these molecules is to achieve a balance between their stability, which should allow for their in situ characterization or isolation, and their reactivity, in which they can still participate in interesting chemical transformations. This Account focuses on our recent efforts to generate and stabilize high-valent manganese-oxo porphyrinoid complexes and tune their reactivity in the oxidation of organic substrates. Dioxygen can be used to generate a high-valent Mn(V)(O) corrolazine (Mn(V)(O)(TBP8Cz)) by irradiation of Mn(III)(TBP8Cz) with visible light in the presence of a C-H substrate. Quantitative formation of the Mn(V)(O) complex occurs with concomitant selective hydroxylation of the benzylic substrate hexamethylbenzene. Addition of a strong H(+) donor converted this light/O2/substrate reaction from a stoichiometric to a catalytic process with modest turnovers. The addition of H(+) likely activates a transient Mn(V)(O) complex to achieve turnover, whereas in the absence of H(+), the Mn(V)(O) complex is an unreactive "dead-end" complex. Addition of anionic donors to the Mn(V)(O) complex also leads to enhanced reactivity, with a large increase in the rate of two-electron oxygen atom transfer (OAT) to thioether substrates. Spectroscopic characterization (Mn K-edge X-ray absorption and resonance Raman spectroscopies) revealed that the anionic donors (X(-)) bind to the Mn(V) ion to form six-coordinate [Mn(V)(O)(X)](-) complexes. An unusual "V-shaped" Hammett plot for the oxidation of para-substituted thioanisole derivatives suggested that six-coordinate [Mn(V)(O)(X)](-) complexes can act as both electrophiles and nucleophiles, depending on the nature of the substrate. Oxidation of the Mn(V)(O) corrolazine resulted in the in situ generation of a Mn(V)(O) π-radical cation complex, [Mn(V)(O)(TBP8Cz(•+))](+), which exhibited more than a 100-fold rate increase in the oxidation of thioethers. The addition of Lewis acids (LA; Zn(II), B(C6F5)3) to the closed-shell, diamagnetic Mn(V)(O)(TBP8Cz) stabilized a paramagnetic valence tautomer Mn(IV)(O)(TBP8Cz(•+))(LA), which was characterized as a second π-radical cation complex by NMR, EPR, UV-vis, and high resolution cold spray ionization MS. The Mn(IV)(O)(TBP8Cz(•+))(LA) complexes are able to abstract H(•) from phenols and exhibit a rate enhancement of up to ∼100-fold over the parent Mn(V)(O) valence tautomer. In contrast, a large decrease in rate is observed for OAT for the Mn(IV)(O)(TBP8Cz(•+))(LA) complexes. The rate enhancement for hydrogen atom transfer (HAT) may derive from the higher redox potential for the π-radical cation complex, while the large rate decrease seen for OAT may come from a decrease in electrophilicity for an Mn(IV)(O) versus Mn(V)(O) complex.
Collapse
Affiliation(s)
- Heather M. Neu
- Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Regina A. Baglia
- Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - David P. Goldberg
- Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
26
|
Roles of multiple-proton transfer pathways and proton-coupled electron transfer in the reactivity of the bis-FeIV state of MauG. Proc Natl Acad Sci U S A 2015; 112:10896-901. [PMID: 26283395 DOI: 10.1073/pnas.1510986112] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The high-valent state of the diheme enzyme MauG exhibits charge-resonance (CR) stabilization in which the major species is a bis-Fe(IV) state with one heme present as Fe(IV)=O and the other as Fe(IV) with axial heme ligands provided by His and Tyr side chains. In the absence of its substrate, the high-valent state is relatively stable and returns to the diferric state over several minutes. It is shown that this process occurs in two phases. The first phase is redistribution of the resonance species that support the CR. The second phase is the loss of CR and reduction to the diferric state. Thermodynamic analysis revealed that the rates of the two phases exhibited different temperature dependencies and activation energies of 8.9 and 19.6 kcal/mol. The two phases exhibited kinetic solvent isotope effects of 2.5 and 2.3. Proton inventory plots of each reaction phase exhibited extreme curvature that could not be fit to models for one- or multiple-proton transfers in the transition state. Each did fit well to a model for two alternative pathways for proton transfer, each involving multiple protons. In each case the experimentally determined fractionation factors were consistent with one of the pathways involving tunneling. The percent of the reaction that involved the tunneling pathway differed for the two reaction phases. Using the crystal structure of MauG it was possible to propose proton-transfer pathways consistent with the experimental data using water molecules and amino acid side chains in the distal pocket of the high-spin heme.
Collapse
|
27
|
Viciano I, Castillo R, Martí S. QM/MM modeling of the hydroxylation of the androstenedione substrate catalyzed by cytochrome P450 aromatase (CYP19A1). J Comput Chem 2015; 36:1736-47. [DOI: 10.1002/jcc.23967] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 04/07/2015] [Accepted: 05/16/2015] [Indexed: 01/30/2023]
Affiliation(s)
- Ignacio Viciano
- Departament de Química Física i Analítica; Universitat Jaume I; Castelló 12071 Spain
| | - Raquel Castillo
- Departament de Química Física i Analítica; Universitat Jaume I; Castelló 12071 Spain
| | - Sergio Martí
- Departament de Química Física i Analítica; Universitat Jaume I; Castelló 12071 Spain
| |
Collapse
|
28
|
Jung J, Liu S, Ohkubo K, Abu-Omar MM, Fukuzumi S. Catalytic two-electron reduction of dioxygen by ferrocene derivatives with manganese(V) corroles. Inorg Chem 2015; 54:4285-91. [PMID: 25867007 DOI: 10.1021/ic503012s] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Electron transfer from octamethylferrocene (Me8Fc) to the manganese(V) imidocorrole complex (tpfc)Mn(V)(NAr) [tpfc = 5,10,15-tris(pentafluorophenyl)corrole; Ar = 2,6-Cl2C6H3] proceeds efficiently to give an octamethylferrocenium ion (Me8Fc(+)) and [(tpfc)Mn(IV)(NAr)](-) in acetonitrile (MeCN) at 298 K. Upon the addition of trifluoroacetic acid (TFA), further reduction of [(tpfc)Mn(IV)(NAr)](-) by Me8Fc gives (tpfc)Mn(III) and ArNH2 in deaerated MeCN. TFA also results in hydrolysis of (tpfc)Mn(V)(NAr) with residual water to produce a protonated manganese(V) oxocorrole complex ([(tpfc)Mn(V)(OH)](+)) in deaerated MeCN. [(tpfc)Mn(V)(OH)](+) is rapidly reduced by 2 equiv of Me8Fc in the presence of TFA to give (tpfc)Mn(III) in deaerated MeCN. In the presence of dioxygen (O2), (tpfc)Mn(III) catalyzes the two-electron reduction of O2 by Me8Fc with TFA in MeCN to produce H2O2 and Me8Fc(+). The rate of formation of Me8Fc(+) in the catalytic reduction of O2 follows zeroth-order kinetics with respect to the concentrations of Me8Fc and TFA, whereas the rate increases linearly with increasing concentrations of (tpfc)Mn(V)(NAr) and O2. These kinetic dependencies are consistent with the rate-determining step being electron transfer from (tpfc)Mn(III) to O2, followed by further proton-coupled electron transfer from Me8Fc to produce H2O2 and [(tpfc)Mn(IV)](+). Rapid electron transfer from Me8Fc to [(tpfc)Mn(IV)](+) regenerates (tpfc)Mn(III), completing the catalytic cycle. Thus, catalytic two-electron reduction of O2 by Me8Fc with (tpfc)Mn(V)(NAr) as a catalyst precursor proceeds via a Mn(III)/Mn(IV) redox cycle.
Collapse
Affiliation(s)
- Jieun Jung
- †Department of Material and Life Science, Graduate School of Engineering, Osaka University, ALCA and SENTAN, Japan Science and Technology Agency (JST), Suita, Osaka 565-0871, Japan.,‡Department of Bioinspired Science, Ewha Womans University, Seoul 120-750, Korea
| | - Shuo Liu
- §Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Kei Ohkubo
- †Department of Material and Life Science, Graduate School of Engineering, Osaka University, ALCA and SENTAN, Japan Science and Technology Agency (JST), Suita, Osaka 565-0871, Japan
| | - Mahdi M Abu-Omar
- §Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Shunichi Fukuzumi
- †Department of Material and Life Science, Graduate School of Engineering, Osaka University, ALCA and SENTAN, Japan Science and Technology Agency (JST), Suita, Osaka 565-0871, Japan.,‡Department of Bioinspired Science, Ewha Womans University, Seoul 120-750, Korea.,∥Faculty of Science and Engineering, Meijo University, ALCA and SENTAN, Japan Science and Technology Agency (JST), Nagoya, Aichi 468-0073, Japan
| |
Collapse
|
29
|
Kawakami N, Cong Z, Shoji O, Watanabe Y. Highly efficient hydroxylation of gaseous alkanes at reduced temperature catalyzed by cytochrome P450BM3 assisted by decoy molecules. J PORPHYR PHTHALOCYA 2015. [DOI: 10.1142/s1088424615500145] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Cytochrome P450BM3 functions as a small-alkane hydroxylase upon the addition of perfluorocarboxylic acids (PFs) as decoy molecules. The coupling efficiency (product formation rate per NADPH consumption rate) for the hydroxylation of small alkanes was improved by reducing the reaction temperature to 0°C.
Collapse
Affiliation(s)
- Norifumi Kawakami
- Department of Biosciences and Informatics, Keio University, 3-14-1 Hiyoshi, 223-8522 Yokohama, Japan
| | - Zhiqi Cong
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan
| | - Osami Shoji
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan
| | - Yoshihito Watanabe
- Research Center for Materials Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan
| |
Collapse
|
30
|
Lakk-Bogáth D, Speier G, Surducan M, Silaghi-Dumitrescu R, Jalila Simaan A, Faure B, Kaizer J. Comparison of heme and nonheme iron-based 1-aminocyclopropane-1-carboxylic acid oxidase mimics: kinetic, mechanistic and computational studies. RSC Adv 2015. [DOI: 10.1039/c4ra08762c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Kinetic, mechanistic and computational studies of the H2O2oxidation of 1-aminocyclopropane-1-carboxylic acid to ethylene by heme- and nonheme-type iron complexes are described as biomimics of 1-aminocyclopropane-1-carboxylic acid oxidase.
Collapse
Affiliation(s)
- Dóra Lakk-Bogáth
- Department of Chemistry
- University of Pannonia
- H-8200 Veszprém
- Hungary
| | - Gábor Speier
- Department of Chemistry
- University of Pannonia
- H-8200 Veszprém
- Hungary
| | - Mihai Surducan
- Department of Chemistry
- Babes-Bolyai University
- RO-400024 Cluj-Napoca
- Romania
| | | | - A. Jalila Simaan
- Aix-Marseille Université
- CNRS
- Central Marseille
- iSm2 UMR 7313
- Marseille
| | - Bruno Faure
- Aix-Marseille Université
- CNRS
- Central Marseille
- iSm2 UMR 7313
- Marseille
| | - József Kaizer
- Department of Chemistry
- University of Pannonia
- H-8200 Veszprém
- Hungary
| |
Collapse
|
31
|
Hirao H, Thellamurege N, Zhang X. Applications of density functional theory to iron-containing molecules of bioinorganic interest. Front Chem 2014; 2:14. [PMID: 24809043 PMCID: PMC4010748 DOI: 10.3389/fchem.2014.00014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 03/10/2014] [Indexed: 12/29/2022] Open
Abstract
The past decades have seen an explosive growth in the application of density functional theory (DFT) methods to molecular systems that are of interest in a variety of scientific fields. Owing to its balanced accuracy and efficiency, DFT plays particularly useful roles in the theoretical investigation of large molecules. Even for biological molecules such as proteins, DFT finds application in the form of, e.g., hybrid quantum mechanics and molecular mechanics (QM/MM), in which DFT may be used as a QM method to describe a higher prioritized region in the system, while a MM force field may be used to describe remaining atoms. Iron-containing molecules are particularly important targets of DFT calculations. From the viewpoint of chemistry, this is mainly because iron is abundant on earth, iron plays powerful (and often enigmatic) roles in enzyme catalysis, and iron thus has the great potential for biomimetic catalysis of chemically difficult transformations. In this paper, we present a brief overview of several recent applications of DFT to iron-containing non-heme synthetic complexes, heme-type cytochrome P450 enzymes, and non-heme iron enzymes, all of which are of particular interest in the field of bioinorganic chemistry. Emphasis will be placed on our own work.
Collapse
Affiliation(s)
- Hajime Hirao
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological UniversitySingapore, Singapore
| | | | | |
Collapse
|
32
|
Cai YB, Li XH, Jing J, Zhang JL. Effect of distal histidines on hydrogen peroxide activation by manganese reconstituted myoglobin. Metallomics 2014; 5:828-35. [PMID: 23575474 DOI: 10.1039/c3mt20275e] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Myoglobins provide an opportunity to investigate the effect of the secondary coordination sphere on the functionality and reactivity of non-native metal porphyrins inside well-defined protein scaffolds. In this work, we reconstituted myoglobin by the replacement of natural heme with manganese(iii) protoporphyrin IX and firstly investigated the effect of distal histidine on the reaction of Mn(III) porphyrin with H2O2 and one-electron oxidation of ABTS. We have prepared L29H, F43H, H64F, L29H/H64F, F43H/H64F, L29H/F43H and L29H/F43H/H64F mutants and reconstituted apo-myoglobins with manganese(iii) protoporphyrin IX. Distal histidine at the 64 position plays an essential role in binding H2O2 through hydrogen bond formation, which facilitates the coordination of H2O2 to the Mn center. The second histidine at the 43 position is important in the cleavage of the O-O bond and to form the highly valent Mn(iv)-oxo intermediate. His29 has less efficiency to activate H2O2, because it is too far from the Mn center. The cooperative effect of dual distal histidines at positions 64 and 43 on the activation of H2O2 was observed and the F43H Mn(III)Mb mutant exhibited 5-fold and 10-fold reaction rate increases in the activation of H2O2 and one-electron oxidation of ABTS versus wild-type Mn(III)Mb. This is different from the distal histidine effect on the H2O2 activation by heme in Mb. This work will provide new insights to understand the fundamental chemistry of manganese in oxidation, and further construct biomimetic Mn models for peroxidase, inside or outside of protein scaffolds.
Collapse
Affiliation(s)
- Yuan-Bo Cai
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing, P. R. China
| | | | | | | |
Collapse
|
33
|
Zheng W, Huang Y. The chemistry and biology of the α-ketoglutarate-dependent histone Nε-methyl-lysine demethylases. MEDCHEMCOMM 2014. [DOI: 10.1039/c3md00325f] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
This review describes the current knowledge of the chemistry and biology of the physiologically and therapeutically important histone/protein Nε-methyl-lysine demethylation reactions catalyzed by the JMJD2 and JARID1 families of the α-ketoglutarate-dependent demethylases.
Collapse
Affiliation(s)
- Weiping Zheng
- School of Pharmacy
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| | - Yajun Huang
- School of Pharmacy
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| |
Collapse
|
34
|
Jung J, Ohkubo K, Prokop-Prigge KA, Neu HM, Goldberg DP, Fukuzumi S. Photochemical oxidation of a manganese(III) complex with oxygen and toluene derivatives to form a manganese(V)-oxo complex. Inorg Chem 2013; 52:13594-604. [PMID: 24219426 PMCID: PMC3875180 DOI: 10.1021/ic402121j] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Visible light photoirradiation of an oxygen-saturated benzonitrile solution of a manganese(III) corrolazine complex [(TBP8Cz)Mn(III)] (1): [TBP8Cz = octakis(p-tert-butylphenyl)corrolazinato(3-)] in the presence of toluene derivatives resulted in formation of the manganese(V)-oxo complex [(TBP8Cz)Mn(V)(O)]. The photochemical oxidation of (TBP8Cz)Mn(III) with O2 and hexamethylbenzene (HMB) led to the isosbestic conversion of 1 to (TBP8Cz)Mn(V)(O), accompanied by the selective oxidation of HMB to pentamethylbenzyl alcohol (87%). The formation rate of (TBP8Cz)Mn(V)(O) increased with methyl group substitution, from toluene, p-xylene, mesitylene, durene, pentamethylbenzene, up to hexamethylbenzene. Deuterium kinetic isotope effects (KIEs) were observed for toluene (KIE = 5.4) and mesitylene (KIE = 5.3). Femtosecond laser flash photolysis of (TBP8Cz)Mn(III) revealed the formation of a tripquintet excited state, which was rapidly converted to a tripseptet excited state. The tripseptet excited state was shown to be the key, activated state that reacts with O2 via a diffusion-limited rate constant. The data allow for a mechanism to be proposed in which the tripseptet excited state reacts with O2 to give the putative (TBP8Cz)Mn(IV)(O2(•-)), which then abstracts a hydrogen atom from the toluene derivatives in the rate-determining step. The mechanism of hydrogen abstraction is discussed by comparison of the reactivity with the hydrogen abstraction from the same toluene derivatives by cumylperoxyl radical. Taken together, the data suggest a new catalytic method is accessible for the selective oxidation of C-H bonds with O2 and light, and the first evidence for catalytic oxidation of C-H bonds was obtained with 10-methyl-9,10-dihydroacridine as a substrate.
Collapse
Affiliation(s)
- Jieun Jung
- Department of Material and Life Science, Graduate School of Engineering, ALCA, Japan Science and Technology Agency, Osaka University, Suita, Osaka 565-0871, Japan
| | - Kei Ohkubo
- Department of Material and Life Science, Graduate School of Engineering, ALCA, Japan Science and Technology Agency, Osaka University, Suita, Osaka 565-0871, Japan
| | | | - Heather M. Neu
- Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - David P. Goldberg
- Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Shunichi Fukuzumi
- Department of Material and Life Science, Graduate School of Engineering, ALCA, Japan Science and Technology Agency, Osaka University, Suita, Osaka 565-0871, Japan
- Department of Bioinspired Science, Ewha Womans University, Seoul 120-750, Korea
| |
Collapse
|
35
|
Oohora K, Kihira Y, Mizohata E, Inoue T, Hayashi T. C(sp3)–H Bond Hydroxylation Catalyzed by Myoglobin Reconstituted with Manganese Porphycene. J Am Chem Soc 2013; 135:17282-5. [DOI: 10.1021/ja409404k] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Koji Oohora
- Department of Applied Chemistry,
Graduate School of Engineering, Osaka University, Suita, 565-0871, Japan
| | - Yushi Kihira
- Department of Applied Chemistry,
Graduate School of Engineering, Osaka University, Suita, 565-0871, Japan
| | - Eiichi Mizohata
- Department of Applied Chemistry,
Graduate School of Engineering, Osaka University, Suita, 565-0871, Japan
| | - Tsuyoshi Inoue
- Department of Applied Chemistry,
Graduate School of Engineering, Osaka University, Suita, 565-0871, Japan
| | - Takashi Hayashi
- Department of Applied Chemistry,
Graduate School of Engineering, Osaka University, Suita, 565-0871, Japan
| |
Collapse
|
36
|
Yoon H, Lee YM, Wu X, Cho KB, Sarangi R, Nam W, Fukuzumi S. Enhanced electron-transfer reactivity of nonheme manganese(IV)-oxo complexes by binding scandium ions. J Am Chem Soc 2013; 135:9186-94. [PMID: 23742163 PMCID: PMC3934761 DOI: 10.1021/ja403965h] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
One and two scandium ions (Sc(3+)) are bound strongly to nonheme manganese(IV)-oxo complexes, [(N4Py)Mn(IV)(O)](2+) (N4Py = N,N-bis(2-pyridylmethyl)-N-bis(2-pyridyl)methylamine) and [(Bn-TPEN)Mn(IV)(O)](2+) (Bn-TPEN = N-benzyl-N,N',N'-tris(2-pyridylmethyl)-1,2-diaminoethane), to form Mn(IV)(O)-(Sc(3+))1 and Mn(IV)(O)-(Sc(3+))2 complexes, respectively. The binding of Sc(3+) ions to the Mn(IV)(O) complexes was examined by spectroscopic methods as well as by DFT calculations. The one-electron reduction potentials of the Mn(IV)(O) complexes were markedly shifted to a positive direction by binding of Sc(3+) ions. Accordingly, rates of the electron transfer reactions of the Mn(IV)(O) complexes were enhanced as much as 10(7)-fold by binding of two Sc(3+) ions. The driving force dependence of electron transfer from various electron donors to the Mn(IV)(O) and Mn(IV)(O)-(Sc(3+))2 complexes was examined and analyzed in light of the Marcus theory of electron transfer to determine the reorganization energies of electron transfer. The smaller reorganization energies and much more positive reduction potentials of the Mn(IV)(O)-(Sc(3+))2 complexes resulted in remarkable enhancement of the electron-transfer reactivity of the Mn(IV)(O) complexes. Such a dramatic enhancement of the electron-transfer reactivity of the Mn(IV)(O) complexes by binding of Sc(3+) ions resulted in the change of mechanism in the sulfoxidation of thioanisoles by Mn(IV)(O) complexes from a direct oxygen atom transfer pathway without metal ion binding to an electron-transfer pathway with binding of Sc(3+) ions.
Collapse
Affiliation(s)
- Heejung Yoon
- Department of Material and Life Science, Graduate School of Engineering, ALCA, Japan Science and Technology Agency (JST), Osaka University, Suita, Osaka 565-0871, Japan
- Department of Bioinspired Science, Ewha Womans University, Seoul 120-750, Korea
| | - Yong-Min Lee
- Department of Bioinspired Science, Ewha Womans University, Seoul 120-750, Korea
| | - Xiujuan Wu
- Department of Bioinspired Science, Ewha Womans University, Seoul 120-750, Korea
| | - Kyung-Bin Cho
- Department of Bioinspired Science, Ewha Womans University, Seoul 120-750, Korea
| | - Ritimukta Sarangi
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Wonwoo Nam
- Department of Bioinspired Science, Ewha Womans University, Seoul 120-750, Korea
| | - Shunichi Fukuzumi
- Department of Material and Life Science, Graduate School of Engineering, ALCA, Japan Science and Technology Agency (JST), Osaka University, Suita, Osaka 565-0871, Japan
- Department of Bioinspired Science, Ewha Womans University, Seoul 120-750, Korea
| |
Collapse
|
37
|
Geng J, Dornevil K, Davidson VL, Liu A. Tryptophan-mediated charge-resonance stabilization in the bis-Fe(IV) redox state of MauG. Proc Natl Acad Sci U S A 2013; 110:9639-44. [PMID: 23720312 PMCID: PMC3683780 DOI: 10.1073/pnas.1301544110] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The diheme enzyme MauG catalyzes posttranslational modifications of a methylamine dehydrogenase precursor protein to generate a tryptophan tryptophylquinone cofactor. The MauG-catalyzed reaction proceeds via a bis-Fe(IV) intermediate in which one heme is present as Fe(IV)=O and the other as Fe(IV) with axial histidine and tyrosine ligation. Herein, a unique near-infrared absorption feature exhibited specifically in bis-Fe(IV) MauG is described, and evidence is presented that it results from a charge-resonance-transition phenomenon. As the two hemes are physically separated by 14.5 Å, a hole-hopping mechanism is proposed in which a tryptophan residue located between the hemes is reversibly oxidized and reduced to increase the effective electronic coupling element and enhance the rate of reversible electron transfer between the hemes in bis-Fe(IV) MauG. Analysis of the MauG structure reveals that electron transfer via this mechanism is rapid enough to enable a charge-resonance stabilization of the bis-Fe(IV) state without direct contact between the hemes. The finding of the charge-resonance-transition phenomenon explains why the bis-Fe(IV) intermediate is stabilized in MauG and does not permanently oxidize its own aromatic residues.
Collapse
Affiliation(s)
- Jiafeng Geng
- Department of Chemistry, Center for Diagnostics and Therapeutics, and Molecular Basis of Disease Program, Georgia State University, Atlanta, GA 30303; and
| | - Kednerlin Dornevil
- Department of Chemistry, Center for Diagnostics and Therapeutics, and Molecular Basis of Disease Program, Georgia State University, Atlanta, GA 30303; and
| | - Victor L. Davidson
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827
| | - Aimin Liu
- Department of Chemistry, Center for Diagnostics and Therapeutics, and Molecular Basis of Disease Program, Georgia State University, Atlanta, GA 30303; and
| |
Collapse
|
38
|
Bernasconi L, Baerends EJ. A Frontier Orbital Study with ab Initio Molecular Dynamics of the Effects of Solvation on Chemical Reactivity: Solvent-Induced Orbital Control in FeO-Activated Hydroxylation Reactions. J Am Chem Soc 2013; 135:8857-67. [DOI: 10.1021/ja311144d] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Leonardo Bernasconi
- STFC Rutherford Appleton Laboratory, Harwell Oxford, Didcot, OX11 0QX,
United Kingdom
| | - Evert Jan Baerends
- Theoretical
Chemistry Section, Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081
HV Amsterdam, The Netherlands
- WCU program at Department of Chemistry, Pohang University of Science and Technology, Pohang
790-784, South Korea
- Chemistry
Department, Faculty
of Science, King Abdulaziz University,
Jeddah 21589, Saudi Arabia
| |
Collapse
|
39
|
Abstract
Methylamine dehydrogenase (MADH) requires the cofactor tryptophan tryptophylquinone (TTQ) for activity. TTQ is a posttranslational modification that results from an 8-electron oxidation of two specific tryptophans in the MADH β-subunit. The final 6-electron oxidation is catalyzed by an unusual c-type di-heme enzyme, MauG. The di-ferric enzyme can react with H(2)O(2), but atypically for c-type hemes the di-ferrous enzyme can react with O(2) as well. In both cases, an unprecedented bis-Fe(IV) redox state is formed, composed of a ferryl heme (Fe(IV)=O) with the second heme as Fe(IV) stabilized by His-Tyr axial ligation. Bis-Fe(IV) MauG acts as a potent 2-electron oxidant. Catalysis is long-range and requires a hole hopping electron transfer mechanism. This review highlights the current knowledge and focus of research into this fascinating system.
Collapse
Affiliation(s)
- Carrie M Wilmot
- Department of Biochemistry, Molecular Biology and Biophysics, Minneapolis, Minnesota 55455, USA.
| | | |
Collapse
|
40
|
Kawakami N, Shoji O, Watanabe Y. Direct hydroxylation of primary carbons in small alkanes by wild-type cytochrome P450BM3 containing perfluorocarboxylic acids as decoy molecules. Chem Sci 2013. [DOI: 10.1039/c3sc50378j] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
41
|
Trzcionka J, Irvoas J, Pratviel G. The protonation state of trans axial water molecule switches: the reactivity of high-valent manganese-oxo porphyrin. NEW J CHEM 2013. [DOI: 10.1039/c3nj01004j] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
42
|
Lyakin OY, Shteinman AA. Oxo complexes of high-valence iron in oxidation catalysis. KINETICS AND CATALYSIS 2012. [DOI: 10.1134/s0023158412050084] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
43
|
Abu Tarboush N, Shin S, Geng J, Liu A, Davidson VL. Effects of the loss of the axial tyrosine ligand of the low-spin heme of MauG on its physical properties and reactivity. FEBS Lett 2012; 586:4339-43. [PMID: 23127557 DOI: 10.1016/j.febslet.2012.10.044] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 10/19/2012] [Accepted: 10/23/2012] [Indexed: 10/27/2022]
Abstract
MauG catalyzes posttranslational modifications of methylamine dehydrogenase to complete the biosynthesis of its protein-derived tryptophan tryptophylquinone (TTQ) cofactor. MauG possesses a five-coordinate high-spin and a six-coordinate low-spin ferric heme, the latter with His-Tyr ligation. Replacement of this tyrosine with lysine generates a MauG variant with only high-spin ferric heme and altered spectroscopic and redox properties. Y294K MauG cannot stabilize the bis-Fe(IV) redox state required for TTQ biosynthesis but instead forms a compound I-like species on reaction with peroxide. The results clarify the role of Tyr ligation of the five-coordinate heme in determining the physical and redox properties and reactivity of MauG.
Collapse
Affiliation(s)
- Nafez Abu Tarboush
- Biochemistry and Physiology Department, College of Medicine, The University of Jordan, Amman 11942, Jordan
| | | | | | | | | |
Collapse
|
44
|
Geometric and electronic structures of the His-Fe(IV)=O and His-Fe(IV)-Tyr hemes of MauG. J Biol Inorg Chem 2012; 17:1241-55. [PMID: 23053529 DOI: 10.1007/s00775-012-0939-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2012] [Accepted: 09/12/2012] [Indexed: 10/27/2022]
Abstract
Biosynthesis of the tryptophan tryptophylquinone (TTQ) cofactor activates the enzyme methylamine dehydrogenase. The diheme enzyme MauG catalyzes O-atom insertion and cross-linking of two Trp residues to complete TTQ synthesis. Solution optical and Mössbauer spectroscopic studies have indicated that the reactive form of MauG during turnover is an unusual bisFe(IV) intermediate, which has been formulated as a His-ligated ferryl heme [Fe(IV)=O] (heme A), and an Fe(IV) heme with an atypical His/Tyr ligation (heme B). In this study, Fe K-edge X-ray absorption spectroscopy and extended X-ray absorption fine structure studies have been combined with density functional theory (DFT) and time-dependent DFT methods to solve the geometric and electronic structures of each heme site in the MauG bisFe(IV) redox state. The ferryl heme site (heme A) is compared with the well-characterized compound I intermediate of cytochrome c peroxidase. Heme B is unprecedented in biology, and is shown to have a six-coordinate, S = 1 environment, with a short (1.85-Å) Fe-O(Tyr) bond. Experimentally calibrated DFT calculations are used to reveal a strong covalent interaction between the Fe and the O(Tyr) ligand of heme B in the high-valence form. A large change in the Fe-O(Tyr) bond distance on going from Fe(II) (2.02 Å) to Fe(III) (1.89 Å) to Fe(IV) (1.85 Å) signifies increasing localization of spin density on the tyrosinate ligand upon sequential oxidation of heme B to Fe(IV). As such, O(Tyr) plays an active role in attaining and stabilizing the MauG bisFe(IV) redox state.
Collapse
|
45
|
Abstract
The heme enzyme indoleamine 2,3-dioxygenase (IDO) was found to catalyze the oxidation of indole by H(2)O(2), with generation of 2- and 3-oxoindole as the major products. This reaction occurred in the absence of O(2) and reducing agents and was not inhibited by superoxide dismutase or hydroxyl radical scavengers, although it was strongly inhibited by L-Trp. The stoichiometry of the reaction indicated a one-to-one correspondence for the consumption of indole and H(2)O(2). The (18)O-labeling experiments indicated that the oxygen incorporated into the monooxygenated products was derived almost exclusively from H(2)(18)O(2), suggesting that electron transfer was coupled to the transfer of oxygen from a ferryl intermediate of IDO. These results demonstrate that IDO oxidizes indole by means of a previously unrecognized peroxygenase activity. We conclude that IDO inserts oxygen into indole in a reaction that is mechanistically analogous to the "peroxide shunt" pathway of cytochrome P450.
Collapse
|
46
|
Hrycay EG, Bandiera SM. The monooxygenase, peroxidase, and peroxygenase properties of cytochrome P450. Arch Biochem Biophys 2012; 522:71-89. [DOI: 10.1016/j.abb.2012.01.003] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Revised: 12/22/2011] [Accepted: 01/04/2012] [Indexed: 12/30/2022]
|
47
|
Prokop KA, Goldberg DP. Generation of an isolable, monomeric manganese(V)-oxo complex from O2 and visible light. J Am Chem Soc 2012; 134:8014-7. [PMID: 22533822 DOI: 10.1021/ja300888t] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The direct conversion of a Mn(III) complex [(TBP(8)Cz)Mn(III) (1)] to a Mn(V)-oxo complex [(TBP(8)Cz)Mn(V)(O) (2)] with O(2) and visible light is reported. Complex 1 is also shown to function as an active photocatalyst for the oxidation of PPh(3) to OPPh(3). Mechanistic studies indicate that the photogeneration of 2 does not involve singlet oxygen but rather likely occurs via a free-radical mechanism upon photoactivation of 1.
Collapse
Affiliation(s)
- Katharine A Prokop
- Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218, United States
| | | |
Collapse
|
48
|
Cho K, Leeladee P, McGown AJ, DeBeer S, Goldberg DP. A high-valent iron-oxo corrolazine activates C-H bonds via hydrogen-atom transfer. J Am Chem Soc 2012; 134:7392-9. [PMID: 22489757 DOI: 10.1021/ja3018658] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Oxidation of the Fe(III) complex (TBP(8)Cz)Fe(III) [TBP(8)Cz = octakis(4-tert-butylphenyl)corrolazinate] with O-atom transfer oxidants under a variety of conditions gives the reactive high-valent Fe(O) complex (TBP(8)Cz(+•))Fe(IV)(O) (2). The solution state structure of 2 was characterized by XAS [d(Fe-O) = 1.64 Å]. This complex is competent to oxidize a range of C-H substrates. Product analyses and kinetic data show that these reactions occur via rate-determining hydrogen-atom transfer (HAT), with a linear correlation for log k versus BDE(C-H), and the following activation parameters for xanthene (Xn) substrate: ΔH(++) = 12.7 ± 0.8 kcal mol(-1), ΔS(++) = -9 ± 3 cal K(-1) mol(-1), and KIE = 5.7. Rebound hydroxylation versus radical dimerization for Xn is favored by lowering the reaction temperature. These findings provide insights into the factors that control the intrinsic reactivity of Compound I heme analogues.
Collapse
Affiliation(s)
- Kevin Cho
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, USA
| | | | | | | | | |
Collapse
|
49
|
Machado GS, Groszewicz PB, Castro KADDF, Wypych F, Nakagaki S. Catalysts for heterogeneous oxidation reaction based on metalloporphyrins immobilized on kaolinite modified with triethanolamine. J Colloid Interface Sci 2012; 374:278-86. [PMID: 22402183 DOI: 10.1016/j.jcis.2012.02.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Revised: 02/06/2012] [Accepted: 02/09/2012] [Indexed: 10/28/2022]
Abstract
Raw kaolinite was modified with triethanolamine (TEA), in an attempt to create a new support for the immobilization of metalloporphyrins. Anionic metalloporphyrins containing Fe(3+) or Mn(3+) as metallic centers were immobilized on the prepared support, and the obtained solids were characterized by Fourier-transform infrared (FTIR) spectroscopy, X-ray powder diffraction (XRPD), thermal analysis (thermogravimetric and differential thermal analyses--TGA/DTA), and scanning electron microscopy (SEM). The solids were used in heterogeneous oxidation catalysis of cyclooctene and cyclohexane. The yields from the oxidation of cyclooctene depended on the amount of TEA and/or water present in the solids. Good reaction yields were obtained for the oxidation of cyclohexane, with selectivity for the alcohol. In one specific case, a possible co-catalytic activity was verified for TEA during the oxidation of cyclohexane.
Collapse
Affiliation(s)
- Guilherme Sippel Machado
- Universidade Federal do Paraná, Departamento de Química, Laboratório de Bioinorgânica e Catálise e, CP 19081, CEP 81531-980, Curitiba, Paraná, Brazil
| | | | | | | | | |
Collapse
|
50
|
Miniaturized, microarray-based assays for chemical proteomic studies of protein function. Methods Mol Biol 2012; 800:133-62. [PMID: 21964787 DOI: 10.1007/978-1-61779-349-3_10] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Systematic analysis of protein and enzyme function typically requires scale-up of protein expression and purification prior to assay development; this can often be limiting. Miniaturization of assays provides an alternative approach, but simple, generic methods are in short supply. Here we show how custom microarrays can be adapted to this purpose. We discuss the different routes to array fabrication and describe in detail one facile approach in which the purification and immobilization procedures are combined into a single step, significantly simplifying the array fabrication process. We illustrate this approach by reference to the creation of arrays of human protein kinases and of human cytochrome P450s. We discuss methods for both ligand-binding and turnover-based assays, as well as data analysis on such arrays.
Collapse
|